水稻产量相关性状的形态生理分析和分子标记剖析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水稻产量潜力的增加主要依赖于形态改良和杂种优势的利用。近年来,主要农作物的产量增加速率明显下降。这可能与人们对作物生长和产量的生理基础了解不多有关。近年来,新的信息和方法被用来解决禾谷类作物的产量问题和寻找产量相关基因。本研究利用源于我国的珍汕97和明恢63杂交组合的重组自交系(F_(10)、F_(11)),分别于1999年和2000年在国际水稻研究所(IRRI)进行室内和田间实验,对产量及其构成因子与其它相关性状的关系进行形态生理分析,对幼苗活力及相关生理指标、穗部性状、产量及其构成因子、叶片特征等性状进行了QTL定位分析和上位性检测。主要结果如下:
     1 较强的幼苗活力对作物建成和生长而言是重要的。种子萌发速率和幼苗生长被用来量化幼苗活力,淀粉酶活性、根氧化活力、还原糖含量等也被测量。总体上,幼苗活力(如萌发速率、幼苗干重、最大根长等)和几个生理性状(淀粉酶活性、根氧化活力、还原糖含量、种子大小等)间存在着显著的相关性。QTL定位分析表明四个染色体区域(第三染色体上的RZ403-C1087-RG393,第五染色体上的C1447-RM26-C246和C734b-RG360-R3166-R830,第六染色体上的C952-Waxy-C1496)与水稻幼苗活力相关。控制淀粉酶活性、根活力和还原糖含量的几个QTL分别与萌发速率、幼苗干重和最大根长的QTL定位在相似区段。结果表明部分QTL和二位点互作对同时对多个性状有效应,表现出多效性。六对QTL与QTL间的互作也被检测到(根干重和总淀粉酶活性各有一对、还原糖含量有两对、种子大小有二对)。
     2 水稻植株高度、分蘖数、抽穗期是三个重要的农艺性状。本研究对播种14天时幼苗高度、移栽后35天和株系成熟期时的高度、移栽后35天和株系成熟期时分蘖数、抽穗期进行了QTL定位和二位点互作分析。在水稻的两个发育阶段(移栽后35天和株系成熟期),株高与分蘖数都呈负相关。抽穗期分别与植株成熟时的高度和分蘖数紧密相关。共有65个分别对两个时期(移栽后35天和株系成熟期)的株高和分蘖数、抽穗期有效应的单标记位点(p≤0.01)在两年都能检测到,其中部分标记位点与多个性状显著相关。对所研究的性状共定位了32个QTL。在定位的控制移栽后35天和株系成熟期时高度、分蘖数、抽穗期的28个QTL中有11个能在两年都检测到。第六染色体上的RG424-RZ667对抽穗期、成熟时的植株高度和分蘖数都有大的效应。由于它的效应,推迟大约六天抽穗可导致成熟时分蘖数减少一个和植株高度增加约六厘米。对除幼苗高度外其它性状而言,共有549个互作对在两年都能检测到(p≤0.01),其中55对对多个性状有效应。总体上,控制成熟时植株高度和分蘖数的QTL和互作对不同于移栽后35天时所检测到的QTL和互作对,这表明在不同的发育时期,不同的基因和基因互作控制着同一性状的表达。
     3 通过增加每穗总颖花数来增加库的大小可能是增加产量潜力的一条途径。每穗总颖花数与其它穗部性状如第一次、第二次枝梗数、穗长等显著相关。大体上,第二次枝梗数、每一个二次枝梗上的颖花数、颖花密度紧密联系着总颖花数。通径分析也表明第二次枝梗数、第二次枝梗数上的颖花数、颖花密度对总颖花数有较大的直接效应。两年中共检测到53个对10个穗部性状和其衍生性状有效应的QTL,其中23个QTL能在两年同时检测到。部分QTL表现出多效性。五个染色体区段(第一染色体上G359-RG532和C567-RG236、第二染色体上R712-RM29、第六染色体上P-RG424、第十染色体上C1633附近区域)被发现对多个穗部性状有效应。大量的二位点互作被检测到,其中18.2%的互作对能在两年同时检测到。两年共有互作对的比例高低与性状有关,每个第二次枝梗上颖花数有8.7%,而穗长则为32.6%。两年共有互作对的比例与不同环境中性状表现的一致性相联系,与性状遗传率正相关。上位性分析表明大部分QTL的侧翼标记都参与到二位点互作,且两年共检测到六对同一性状内QTL间的互作。两年同时检测到的互作对中,26.7%的二位点组合对多个性状有效应,表现出多效性。
     4 作物的形态特征对籽粒产量的影响是通过对产量构成因子的影响来体现的。水稻千粒重和结实率受源和库特征的共同影响。在本研究中,水稻旗叶、倒二叶、倒三叶的叶面积和相对厚度与结实率显著负相关而与千粒重不相关,然而这三片叶的面积与每穗总颖花之比与千粒重显著正相关而与结实率不相关。总颖花数和第二次枝梗上的颖花数分别与结实率和千粒重呈负相关。大的茎维管束数与总颖花数之比分别与结实率和千粒重呈正相关。通径分析表明:对籽粒大小而言,旗叶和倒二叶的大小、相对厚度、叶面积与每穗总颖花数比等特征表现出正效应,而多的二次枝梗数及在二次枝梗数上的颖花表现出负效应;大而厚的倒二、倒三叶、多的枝梗数、第二次枝梗上多的颖花等特征对结实
    
    率有较大的负的直接效应;总体上,高的旗叶面积与总颖花数比、高的茎维管束数与总颖花数之比对
    结实率和千粒重都有正的效应。
    5在生产中经常观察到环境因素影响到水稻的干物质生产和籽粒生产.在本研究中,籽粒产量与
    每平方米面积上的总粒数、总穗数、结实率、收获指数呈正相关,而与抽穗时间、成熟时植株高度
    呈负相关
Raising yield potential in rice depends largely on morphological improvement and heterosis utilization. Rates of grain yield advances through plant breeding programs have apparently declined in recent years. It may partly be because that understanding of morphological and physiological bases for crop growth and yield are rather limited. New information and methodologies such as QTL analysis are employed to approach the grain yield problem and search yield genes in cereals. In the study, a recombinant inbred population derived from ZS97x MH63 cross (F10, F11) was employed for morpho-physiological analyses and molecular dissection of yield-related traits in 1999 and 2000 at International Rice Research Institute (IRRI). The main results are as follows:
    1 Strong seedling vigor are desirable for crop establishment in rice. Germination rate and seedling growth were measured to quantify seedling vigor Total amylase activity, a-amylase activity, reducing sugar content, root activity, and seed weight were determined. Overall, correlation was observed between the seedling vigor traits (germination rate, seedling dry weight, and root maximum length etc) and physiological traits (amylase activity, root activity, reducing sugar content etc). QTL analysis reveals that the intervals of RZ403-C1087-RG393 on chromosome 3, C1447-M26-C246 and C734b-RG360-R3166 -R830 on chromosome 5, and C952-Waxy-C1496 on chromosome 6 are the four main chromosomal regions controlling seedling vigor. Several QTLs for amylase activities, reducing sugar content, and root activity were localized in the similar region as the QTLs for seedling vigor, respectively. The results show that it is common that single marker, QTL, and digenic interaction have pleiotropic effects, su
    ggesting that pleiotropy of detected single marker, QTL, and digenic interaction should be the molecular basis for relationship among amylase and seedling vigor. Six interactions between QTLs within a trait were detected (one for root dry weight, one for total amylase activity, two for reducing sugar content, two for seed size).
