山羊绒纤维结构与热学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国山羊绒产量、质量居世界首位。提高后整理水平是山羊绒工业目前的工作重点。文献上对山羊绒的基础研究大多以鉴别山羊绒与细支羊毛为目的,本文侧重于研究山羊绒纤维的结构与热学性能,并与细支羊毛作比较。
     首次采用激光共焦显微拉曼光谱技术,对比研究了山羊绒、羊毛纤维的二硫键含量、蛋白质分子链的二级结构,表明山羊绒纤维胱氨酸二硫键含量约为羊毛的60%,而其有序α—螺旋含量高于羊毛。采用广角X-射线衍射仪(WAXD)、差示扫描量热仪(DSC),对比研究了两种纤维的结晶结构,首次明确提出山羊绒纤维结晶度高于羊毛纤维,细支羊毛纤维的结晶度、α-结晶度分别为山羊绒纤维的81%及76%。
     采用DSC,比较研究了两种纤维的熔融相变以及玻璃化转变。两种纤维的DSC熔融曲线都具有双熔融峰,熔融温度没有明显差异,双熔融峰的形态有细微差异。山羊绒纤维的玻璃化温度比羊毛纤维高约5℃,转变范围宽约5℃。动态热机械分析仪的TMA模式表明山羊绒单纱在219℃发生收缩,在230℃发生突变伸长。首次认为山羊绒纤维在干态与湿态下的熔融机理可能不同:在干态下,山羊绒纤维双股α-螺旋链可能解链,导致大分子发生相对滑移,纱线突变伸长,而在湿态下,结晶的α—螺旋链转变为无规卷曲链,纱线发生过缩。
     采用高温染样机及有关热箱,研究了热处理对山羊绒纱线、纤维性能及微观结构的影响。山羊绒纱线在热处理过程中,含水率越高,损伤越严重。与松弛蒸纱相比,张紧蒸纱后的山羊绒纱线的强伸性能下降较多,尤其是断裂伸长率。130℃以上的松弛煮纱使山羊绒纤维结晶熔融,纱线发生过缩。120℃、5min张紧蒸纱使山羊绒纤维的初始模量下降,屈服区伸长率减小,断裂强力及断裂伸长率减小。首次提出了山羊绒纱线在张紧状态、松弛状态经120℃蒸汽处理不同时间、经98℃、130℃的沸水松弛热处理后纤维二硫键构象、蛋白质分子链二级结构、结晶度以及玻璃化温度均发生变化,这些变化与热处理过程中的温度、时间、含水率及张力等因素有关。
     采用吴雄英等人研制的扭矩测定装置及动态热机械分析仪的拉伸应力松弛模式,研究了两种纱线的扭转定形及拉伸定形性能。首次得到山羊绒纱线的扭矩
    
    松弛速率、拉伸应力松弛速率均慢于羊毛纱线,即山羊绒纱线扭转及拉伸定形性
    能均差于羊毛的结论。
     采用单纤维强力机及DCS一500型岛津强力机,分别研究了山羊绒单纤维的
    强伸性能及纤维集合体的压缩性能。山羊绒纤维比强度、初始模量高于羊毛纤维、
    弹性特征更明显的力学性能证实山羊绒纤维结晶度高于羊毛纤维。与分梳的细绵
    羊毛相比,山羊绒纤维集合体压缩力小约20%,压缩力松弛慢,压缩弹性好:山
    羊绒的压缩力随卷曲密度或纤维直径的提高而提高;纤维集合体压缩力小,手感
    柔软。
     本文的研究更深入地认识了山羊绒与细支羊毛纤维在结构、热学性能、强伸
    性能方面的异同点,对于合理制定山羊绒制品的后整理工艺、洗涤熨烫具有一定
    的理论参考价值。另外,客观地表征了山羊绒纤维优良的手感柔软性及压缩弹性。
Both the quality and quantity of Chinese cashmere are on the top in the world. Nowadays, it's important and necessary to improve the finishing technologies on cashmere textiles in our country. The available literatures on the fundamental studies of cashmere fiber mostly aim to identify cashmere and fine wool. In this dissertation, the structures and thermal properties of cashmere fiber are primarily studied in comparison with fine wool.
