凸体及星体的不等式与极值问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先介绍凸体几何的发展历史和各主要研究方向的发展概况,本博士论文以研究一般凸体、星体以及单形和超平行体等特殊类凸体的度量不等式和极值问题为主要内容,研究工作分为两个方面。
     一方面是利用几何分析的渐近理论、局部理论和积分变换方法研究一般凸体和星体的度量不等式和极值问题,由第二章和第三章构成。由于Petty-Schneider问题是凸体几何中一个热点问题,第二章首先推广Petty-Schneider问题到一般的均质积分情形;Ball在研究Petty-Schneider问题时讨论了球和立方体的截面性质,受Ball思想的启发,我们给出了球的截面的两个新的度量不等式;关于凸体的Brunn-Minkowski不等式是凸体理论的精髓,混合投影体的Brunn-Minkowski不等式也由Lutwak所证明,我们则证明了投影体的极体的Brunn-Minkowski型不等式。星体的对偶Brunn-Minkowski理论是上世纪70年代产生的新兴研究领域,第三章我们建立了星体对偶均质积分的两个新型不等式,它们形式上类似于正实数的初等对称函数的Marcus-Lopes不等式和Bergstrom不等式,也类似于行列式的Fan Ky不等式。此外,我们还证明了星体的对偶混合均质积分和对偶混合p-均质积分的相关性质。
     另一方面的工作是利用外微分和代数的方法研究一些特殊类的凸体(如单形、超平行体等)的度量不等式和极值性质,这方面的研究工作由第四章、第五章和第六章构成。凸体的混合体积为几何中的各类度量提供了统一的处理模式,它是有限个凸体的连续函数,本文第四章引入凸体混合体积的离散形式:两个有限向量集的混合体积的概念,同时利用外微分为工具证明了向量集的混合体积与由两向量集分别张成的平行体体积之间的一个强有力的不等式;Cayley-Menger行列式是解决有限点集不等式和嵌入问题的极好工具,我们则定义了两个点集的混合Cayley-Menger行列式,获得了混合Cayley-Menger行列式与向量集的混合体积以及两个单形体积乘积之间的关系,这个关系式容量大,包含了不少的经典度量关系和近期被发现的新结果;我们还引入两个单形的混合距离矩阵的概念,证明了它的行列式与两单形的外径的等量关系。在第四章最后,利用我们获得的主要结论简洁地证明了如单形的正弦定理和平行体的Hadamaxd不等式的逆形式等一些著名的结论。第五章的任务是利用一个分析不等式和杨路-张景中质点组不等式和权变换的方法把关于两个三角形的Klamkin不等式推广到高维空间,同时建立一系列的涉及单形的体积、各面面积、任意点到单形的各顶点距离的新的不等式。第六章我们利用外微分的方
    
    II
    法,首次给出了。维单形中面的解析表达式,并且证明了单形中面类似于三角形中
    线的性质,如对于一个给定的单形,存在另一个单形使得它的棱长分别等于给定单
    形的中面面积的值,一个单形的所有中面有且仅有一个公共点等.进一步,利用中
    面的表达式建立了一系列涉及单形的棱长、各面面积、外径、中线长等的新的不等
    式。
The development survey and main research directions of convex geometry are presented in the preface. This Ph.D. dissertation research the inequalities and extremum properties for convex bodies, star bodies and some specific convex bodies such as simpli-cies and parallelotopes. The research works of this thesis consists of two parts.
    In the first aspect, some inequalities and extremum properties are established by applying the asymptotic theory, local theory and integral transforms. The Petty-Schneider problem has attracted the attention of those working in convex geometry. Chapter 2 extend Petty-Schneider theorem for projection bodies (zonoids) to quermassintegrals. Two inequalities for sections of centered bodies are given, which are motivated by the so-called hyperplane conjecture for convex bodies. The classical Brunn-Minkowski's inequality is the heart of convex bodies theory. The Brunn-Minkowski's inequality for mixed projection bodies was obtained by Lutwak. We find the Brunn-Minkowski's inequality for the polar of mixed projection bodies. The dual Brunn-Minkowski theory earns its place as an essential tool in geometric tomography. In Chapter 3, the inequalities about the dual quermassintegrals of star bodies in Rn are established, which are analogue not only to Marcus-Lopes's inequality and Bergstrom's inequality for elementary s
    ymmetric functions of positive reals, but also to Fan Ky's inequality for determinant. On the other hand, the dual mixed Quermassintegrals and the dual mixed p- Quermassintegrals are introduced. We generalize the dual Brunn-Minkowski Theory.
    The other part of the research work is presented in Chapter 4, Chapter 5 and Chapter 6. We find the inequalities and extremum properties for specific convex bodies such as simplicies and parallelotopes by employing the exterior differential methods and algebraic means. The theory of mixed volumes provides a unified treatment of various important metric quantities in geometry, such as volume, surface area and mean width. Chapter 4 introduce the concept of the mixed volume of two finite vector sets in Rn, which can be regard as the discrete form of mixed volume of two convex bodies. An new and powerful inequality associating with the mixed volume of two finite vector sets is obtained. The Cayley-Menger determinant has proved extraordinarily useful tool in dealing with some inequalities for finite points sets. We introduce the mixed Cayley-Menger determinant
    