    2 Plant height, tiller number, and heading date are agronomic traits of importance. We mapped quantitative trait locus (QTLs) for plant height (at seedling stage, at 35 days after transplanting, and at maturity stage) and tiller number (at 35 days after transplanting, and at maturity stage), and for heading date using a recombinant inbred (RI) population. Negative correlations between plant height and tiller number were observed at two growth stages (35 days after transplanting and at maturity stage). Heading date significantly correlated with tiller number and plant height at maturity. At p^O.Ol, a total of 65 single markers associated with studies traits but the seedling height were detected simultaneously in 1999 and 2000. Some markers were observed to be associated with at least two traits. A total of 32 QTLs were detected, 11 of which were identified simultaneously in two years. Several QTLs had pleiotropic effects. Three QTLs for seedling height were located in the similar regions with QTLs for 100
    0-grain weight, and significantly positive correlation between seedling height and 1000-grain weight were observed, suggesting that seedling height may be closely associated with seed size. The interval of RG424-RZ667 showed its large effects on heading date, plant height and tiller numbers at maturity. Delay of heading date for approximately 6 days due to the effect of the region may result in a reduction in living tiller numbers at maturity by one and an increase in ultimate plant height by approximately 6 cm. A total of 549 digenic interactions for all traits but the seedling height were detected simultaneously in two years by two-way ANOVA. Among them, 55 combinations had pleiotrpic effects by simultaneously affecting two or more traits. The results show that different QTLs and digenic interactions affect plant height and tiller number at different developmental stages, respectively, suggesting selective expression of genes for
引文
1.Aastveit A H, Aastveit K. Effects of genotype-environment interactions on genetic correlation. Theor Appl Genet, 1993, 86:1007-1013
    2.Abbate P E, Andrade F H, Culot J P. The effects of radiation and nitrogen on number of grains in wheat, J Agric Sci (Cambridge), 1995, 124:351-360
    3.Akita S. Improving yield potential in tropical rice. In: International Rice Research Institute, Progress in irrigated rice research. Manila, Philippines, 1989, 41-73
    4.Akita S. Physiological bases of heterosis in rice. In: International Rice Research Institute, Hybrid Rice. Manila, Philippines. 1988, 67-77
    5.Allard R W. Genetic basis of the evolution of adaptedness in plant. Euphytica, 1996, 92:1-11
    6.Amano T, Zhu Q, Wang Y, Inoue N, Tanaka H. Case studies on high yields of paddy rice in Jiangsu Province, China: I. characteristics of grain production. Jpn J Crop Sci, 1993, 62(2): 267-274
    7.Amthor J S. Respiration and crop productivity. Springer-Verlag New York Inc, 1989
    8.Arjunan A, Natarajaratnam N, Nagarajan M, Sadasivam R, Balakrishnan K. Photosynthesis and productivity in rice cultivars. Photosynthetica. 1990, 24:273-275.
    9.Ashraf M, Akbar M, Salim M. Genetic improvement in physiological traits of rice yield. In: Slafer G A (ed.) Genetic improvement of field crops. New York: Marcel Dekker Inc. 1994, 413-455
    10.Atwell B J. Response of roots to mechanical impedance. Environ Exp Bot. 1993, 33:27-40
    11.Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83:141-145
    12.Bhagsari A S, Brown R H. Leaf photosynthesis and its correlation with leaf area. Crop Sci, 1986, 26:127-132
    13.Bhatt G M. Significance of path coefficient analysis in determining the nature of character association. Euphytica, 1973, 22:338-343
    14.Blanco L C, Casal C, Akita S, Virmani S S. Biomass, grain yield and harvest index of F_1 rice hybrids and inbreds. Int Rice Res Newsl, 1990, 15(2): 9-10
    15.Brocklehurst P A. Factors controlling grain weight in wheat. Nature, 1977, 266:348-349
    16.Calderini D F, Dreccer M F, Slafer G A. Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends. Plant Breeding, 1995, 114:108-112
    17.Cassman K G. Breaking the yield barrier. Proceedings of workship on rice yield potential in favorable environments. Manila: International Rice Research Institute, 1994, 131-137
    18.Causse M, Rocher J P, Henry. A M, Charcosset A, Prioul J L, de Vienne D. Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key-enzyme loci. Molecular Breeding, 1995a, 1: 259-272
    19.Causse M, Rocher J P, Pelleschi S, Barriere Y, de Vienne D, Prioul J L. Sucrose phosphate synthase: An enzyme with heterotic activity correlated with maize growth. Crop Sci, 1995b, 35:995-1001
    20.Chae J C, Kim B K, Lee D J. A study on the development of internodal vascular bundles and air and its relationships to panicle characteristics of rice varieties. Korean J Crop Sci, 1984, 29:356-361
    21.Champoux M C, Wang G, Sarkarung S, Mackill D J, O'Toole J C, Huang N, McCouch S R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90:969-981
    22.Chandler Jr R F. Plant morphology and stand geometry in relation to nitrogen. In: Eastin J D, Haskins F A, Sullivan C Y, van Bavel C H M (eds.) Physiological aspects of crop yield. American society of Agronomy, Crop Science society of America. Madison WI, 1969, 265-285
    23.Chase K, Adler F R, Lark K G. Epistat: a computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor Appl Genet, 1997, 94:724-730
    24.Cho Y G, Eun M Y, McCouch S R, Cae Y A. The semi-dwarf gene, sd-1, of rice (Oryza sativa L.). Ⅱ. Molecular mapping and marker-assisted selection. Theor Appl Genet, 1994, 89:54-59
    25.Cock J H, Yoshida A. Accumlation ~(14)C labelled carbohydrate before flowering and the subsequent redistribution and respiration in the rice plant. Proc Crop Sci Soc Jph, 1972, 41:226-234
    26.Cregan P B, Yaklich R W. Dry matter and nitrogen accumulation and partitioning in selected soybean genotypes of different derivation. Theor Appl Genet, 1986, 72:782-786
    27.Darussalam, Cole M A, Patrick J W. Auxin control of photoassimilate transport to and within development grains of wheat. Aust J Plant Physiol, 1998, 25:69-77