    Many new techniques are used in this dissertation. The contents of disulfide bonds and the secondary structures of cashmere and fine wool fiber are analyzed using Confocal Laser Raman Microscopy for the first time, concluding that the disulfide content of cashmere fiber is 60% of that of fine wool and its content of the ordered α-helix chains is more than that of fine wool. Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimeter (DSC) show that the cry stallinity of cashmere fiber is higher than that of wool, especially that α- crystallinity of cashmere fiber are higher than that of wool. The crystallinity and α- crystallinity of fine wool are respectively 81% and 76% of that of cashmere fiber.
    The thermal properties of cashmere and wool fiber are investigated by DSC technique. Both these two kinds of fiber show bi-modal melting peaks and similar melting temperature, and the shapes of their melting peaks have small differences. The glass temperature of cashmere fiber is 5℃ higher and its temperature range of glass transition is 5℃ broader than that of wool. The TMA mode of Dynamic Thermal Mechanical Analyzer shows that cashmere yarn contracts at 219℃ and abruptly extends at 230℃. In this dissertation, it is pointed out for the first time that the melting mechanism is different between dry cashmere fiber and cashmere fiber in excess water. During the melting of dry cashmere, its double-stranded α-helix proto-filament may be separated, which results in the slippage between the molecular
    
    
    
    
    chains and the abrupt extension of the yarn. However, during the melting of cashmere in excess water, a-helix chains in crystalline region are transformed to random coils, which results in the supercontraction of the yarn.
    The effects of heat treatments on the structures of cashmere fiber and the properties of cashmere yarn and fiber are uniquely investigated by High Temperature Laboratory Dyeing Machine and the heat case. The higher the moisture contents in cashmere yarn, the more severe the damages the yarn suffers during heat treatment. The cashmere yarn in stretched state suffers more damages than that in relaxed state during steaming treatment. The crystalline regions of cashmere fiber melt and the yarn supercontracts after the cashmere yarn is crabbed above 130 in relaxed state. After the cashmere yarn is treated in steam of 120 for 5 minutes in stretched state, the extension in "yield region" and the extension at rupture of the treated cashmere fiber are obviously lower, and its strength and initial modular are mildly lower than that of original cashmere fiber. The conformation of disulfide bonds, secondary structures, crystallinity and a-crystallinity of the cashmere fiber are changed after the cashmere yarn is steamed above 120 in relaxed and stretched state or crabbed at 98 130 for different time, which is firstly found out. These structure changes of the treated cashmere fiber are related to temperature, time, and moisture content and tensile during heat treatment.
    Using a torque testing apparatus, developed by Wu Xiongying, and
    the tensile stress relaxation mode of Dynamic Thermal Mechanical Analyzer, the properties of torsional setting and tensile setting of cashmere yarn are studied. The torque relaxation rate and tensile stress relaxation rate of cashmere yarn are lower than that of wool yarn, i.e, the torsional setting and tensile setting properties of cashmere yarn are weaker than that of wool yarn. This conclusion is also first reported.