    
    
    and obtain the formula for volume product of two simplices which contains a lot of papers on the properties of a pair of triangles (simplices). Meanwhile, the relation concerning the determinant of mixed distance matrix and the circum-radius of two n-simplices is given. Besides, employing new and simple methods, some well-known results of simplices and Hadamard inequality are reproved. In Chapter 5, by applying an analytic inequality and the moment of inertia inequality in Rn, we generalize the Klamkin's inequality to several dimensions and establish some inequalities for the volume, facet areas and distances between any point of Rn and vertices of an n-simplex. To obtain the analytic expression for the mid-facet area of a n-dimensional simplex, the exterior differential method is applied in Chapter 6. Furthermore, some properties of the mid-facets of a simplex analogous to median lines of a triangle (such as for all mid-facets of a simplex, there exists another simplex such that its edge-lengths equal to th
    ese mid-facets area respectively, and all of the mid-facets of a simplex have a common point) are confirmed. In the end , by using the analytic expression, a number of inequalities which combine edge-lengths, circum-radius and median line with the mid-facet area for a simplex are established.
引文
[1] Aleksandrov A. D., The method of normal map in uniqueness problems and estimations for elliptic equations, Estratto dai 'Seminari dell' Istituto Nazionale di Matematica, 10(1962-63), 747-786.
    [2] All M. M., On some extremal simplexes, Pacific J. Math., 33(1970), 1-14.
    [3] Ball K., Cube slicing in R~n, Proc. Amer. Math. Soc., 97(1986), 465-473.
    [4] Ball K., Volume of sections of cubes and related problems, Israel Seminar (G. A. F. A. ) (1988), Lecture Notes in Math., Vol. 1376, Springer-Verlag, Berlin and New York, (1989), 251-260.
    [5] Ball K., Some remarks on the geometry of convex sets, Geometric Aspects of Functional Analysis(J. Lindenstrauss and V. D. Milman, eds.), Lecture Notes in Math., Vol. 1317, Springer-Verlag, Berlin, (1988), 224-231
    [6] Ball K., Shadows of convex bodies, Trans. Amer. Math. Soc., 327(1991), 891-901.
    [7] Ball K., Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. 44(1991), 351-359.
    [8] Barto P., Sinusova veta o simplexoch vE_n, as Pest. Mat., 93(1968), 273-277.
    [9] Blaschke W., 《Vorlesungen über integralgeometrie》, Ⅰ,Ⅱ, Teubner, Leipzig, 1936, 1937; reprint, Chelsea, New York, 1949.
    [10] Blaschke W., Affine Geometric Ⅸ: Verschiedene Bemerkungen und Aufgaben, Ber. Verh. Schs. Akad. Wiss. Leizig Math.-Phys. Kl. 69, 412-420.
    [11] Blumenthal L. M., 《Theory and Applications of Distance Geometry》, 2nd ed., New York, (1970).
    [12] Boothby W. M., 《An Introduction to Differentiable Manifolds and Riemannian Geometry》, Academic Press, New York, (1975).
    [13] Bourgain J. and Lindenstrauss J., Projection bodies, Israel Seminar (G. A. F. A) 1986-1987, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1317(1988), 250-270.
    [14] Bourgain J., On the Busemann-Petty Problem for perturbations of the ball, Geom.Funct. Anal., 1(1991), 1-13.
    [15] Bourgain J. and Milman V. D., New volume ratio properties for convex symmetric
    