    28.De Datta S K. Principles and Practices of rice production. New York: John Wiley & Sons, Inc. 1981
    29.Deloughery. R L, Crookston R K. Harvest index of corn affected by population density, maturity rating, and enviromnent. Agron J, 1979, 71: 577-580
    
    
    30.Deng H D. Biochemical basis of heterosis in rice. In: International Rice Research Institute, Hybrid Rice. Manila, Philippines. 1988, 55-66
    31.Dietrich J T, Kaminek M, Blevins D G, Reinbott T M, Morris R O. Changes in cytokinins and cytokinin oxidase activity in developing maize kernels and the effects of exogenous cytokinin on kernel development. Plant Physiol. Biochem, 1995, 33:327-336
    32.Dingkuhn M, KropffM. Rice. In: Zamski E, Schaffer A A (eds.). Photoassimilate distribution in plants and crops. Source-sink relationships. New York: Marcel Dekker Inc., 1996, 519-547
    33.Dobermann A, Dawe D, Roetter R P, Cassman K G. 2000. Reversal of rice yield decline in a longterm continuous cropping experiment. Agron J, 2000, 92:633-643
    34.Egli D B. Seed biology and the yield of grain crops. CABI, 1998
    35.Ellis R H. Seed and seedling vigor in relation to crop growth and yield. Plant Growth Regulation, 1992, 11:249-255
    36.Eshed Y, Zamir D. Less-than-addifive epistatic interactions of quantitative trait loci in tomato. Genetics, 1996, 143:1807-1817
    37.Evans J R, Seemann J R. Differences between wheat genotypes in specific activity of ribulose-1,5-bisposphate carboxylase and the relationship to photosynthesis. Plant Physiol, 1984, 74:759-765
    38.Evans L T, Dunstone R L, Rawson H M, Williams R F. The phloem of wheat stem in relation to requirement for assimilates by the ear. Aust J Bio Sci, 1970, 23:743-752
    39.Evans L T, Visperas R M, Vergara B S. Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years. Field Crop Res, 1984, 8:105-125
    40.Evans L T, Wardaw I F. Aspects of the comparative physiology of grain yield in cereals. Adv Agron, 1976, 28:301-359
    41.Evans L T. Crop Evolution, Adaptation and Yield. Cambridge: Cambridge Univ Press, 1993
    42.Evans L T. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. Ⅰ: canopy characteristics, J Plant physiol, 1993, 20:55-67
    43.Fischer R A. Number of kernels in wheat crops and the influence of solar radiation and temperature, J Agr Sci, 1985, 100:447-461
    44.Foolad M R, Chen F Q, Lin G Y. RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet, 1998, 97:1133-1144
    45.Fowler C W, Rasmusson D C. Leaf area relationships and inheritance in barley. Crop Sci, 1969, 9: 729-731
    46.Fukai S, Li L, Vizmonte P T, Fischer K S. Control of grain yield by sink capacity and assimilate supply in various rice (Oryza Sativa) culfivars. Expl Agri, 1991, 27:127-135
    47.Fukuyama T, Takayama T. Variation of the vascular bundle system in Asian rice cultivars. Euphytica, 1995, 227-231
    48.Gaunt R E, Wright A C. Disease-yield relationship in barley. Ⅱ Contribution of stored stem reserves to grain filling. Plant Pathol, 1992, 41:688-701
    49.Gebbing T, Schnyder H, Kuhbanch W. The utilization of pre-anthesis reserves in grain filling of wheat: assessment by ~(13)C/~(12)C steady state labelling. Plant Cell Environ, 1999, 22: 857-858.
    50.Gent M P N. Canopy light interception, gas exchange, and biomass in reduced height isolines of winter wheat. Crop Sci, 1995, 35:1636-1642
    51.Ghosh S, Sahai V N, Saran S. Role of flag leaf on grain yield and spikelet sterility in rice cultivars. Oryza, 1990, 27:87-89
    52.Gifford R M, Evans L T. Photosynthesis, carbon partitioning, and yield. Ann Rev Plant Physiol, 1981, 32:485-509
    53.Gifford R M, Thorne J H, Hitz W D, Giaquinta R T. Crop productivity and photoassimilate partitioning Science, 1984, 225:801-808
    54.Gooding M J, Dimmock J P R E, France J, Jones S A. Green leaf area decline of wheat flag leaves: the influence of fungicides and relationships with mean grain weight and grain yield. Ann Appl Bio, 2000, 136:77-84
    55.Grabau L J, Van Sanford D A, Meng Q W. Reproductive characteristics of winter wheat cultivars subjected to postanthesis shading Crop Sci, 1990, 30:771-774
    56.Grafius J E. Multiple characters and correlated response. Crop Sci, 1978, 18:931-934
    57.Gravois K A, Helms R S. Path analysis of rice yield and yield components as affected by seeding rate. Agron J, 1992, 84:1-4
    58.Hageman R H, Leng E R, Dudley J W. A biochemical approach to corn breeding. Adv Agron, 1967, 19: 45-86
    
    
    59.Harrison M A, Kaufman P B. Hormonal regulation of lateral bud (tiller) releases in oats (Arena sativa L.). Plant Physiol, 1980. 66:1123-1127
    60.Hay R K M. Harvest index: a review of its use in plant breeding and crop physiology. Ann Appl Biol 1995, 126:197-216
    61.Hay R K M. The influence of photoperiod on the day matter production of grasses and cereals. New Phytologist, 1990, 116:233-254
    62.H(?)bert Y. Genetic variation of the rate of leaf appearance in maize: possible yield prediction at the early stage. Euphytica, 1990, 46:237-247
    63.Herzog H. Relation of source and sink during grain filling period in wheat and some aspects of its regulation. Physiol Plant, 1982, 56:155-160
    64.Hirose T, Endier A, Ohsugi R. Gene expression of enzymes for starch and sucrose metabolism and transport in leaf sheaths of rice (Oryza sativa L.) during the heading period in relation to the sink to source transition. Plant Prod Sci, 1999, 2:178-183
    65.Ho L C, Grange R I, Shaw A F. Source/sink regulation. In: Baker D A, Milburn J A (eds.). Transport of photoassimilates. John Wiley &Sons Inc. 1989, 301-343
    66.Housley T L, Peterson D M. Oat stem vascular size in relation to kernel number and weight. I. Controlled environment. Crop Sci, 1982, 22:259-263
    67.Hsu P, Walton P D. Relationships between yield and its components and structures above the flag leaf node in spring wheat. Crop Sci, 1971, 11: 190-193
    68.Huang H. Relation between the tissue of highest internode and the number of spikelets. Acta Agron Sin, 1998, 24:23-24 (in Chinese)
    69.Huang N, Courtois B, Khush G S, Lin H X, Wang G L. Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity 1996, 77:130-137
    70.Hunt L A, van der Poorten G, Pararajasingham S. Post-anthesis temperature effects on duration and rate of of grain filling in some winter and spring wheat. Can J Plant Sci, 1991,71: 609-617