    By fiber tensile tester and DCS-500 strength machine, the tensile properties of ca
引文
1.王树惠等编著,特种动物纤维的性能及加工,青岛海洋大学出版社,1993,8
    2.姚穆主编,毛绒纤维标准与检验,中国纺织出版社,1997,9
    3.刘军,我国山羊绒制品及其加工业的现状和发展,毛纺科技,1997(3),31-36
    4.侯秀良等,山羊绒纤维的特性,上海毛麻科技,2000(2),10-12
    5.中华人民共和国国家标准,纺织名词术语(毛部分),GB5706-85
    6.中华人民共和国国家标准,山羊原绒,GB/T13830-92
    7.美国CCMI提出对山羊绒的回用,Wool Record,-1997,156(3629),-19
    8.张志,对山羊绒细度的研究与探讨,1998年全国毛针织学术研讨会
    9. McGrregor B.A., Quality attributes of cashmere, Proceedings of the 10th International Wool Textile Research Conference, 2000, SF-1,1
    10. Phan K.-H., Wortmann F.-J, and Ares W., charaterisation of Cashmere, Proceedings of the 9th International Wool Textile Research Conference. Vol.2, 571-578
    
    
    11. Spihaus K., Cashmere supply situation 2000, Proceedings of the 10th International Wool Textile Research Conference, 2000, KNL-8, 1
    12.羊绒市场的现状与走势,中国纺织品市场信息,1998,2,10
    13.汪玲.精梳羊绒针织纱可纺性研讨,上海毛麻科技,1995,(4),8-11
    14.韩宏学,粗纺高支丝/绒混纺纱的设计,毛纺科技,1995(2),36
    15.朱贤康,粗纺高支丝/绒纱的纺纱工艺技术分析与探讨,浙江纺织,1997(3),52-53
    16.侯秀良等,粗纺高支高比例丝/绒混纺针织纱工艺实践,毛纺科技,1999(2),16-20
    17.邢宇新,羊绒衫掉绒起球的理论探讨,毛纺科技,1997,(2),54-55
    18.杨砚.浅析影响羊绒纱强力的主要因素.北京纺织,1997,18(3):30-32
    19.宗燕凌,特种动物纤维纺针织纱工艺研究,毛纺科技,1995,(3),41
    20.蔡浩,山羊绒精纺系列产品的开发,毛纺科技,1996,(2),15-21
    21.陈香芝等,提高羊绒大衣呢实物质量的探索,毛纺科技,1995,(4),5-11
    22.李龙,杨敏壮,在棉纺没备上纺制纯山羊绒短纤纱,棉纺织技术,1997,(2),44
    23.王彪正,安哥拉绒、羊绒混纺工艺初探,上海纺织科技,1997,25(2),22-24
    24.朱弘道,汪立基,短顺毛羊绒粗纺面料后整理工艺探讨,上海毛麻科技,1998,(1),27
    25.周文龙,博士学位论文,东华大学,1999
    26.樊增禄,博士学位论文,东华大学,1999
    27.西北纺织工学院纺织材料教研室编,毛纤维结构,1982,3
    28. Zahn H., Wool chemistry and processing, Proceeding of the 9th international wool textile research conference, 1995, Vol Ⅱ 1-16
    29. Lewin M., Pearce M., Handbook of Fiber Chemistry, Second edition, Marcel Dekker, New York, 1998, 357-403
    30. Whiteley K.J., and Kaplin I.J., the Comparative arrangement of microfibrils in Ortho-, Meso-, and Para-cortical cells of Merino-wool fibers, J.T.I., 1997, No.11, 384-386
    31. Tester D.H., Fine structure of cashmere and superfine Merino wool fibers, Text. Res. J., 57(4), 213-218(1987)
    32.高等纺织院校教材,纺织材料学,纺织工业出版社,第二版,1988,pp259
    33.刘启国等,细支绵羊毛、山羊绒纤维微观结构研究现状,南通工学院学报,1999(4),25-28
    34.张尚德、张汉武编著,羊毛学,陕西科学技术出版社,1982
    35.J.W.S 赫尔,L.W.C米利斯著,李栋高,蒋惠均译,纤维和织物的定型,纺织工业出版社,1981,7
    36.侯秀良等,山羊绒与细支绵羊毛纤维的鉴别,上海毛麻科技,1999,27(3),58-60
    37.姚穆主编,毛绒纤维标准与检验,中国纺织出版社,1997
    38.中华人民共和国国家标准,山羊绒、绵羊毛及其混合纤维定量分析方法,GB/T14593-93