    71.IRRI. Program report for 1994. International Rice Research Institute (IRRI), Los Ba(?)os, Philippines. 1995
    72.Ise K. Inheritance of a low-tillering plant. type in rice. Intl Rice Res Newsl, 1992, 17:5-6
    73.Janoria M P. A basic plant ideotype for rice. Intl Rice Res Newsl, 1989, 14:12-13
    74.Jones D B, Peterson M L. Rice seedling vigor at sub-optimal temperatures. Crop Sci, 1976, 16:102-105
    75.Jones R J, Schreiber B M N, Roesslear J A. Kernel sink capacity in maize: genotypic and maternal regulation. Crop Sci, 1996, 36:301-306
    76.Karrel E E, Chandler J M, Foolad M R, Rodriguez R L. Correlation between α-Amylase gene expression and seedling vigor in rice. Euphytica 1993, 66:163-169
    77.Karrel E E, Rodriguez R L. Metabolic regulation of rice α-amylase and sucrose synthase genes in plants. Plant J, 1992, 2(4): 517-523
    78.Kato T, Takeda K. Association among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996, 36:1135-1139
    79.Kato T. Selection responses for the characters related to yield sink capacity of rice. Crop Sci, 1997, 37:1472-1475
    80.Kato T. Variation in grain-filling process among grain positions within a panicle of rice (Oryza sativa L.). SABRAOJ, 1993, 25:1-10
    81.Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191:342-348
    82.Khan M N A, Murayama S, Tsuzuki E, Scarisbrick D H, Ishimine Y, Nakamum I. Dry matter accumulation and heterosis in photosynthesis in F_1 hybrids of rice. Jpn J Trop Agr, 1998, 42:272-281
    83.Khush G S. Breeding rice for sustainable agriculture systems. In: International Crop Science I, Madison: Crop Science Society of America. 1993, 189-199
    84.Kinoshita T, Takahashi M. The hundredth report of genetic studies on rice plant. Linkage studies and future prospects, J Fac Agr Hokkaido Univ, 1991, 65:1-61
    85.Kinoshita T. Report of committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl, 1995, 12:9-153
    86.Kishore G. Starch biosynthesis in plants: identification of ADP glucose pyrophosphorylase as a ratelimiting step. In Cassman K G (ed). Breaking the yield barrier. Proceedings of workship on rice yield potential in favorable environments. IRRI, 29 November-4 December 1993. International Rice Research Institute, Manila, Philippines. 1994, 117-119
    
    
    87.Kobata T, Sugawara M, Takatu S. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agron J, 2000, 92:411-417
    88.Kosambi D D. The estimation of map distances from recombination values. Ann Eugenet, 1944, 12: 172-175
    89.Kropff M J, Cassman K G, Peng S, Matthews R B, Setter T L. Quantitative understanding of yield potential. In: Cassman K G (ed.). Breaking the yield barrier. Proceedings of workship on rice yield potential in favorable environments. Manila: IRRI. 1994, 21-38
    90.Kuroda E, Ookawa T, Ishihara K. Analysis on difference of dry matter production between rice cultivars with different plant height in relation to gas diffusion inside stands, Jpn J Crop Sci, 1989, 58:374-382
    91.Lafitte H R, Travis R L. Photosynthesis and assimilate partitioning in closely related lines of rice exhibiting different sink: source relationships. Crop Sci, 1984, 24:447-452
    92.Lambers H, Chapin Ⅲ F S, Pons T L. Plant physiological ecology. Springer-Verlag New York Inc. 1998.
    93.Lark K G, Chase K, Adler F. Mansur L M, Off J H. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA, 1995, 92:4656-4660
    94.Lee D J, Kim K J, Lee J H, Kim B K, Chae J C. The effect of nitrogen fertilization on vascular bundles and air space development in the internodes of several rice varieties, and the relationship between the histological structure and panicle characteristics. Korean J Crop Sci, 1985, 30:107-115
    95.Li C C, Rutger J N. Inheritance of cool-temperature seedling vigor in rice and its relationship with other agronomic characters. Crop Sci, 1980, 20:295-298
    96.Li J, Wei F, Ding X. Relationship between vascular bundle system of rachis and rachilla and ear productivity in wheat. Acta Agron Sin, 1999, 25:315-319 (in Chinese)
    97.Li P, Wang Y, Lin H. Physiological bases of high yielding heterosis in indica-type F1 hybrid rice. Sci Agr Sin, 1990, 23(5): 39-44 (in Chinese)
    98.Li Z, Paterson AH, Pinson SRM, Stansel JW. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica, 1999, 109:79-84
    99.Li Z, Pinson S R M, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145:453-465
    100.Li Z, Pinson S R M, Stansel J W, Park W D. Identification of quantitative traits loci (QTLs) for heading data and plant height in cultivated rice (oryza sativa L.). Theor Appl Genet, 1995, 91:374-381
    101.Li Z, Pinson S RM, Stansel J W, Paterson A H. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed, 1998, 4:419-426
    102.Liang Z X, Ma X L. Studies on the effects of endogenous hormones on the tiller development process of winter wheat. Acta Agron Sin, 1998, 24: 789-792(in Chinese)
    103.Lin S Y, Sasaki T, Yano M. Mapping quantitative traits loci controlling seed dormancy and heading date in rice, Oryza saliva L, using backcross inbred lines. Theor Appl Genet, 1998, 96:997-1003
    104.Lin Y-R, Schertz K F, Paterson A H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics, 1995, 141:391-411
    105.Lincoln S E, Daly M J, Lander E S. Constructing genetic linkage maps with Mapmaker/EXP 3.0. Whitehead Institute for Biometrical Research. Cambridge, Mass. 1992
    106.Loomis R S, Amthor J S. Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Sci, 1999, 39:1584-1596
    107.Loomis R S, Connor D J. Crop ecology: productivity and management in agricultural system. Cambridge: Cambridge Univ Press, 1992
    108.L(?)pez-Casta(?)eda C, Richards R A, Farquhar G D, Williamson R E. Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Sci, 1996, 36:1257-1266
    109.Lu C, Shen L, Tan Z, Xu L, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomy traits of rice across environments using a doubled haploid population. Theor Appl Genet, 1996, 93:1211-1217
    110.Ludlow M M, Muchow R C. A critical evaluation of traits for improving crops yields in water-limited environment. Adv Agron, 1990, 43: 107-153.
    111.Mackill D J, Salam M A, Wang Z Y, Tanksley S D. A major photoperiod-sensitivity gene tagged with RFLP and isozyme markers in rice. Theor Appl Genet, 1993, 85:536-540
    112.Maheswaran M, Huang N, Sreerangasamy S R, McCouch S R. Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol breed, 2000, 6:145-155
    113.Makino A, Mae T, Ohira K. Differences between wheat and rice in the enzymatic properties of ribulose-1,5-bisposphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta, 1988, 174:30-38
    
    
    114.Makino A, Mae T, Ohira K. Photosynthesis and ribulose-1,5-bis phosphate carboxylase in rice leaves: Changes in photosynthesis and enzyme involved carbon assimilation from leaf development through senescence. Plant Physiol, 1983, 73:1002-1007
    115.Makino A, Mae T, Ohira K. Relation between nitrogen and ribulose-1,5-bisposphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol, 1984, 25:429-437
    116.Makino A, Mae T, Ohira K. Variations of the contents and kinetic properties of Ribulose-1,5-bisphosphate carboxylases among rice species. Plant Cell Physiol, 1987, 28:799-804
    117.Mann C C. Genetic engineers aim to soup up crop photosynthesis. Science, 1999, 283:314-316
    118.Matsunaka S. Studies on the respiratory enzyme system of plants I: enzymatic oxidation of α-naphthylamine in rice plant root. J Biochem, 1960, 47:820-829
    119.McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M (1997b) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Bio, 1997b, 35:89-99
    120.McCouch S R, Cho Y G, Yano M, Paul E, Blinstruub M. Report on QTL nomenclature. Rice Genet Newsl, 1997a, 14:11-13
    121.McKenzie K S, Johnson C W, Tseng ST, Oster J J, Brandon D M. Breeding improved rice cultivars for temperate regions-a case study. Aust J Exp Agr, 1994, 34:389-905
    122.McKenzie K S, Rutger J N, Peterson M L. Relation of seedling vigor to semidwarfism, early maturity, and pubescence in closely related rice lines. Crop Sci, 1980, 20:169-172
    123.McMullen M D, Byrne P F, Snook M E, Wiseman B R, Lee E A, Widstrom N W, Coe E H. Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci USA, 1998, 95:1996-2000
    124.Michael G, Beringer H. The role of hormones in yield formation. In: Physiological aspects of crop productivity. Proceedings of the 15~(th) colloquium of the international potash institute yield held in Wageningen 1980, 85-116
    125.Michelet B, Boutry M. The plasma membrane H~(+)-ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiol, 1995, 108:1-6
    126.Miller B C. Hill J E, Roberts S R. Plant population effects on growth and yield in water-seeded rice. Agron J, 1991, 83:291-297
    127.Mitchell-olds T, Pedersen D. The molecular basis of quantitative genetic variation in central and secondary, metabolism in Arabidopsis. Genetics, 1998, 149:739-747
    128.Morris R D, Blevins D G, Dietrich J T, Durly R C, Gelvin S B, Gray J, Hommes N G, Kaminek M, Mathews L J, Meilan R, Reinbott T M, Sagavendra-Soto L. Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust J Plant Physiol, 1993, 20:621-637
    129.Murata Y. Studies on the photosynthesis of rice plants and its cultural significance. Bull Natl Inst Agric Sci Jpn Ser D, 1961, 9-169
    130.Murry M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8:4321-4325
    131.N(?)trov(?) Z, N(?)tr L. Limitation of kernel yield by the size of conducting tissue in winter wheat varieties. Field Crops Res, 1993, 31:121-130
    132.Nelson C J. Genetic associations between photosynthetic characteristics and yield: review of the evidence. Plant Physiol Biochem, 1988, 26:543-554
    133.Nishiyama I. Male sterility caused by cooling treatment at the young microspore stage in rice plants. XXIV. Small vascular bundles in pedical and the difference in susceptibility to coolness among spikelets on the panicle. Jpn J Crop Sci, 1983, 52:43-48
    134.O'sborne C P, LaRoche J, Garcia R L, Kimball B A, Wall G W, Pinter P J, Lamorte R L, Hendrey G R, Long S P. Docs leaf position within a canopy affect acclimation of photosynthesis to elevated CO_2? Analysis of a wheat crop under free-air CO_2 enrichment. Plant Physiol, 1998, 117:1037-1045
    135.Ohashi K, Makino A, Mae T. Growth and carbon utilization in rice plants under conditions of physiologically low temperature and irradiance. Aust J Plant Physiol, 2000, 27:99-107
    136.Padmaja Rao S. Flag leaf: a selection criterion for exploiting potential yields in rice. India J Plant Physiol, 1992, 35:265-268
    137.Padmaja Rao S. High-density grain among primary and secondary tillers of short-and long-duration rices. Intl Rice Res Newsl, 1987, 12:12
    138.Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127:181-197
    139.Payne T S, Stuthman D D, McGraw R L, Bregitzer P P. Physiological changes associated with three cycles of recurrent selection for groin yield improvement in oats. Crop Sci, 1986, 26:734-736
    
    
    140.Peltonen J. Ear development stage used for timing supplemental nitrogen application to spring wheat. Crop Sci, 1992, 32:1029-1033
    141.Peng S B. Single leaf and canopy photosynthesis of rice crop. In: workshop on "the quest to reduce hunger: redesigning rice photosynthesis." 1999, Nov.30-Dec 3. IRRI, Los Ba(?)os, Philippines
    142.Peng S, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in the tropics. Crop Sci, 1995, 35:1627-1630