    39. Wortmann F.J. and Wortmann G., Quantitative fiber mixture analysis by electron microscopy, Text. Res. J., 62(7), 423-431 (1992)
    40. AATCC Test method 20-1985
    41.中华人民共和国国家标准,特种动物纤维与绵羊毛含量的测定,GB/T16988-1997
    42. T. R. J., 67(8), 619-620(1997)
    43. Robson D., and et al., T.R.J., 59(12), 713-717(1989)
    44. Robson D., T.R.J., 67(10), 747-752(1997)
    45. Hudson A. H. F., The chemistry and morphology of goat fibers, Ph. D thesis, Deakin
    
    University, Geelong, Austrlia. 1992
    46.姚金波,滑均凯,刘建勇编著,毛纤维新型整理技术,中国纺织出版社,北京,2000,4
    47.侯秀良译.分子水平鉴定动物纤维,国外纺织技术,1999 (12),32-33
    48. Paul F.Hamlyn, and et al., J.Soc. Dyers Col., 1998, 114(3), 78-80
    49.上海毛研所特种动物纤维资料
    50.吴安成,宋修彩,严灏景,特种动物纤维的性能研究,中国纺织大学学报,1987,(6)
    51. Tester D. H., and Foley C. A., Set in bending of Australia cashmere and superfine Merino. Text. Res. J., 1986, 56 (9), 546-550
    52.薛纪莹,杨锁廷,牦牛毛与山羊绒机械性能的研究,毛纺科技
    53.贾青,山羊的起源分化与品种形成,河北农业大学学报,1997,20(2),68-71
    54.李祥龙,山羊起源与分化研究概况,内蒙古畜牧科学,1998,(2),6-9
    55.贾志海,安民,山羊绒生长机理研究进展,草食家畜,1996,(1),2-6
    56.孙海洲、侯先志等,阿尔巴斯白绒山羊皮肤毛囊发育及其活性变化规律的研究,内蒙古畜牧科学,1998,(4),3-6
    57.王永,补饲硫对安哥拉山羊后代杂种羊无髓毛机械性能的影响研究,西南民族学院学报,1998,(2),185-189
    58. PHD of IVEY, DURRANT SYLVESTER, Effect of level of energy and protein on cashmere production by goats, OKLAHOMA STATE UNIVERSITY, 1996
    59.高等纺织院校教材,合成纤维生产工艺学,上册,中国纺织出版社,1991,4,494-536
    60.王善元主编,变形纱,上海科学技术出版社,1992,1,12-19
    61.孔繁超等编著,毛织物染整理论与实践,纺织工业出版社,212-239
    62.黄汉平,李文柯译,陶乃杰校,M利温,S.B.塞洛主编,纺织品功能整理,纺织工业出版社,北京:1992,7,12-19
    63. Farnworth A. J., Delmenico J., Permanent setting of wool, Merrow, Watford, herts, England, 1971, 1-20
    64. CSIRO 出版物, Finishing and wool fabric properties, pp100-120
    65. Naithani V.K., Permanent setting: new evidence of thiol-disulphide exchange reaction and of irreversibility of damage by set, the 10th international wool textile research conference, F1-P5, 2000
    66. Zahn H., Wool chemistry and processing, the 9th international wool textile research conference, Vol Ⅱ, 1-16
    67. ITB, Dying/Printing/Finishing, 94(1),38-44
    68.王宜田译,毛织物的松弛回缩,印染译丛
    69.何中琴译,毛织物形态稳定整理,印染译丛,1998(1),28-34
    70.王小亚等,羊毛抗定形染色技术的研究与进展,毛纺科技,1997(5),26-31
    71. SalberJ., tillmann w., and et al., Application of confocal laser Raman microscopy in analysis of thiol and disulphide contents of wool, the 10th international wool textile research conference, FI-14,1
    72.杨琴等,羊毛织物的湿膨胀和永久性定形,毛纺科技,2001,2,17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700