    143.Peng S, Khush GS, Cassman K GEvolntion of the new plant ideotype for increased yield potential. In: Cassman K G (ed). Breaking the yield barrier. Proceedings of workship on rice yield potential in favorable environments. IRRI, 29 Nov-4 Dec 1993. International Rice Research Institute, Manila, Philippines. 1994, 5-20
    144.Peng S, Laza R C, Vispems R M, Sanico A L, Cassman K G, Khush G S. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci, 2000, 40:307-314
    145.Peng S, Senadhira D. Genetic enhancement of rice yields. In: Dowling N G, Greenfield S M, Fischer K S (eds.) Sustainability of rice in the global food system. Davis, Calif. (USA): Pacific Basin Study Center, and Manila (Philippines): International Rice Research Institute. 1998, 99-125
    146.Peng S, Yang J. Garcia F V, Laza R C, Visperas R M, Sanico A L, Chavez A Q, Virmani S S. Physiology-based crop management for yield maximization of hybrid rice. In: Virmani S S, Siddiq, E A, Muralidharan K (eds.). Advances in hybrid rice technology. Proceedings of the 3~(rd) international symposium on hybrid rice. 14-16 Nov 1996. Hyderabad India. Manila: IRRI. 1998, 157-176
    147.Perata P, Pozueta-Romero J, Akazawa T, Yamaguchi J. Effect of anoxia on starch breakdown in rice and wheat seeds. Planta, 1992, 188:611-618
    148.Perera A L T, Senadhira D, Lawrence M J. Genetic architecture of economically characters and prediction of performance of recombinant inbred lines in rice. In: Rice Genetics. International Rice Research Institute, Manila, Philippines. 1986, 565-578
    149.Peterson C M, Klepper B, Rickman R W. Seed reserves and seedling development in winter wheat. Agron J 1989, 81:245-251
    150.Plaxton W C. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:185-214
    151.Poonyarit M, Mackill D J, Vergara B. Genetics of photoperiod sensitivity and critical daylength in rice. Crop Sci, 1989, 29:647-652
    152.Price A H, Steel K A, Moore B J, Barraclough P B, Clark L J. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L) used to identify QTLs for rot-penetration ability. Theor Appl Genet, 2000, 100:49-56
    153.Prioul J L, Quarrie S A, Causse M, de Vienne D. Dissecting complex physiological functions through the use of molecular quantitative genetics. J Exper Bot, 1997, 48:1151-1163
    154.Quanrrie S A, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exper Bot, 1999, 50:1299-1306
    155.Quatrano R S. The role of hormones during seed development. In: Davies P J (ed.) Plant hormones and their roles in plant growth and development. Kluwer Academic Publishers, 1987, 494-514
    156.Quick W P, Schurr U, Scheibe R, Schulze R, Rodermel E D, Bogorad S R, Stitt M. Decreased Rubisco in tobacco transformed with "antisense" abcS. I. Impact on photosynthesis in ambient growth conditions. Planta, 1991, 183: 542-544
    157.Radley M. The development of wheat grains in relation to endogenous growth substances. J Exp Bot, 1976. 27:1009-1021
    158.Ranjhan S, Lilts J C, Foolad M R, Rodriguez R L. Chromosomal localization and genomic organization of α-amylase genes in rice (Oryza sativa L.). Theor Appl Genet, 1991, 82:481-488
    159.Rawson H M. An upper limit for spikelet number per ear in wheat as controlled by photoperiod. Aust. J Agr Res, 1971, 22:537-546
    160.Rawson H M. High-temperature tolerant wheat: a description of variation and a search for some limitations to productivity. Field Crop Res, 1986, 4:197-212
    161.Rawson H M. Richard R A. Effects of high temperature and photoperiod on floral development in wheat isolines differing in vemalisation and photoperiod gene. Field Crops Res, 1992, 32:181-192
    162.Ray J D, Yu L, McCouch S R, Champoux M C, Wang G, Nguyen H T. Mapping quantitative trait associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92:627-636
    163.Rebetzke G J, Richards R A. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agr Res, 2000, 51:235-245
    164.Redo(?)a E D, Mackill D J. Genetic variation for seedling vigor traits in rice. Crop Sci, 1996a, 36:285-290
    
    
    165.Redo(?)a E D, Mackill D J. Mapping quantitative traits loci for seedling vigor in rice using RFLPs. Theor Appl Genet, 1996b, 92:395-402
    166.Reischerg L H, Sinervo B, Linder C R, Vagerer M C, Arias D M. Role of gene interactions in hybrid spectation: evidence from ancient and experimental hybrids. Science, 1996, 272:741-745
    167.Revilla P, Butr(?)n A, Malvar R A. Ord(?)s A. Relationships among kernel weight, early vigor, and growth in maize. Crop Sci, 1999, 39:654-658
    168.Reynolds M P, Rajaram S, Sayre K D. Physiological and genetic changes of irrigated wheat in the post-green revolution period, and approaches for meeting projected global demand. Crop Sci, 1999, 39: 1611-1621
    169.Richards R A. A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res, 1988, 39:749-757
    170.Richards R A. Increasing the yield potential of wheat: manipulating sources and sinks. In: Reynolds M P, Rajaram S, McNab A (eds.). Increasing yield potential in wheat: breaking the barriers. Mexico: International Maize and Wheat Improvement Center, 1996, 134-149
    171.Roberts E H. Quantifying seed deterioration. In: McDonald M B, Nelson Jr (eds.) Physiology of seed deterioration. CSS A Spec. Publ. 11 Madison. WI. 1986.
    172.Rocher J P, Prioul J L, Lecharny A, Reyss A, Joussaume M. Genetic variability in carbon fixation, sucrose-phosphoate-synthase and ADP glucose pyrophosphorylase in maize plants of differing growth rate. Plant Physiol, 1989, 89:416-420
    173.Rood S B, Larsen K M. Gibberellins, Amylase, and the onset of heterosis in maize seedlings. J Exper Bot, 1988, 39:223-233
    174.Saitoh K, Sugimoto M, Shimoda H. Effects of dark respiration on dry matter production of field grown rice stand. Plant Prod Sci, 1998, 1:106-112
    175.Samonte S O PB, Wilson L T, McClung A M. Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. Crop Sci, 1998, 38:1130-1136
    176.Sanguineti M C, Tuberosa R, Landi P, Salvi S, Maccaferri M, Casarini E, Conti S. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize, J Exp Bot, 1999, 50:1289-1297
    177.SAS Institute. SAS for Window. SAS Institute Inc. Cary, NC, USA
    178.Sasahara T, Ikarashi H, Kambayashi M. Genetic variation in embryo and endosperm weights, seedling growth parameters and α-amylase activity of the germinated grains in rice (Oryza sativa L.). Jpn J Breed, 1986, 36:248-261
    179.Sasahara T, Kodama K, Kambayashi M. Studies on structure and function on the rice ear. IV Classification of ear type by number of grain on the secondary rachis branch, Jpn J Crop Sci, 1982, 51: 26-34
    180.Sasahara T, Takahash T, Kayaba T, Tsunoda S. A new strategy for increasing plant productivity and yield in rice. Intl Rice Comm Newsl, 1992, 41:1-4
    181.Seo S W, Chamura S. Studies on the characters of the improved semi-dwarf, high-yielding indica rice varieties. I. Characters of the ripening from the viewpoint of sink, source and reserve carbohydrates. Jpn J Crop Sci, 1979, 48:365-370
    182.Sinclair T R, Sheehy J E. Erect leaves and photosynthesis in rice. Science, 1999, 283:1456-1457
    183.Singh G, Singh S, Gurung S B. Effect of growth regulators on rice productivity. Trop Agric, 1984, 61:106-108
    184.Singh P K, Thakur R, Chauhary, V K, Singh N B. Combining ability and heterosis for yield and panicle traits in rice (oryza sativa L.). Crop Res, 1995, 10:6-12
    185.Singh R K, Chaudluary B D. Biometrical methods in quantitative genetic analysis. Ludhiana: Kalyani Publisher. 1979, 70-99
    186.Slafer G A, Calderini D F, Miralles D J. Generation of yield components and compensation in wheat: opportunities for further increasing yield potential. In: Reynolds M P, Rajaram S, McNab A (eds). Increasing yield potential in wheat: breaking the barriers. Mexico: international Maize and Wheat Improvement Center. 1996b, 134-149
    187.Slafer G A, Calderini D F, Miralles D J. Yield components and compensation in wheat: opportunities for further increasing yield potential. In: Reynolds M P, Rajaram S, McNab A (Eds.) Increasing yield potential in wheat: breaking the barries. Mexico: CIMMYT, 1996a, 101-133188. Smith A M, Denyer K, Martin C R. What controls the amount and structure of starch in storage organ? Phant Physiol. 1995, 107:673-677
    189.Sonnewald U, Willmitzer L. Molecular approaches to sink-source interactions. Plant Physiol, 1992, 99: 1267-1270
    
    
    190.Stark D M, Timmerman K P, Barry G F, Preiss J, Kishore G M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science, 1992, 258:287-292
    191.StarSoft Inc. 1991. Statistica. Tulsa OK
    192.Stephen P W, Peter M, Bruce T L. The influence of sucrose and abscisic acid on the determination of grain number in wheat, J Exper Bot, 1984, 35:829-840
    193.Stuber C W, Lincoln S E. Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992, 132:823-839
    194.Stuber C W. Case history in crop improvement: yield heterosis in maize. In: Paterson A H (ed.). Molecular dissection of complex traits. New York: CRC press, 1998
    195.Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 1999, 4:401-407
    196.Suh S K. Cho Y, Park H K, Scott R A. Gene action and heritability of leaf and reproductive characteristics in soybean. Breed Sci, 2000, 50:45-51
    197.Takeda K, Saito K. Heritability and genetic correlation of kernel weight and white belly frequency in rice. Jpn J Breed, 1983, 33:468-480
    198.Takeda K. Inheritance of grain size and its implications for rice breeding. Rice Genetics Ⅱ. Proceedings of the second international rice genetic symposium. 14-18 May 1990. IRRI, 1991, 181-189
    199.Takeda T, Oka M, Agata W. Studies on the dry. matter and grain production of rice cultivars in the warm area of Japn. I. Comparison of the dry. matter production between old and new types of rice cultivars, Jpn J Crop Sci, 1983, 52:299-306
    200.Tanaka A, Fujita K. Studies on the nutrio-physiology of the corn plant. Part 7. Analysis of dry matter production from the source-sink concept. J Sci Soil Manure Jpn, 1971, 42:152-156
    201.Tanaka A. Photosynthesis and respiration in relation to productivity of crops. In: Mitsui A, Miyachi S, Pietro A S, Tamura S (eds.) Biological solar energy conversion. New York: Academic Press. 1977, 213-229
    202.Tekrony D M, Egli D B. Relationship of seed vigor to crop yield: a review. Crop Sci, 1991, 31:816-822
    203.Thiagarajan C P. Influence of flag area on rice seed germinability and vigor. IRRN, 1989, 14:9
    204.Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci, 1989, 29:1365-1371
    205.Tomoshiro T, Mitsunori O, Waichi A. Comparison of the formation of dry substance by the old and new type of rice cultivars, Jpn J Crop Sci, 1983, 52:299-305
    206.Tu N M, Guan C Y. The effects of photoperiods on source-sink relation of rice. Acta Agron Sin. 1999, 25:596-601 (in Chinese)
    207.van der Werf A. Growth analysis and photoassimilate partitioning. In: Zamski E, Schaffer A (eds.). Photoassimilate distribution in plants and crops: source-sink relationships. Marcel Dekker Inc, 1996, 1-20
    208.van Herwaarden A F. Carbon, nitrogen and water dynamics in dryland wheat, with particular reference to haying off. (Ph D dissertation). Australian National University, 1996
    209.Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88:7-16
    210.Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I: Grain yield and yield components. Crop Sci, 1996, 36:1310-1319.
    211.Venkateswarlu B, Vergara B S, Visperas R M. Influence of photosynthetically activity radiation on grain density of rice. Crop Sci, 1987, 27:1210-1214
    212.Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants. IRRI Research Paper Series (IRPS). 1987, 125:1-19
    213.Waddington S R, Ransom J K, Osmanzai M, Saunders D A. Improvement in the yield potential of bread wheat adapted to northwest Mexico. Crop Sci, 1986, 26:698-703
    214.Wallace D H, Baudoin J P, Beaver J, Coyne D P, Halseth D E, Masaya P N, Munger H M, Myers J R, Silbernagel M, Yourstone K S, Zobel R W. Improving efficiency of breeding for higher crop yield. Theor Appl Genet, 1993b, 86:27-40
    215.Wallace D H, Yah W. Plant breeding and whole-system crop physiology: Improving crop maturity, adaptation and yield. CAB International, 1998
    216.Wallace D H, Yourstone K S, Masaya P N, Zobel R W. Photoperiod gene control over partitioning between reproductive and vegetative growth. Theor Appl Genet, 1993a, 86:6-16
    
    
    217.Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1255-1264
    218.Wang G, Kang M S, Moreno O. Genetic analysis of grain-filling rate and duration in maize. Field Crop Res, 1999, 61:211-222
    219.Wardlaw J F. The early stages of grain development in wheat: response to light and temperature in a single variety. Aust J Bio Sci, 1970, 23:765-776
    220.Wei J C, Wang R L, Cheng G Y. Studies on the kinetic properties of ribulose-1,5-bisposphate carboxylase from of F1 hybrid rice. Acta Phytophysiol Sin, 1994, 20:55-60 (in Chinese)
    221.Williams J F, Peterson M L. Relation between alpha-amylase activity and growth of rice seedlings. Crop Sci, 1973, 13:612-615
    222.Wu G W, Li W M, Tang D Z, Lu H R, Worland AJ Time-related mapping of quantitative trait loci underlying tiller number in rice, Genetic, 1999, 151:297-303
    223.Wu G W, Wilson L T, McClung A M. Contribution of rice tillers to dry matter accumulation and yield. Agron J, 1998, 90:317-323
    224.Wych R D, Rasmusson D C. Genetic improvement n malting barley eultivars since 1920. Crop Sci, 1983, 23:1037-1040
    225.Wych R D, Stuthanm D D. Genetic improvement in Minnesota-adapted oat cultivars since 1923, Crop Sci, 1983, 23:879-881
    226.Xiao J, Li J, Yuan L, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92: 230-244
    227.Xing Y Z. Molecular dissection of genetic bases of important agronomic traits in rice. (Ph D thesis). Wuhan (China): Huazhong Agr Univ, 1999 (in Chinese)
    228.Xiong L Z, Lin K D, Dai, X K, Xu C G, Zhang Q. Identification of genetic factors controlling domestication-related of rice using an F_2 population of a cross between Oryza and O. rufipogon. Theor Appl Genet, 1999, 98:243-251
    229.Xiong Z M. Research outline on rice genetics in China. In Xiong Z M, Cai H F (eds.). Rice in China. Beijing: Chinese Agri Sci Press, 1992, 40-57
    230.Yadav R, Courtois B, Huang N, Mclaren G. Mapping genes controlling root morphology and root distribution in a double haploid population of rice. Theor Appl Genet, 1997, 94:619-632
    231.Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37-44
    232.Yamauchi M. Physiological bases of higher yield potential in F1 hybrids. In: Virmani S S (ed.) Hybrid Rice Technology: New Development and Future Prospects. IRRI, Manilia, Philippines, 1994, 71-80
    233.Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Molecular dissection of the developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998a, 150:1257-1265
    234.Yah J Q, Zhu J, He C X., Benmoussa M, Wu P. Quantitative traits loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet, 1998b, 97:267-274
    235.Yan J, Zhu J, He C, Benmoussa M, Wu P. Molecular marker-assisted dissection of genotype× environment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci, 1999, 39:538-544
    236.Yang J C. Characteristics and physiological bases of grain filling in intersubspecific hydrid rice. (Ph D thesis). Beijing (China): China Agr Uniy, 1996 (in Chinese)
    237.Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation, 2000, 30:261-270
    238.Yang J, Wang Z, Zhu Q, Su B. Regulation of ABA, and GA to grain filling of rice. Acta Agron Sin, 1999, 25:341-348 (in Chinese)
    239.Yang, G P, Zhang Q F. Polymorphism of α-amylase activity in barley landraces and cultivars from China. Euphytica, 1990, 48:245-251
    240.Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet, 1997, 95:1025-1032
    241.Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Bio, 1997, 35:145-153
    242.Yokoo M, Kikuchi F, Nakane A, Fujimaki H. Genetic analysis of heading date by aid of close linkage with blast resistance in rice. Bull Nat Ins. Agric Sci Ser D, 1980, 31:95-126
    243.Yokota A. Super-Rubisco: the key for improvement of plant photosynthesis. Plant Biotech, 1999, 16:33-37
    
    
    244.Yoon B S. Seedling emergence and β-amylase activity of rice cultivars under the low temperature and submerged oil condition. (Ph D thesis). Tokyo(Japan): University of Tokyo, 1998
    245.Yoshida S, Coronel V. Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Sci Plant Nutr, 1976, 22:207-211
    246.Yoshida S, Parao F T. Climatic influence on yield and yield component of lowland rice in the tropics. In: International Rice Research Institute, Climate and rice, Manila, 1976, 471-494
    247.Yoshida S. Fundamentals of rice crop science. Manila (Philippines): International Rice Research Institute, 1981
    248.Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226-9231
    249.Yu Su-may, Lee Yi-ching, Fang Su-shiung, Chan Ming-Tsair, Hwa Soon-Far, Liu LI-Fei. Sugar act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grains. Plant Mol Bio, 1996, 30: 1277-1289
    250.Yu Su-May, Regulation of α-amylase gene expression. In: Shimamoto K (ed.) Molecular Biology of Rice. Tokyo: Springer-Veflag, 1999
    251.Zelitch I. The close relationship between net photosynthesis and crop yield. Bioscience. 1982. 32: 796-802.
    252.Zhang Y, Chantler S E, Gupta S, Zhao Y, Leisy D, Hannah L C, Meyer C, Weston J, Wu M X, Preiss J, Okita T W. Molecular approaches to enhance rice productivity through manipulation of starch metabolism during seed development. In: Khush G S (ed). Rice genetics Ⅲ. Proc. of third international rice genetics symposium. Manila, Philippines. 1996, 809-813
    253.Zhong X H, Peng S B, Sheehy J E, Liu H X, Visperas R M. Parameterization, validation and comparison of three filleting models for irrigated rice in the tropic. Plant Prod Sci, 1999, 2(4): 258-266
    254.Zhuang J Y, Lin H X, Lu L, Qian H R, Hittalmani S, Huang N, Zheng K L. Analyasis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700