    bodies in R~n, Invent. Math., 88(1987), 319-340.
    [16] Bourgain J., Meyer M., Milman V. and Pajor A., On a geometric inequality, in:Geometric Aspects of Functional Analysis, eds, J. Lindenstrauss and M. Meyer, Lecture Notes in Mathematics, 271-282, Springer, Berlin, Vol. 1317(1988).
    [17] Burago Y. D. and Zalgaller V. A., 《Geometric Inequalities》, Springer, Berlin, (1988).
    [18] Busemann H., 《Convex surfaces》, Interscience, New York, (1958).
    [19] Busemann H., The isoperimetric problem in the Minkowski plane, Amer. J. Math.,69(1947), 863-871.
    [20] Busemann H., The isoperimetric problem in the Minkowski area, Amer. J. Math., 71(1949), 743-762.
    [21] Busemann H., The foundations of Minkowski geometry, Comment. Math. Helv., 24(1950), 156-187.
    [22] Busemann H., Volume in terms of concurrent cross-sections, Pacific J. Math., 3(1953), 1-12.
    [23] Busemann H., A theorem on convx bodies of the Brunn-Minkowski type, Proc. Nat. Acad. Sci. U. S. A., 35(1949): 27-31.
    [24] Busemann H. and Petty C. M., Problem on convex bodies, Math. Scand., 4(1956),88-94.
    [25] Chakerian G. D., Bodies with similar projections, Trans. Amer. Math. Soc., 349(1997), 1811-1820.
    [26] Chakerian G. D., Inequalities for the difference body of convex body, Proc. Amer. Math. soc., 18(1967), 879-884.
    [27] Chakerian G. D. and Lutwak E., Bodies with similar projections, Trans. Amer. Math. Soc., 349(1997), 1811-1820.
    [28] J. Chen, I. Yong, S. Xia, A note on generalizations of Neuberg-Pedoe inequalities to E~n, J. Sichuan University (Natural Science Edition), 36(1999), 197-200.
    [29] Chen S. S., On integral geometry in Klein spaces, Annals of Mathematics, 43(1942),178-189.
    [30] Clack R., Minkowski surface area under affine transformations, Mathematika, 37(1990), 232-238.
    [31] Dixon J. D., How good is Hadamard's inequality for determinants? Canad. Math.
    
    Bull., 27(1984), 260-264.
    [32] Engle G. M. and Schneider H., The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonicity, Linear and Multilinear Algebra, 4(1976),155-176.
    [33] Eriksson F., The law of sines for tetrahedra and n-simplices, Geom. Dedicata, 7(1978), 71-80.
    [34] Ky Fan, Some inequalities concerning positive-definite hermitian matrices, Proc. Cambridge Phil. Soc., 51(1955), 414-421.
    [35] Fejes Tth L.,《Regulare Figuren》, Akademiai Kiado, Budapest, (1965).
    [36] Firey W. J., p-means of convex bodies, Math. Scald. 10(1962), 17-24.
    [37] Gardner R. J., 《Geometric Tomography》, Cambridge Univ. Press, Cambridge, (1995).
    [38] Gardner R. J., Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342(1994), 435-445.
    [39] Gardner R. J., A positive answer to the Busemann-petty problem in three dimensions, Ann. Math. 140(1994), 435-447.
    [40] Gardner R. J., On the Busemann-petty problem concerning central sections of centrally symmetric convex bodies, Bull. Amer. Math. Soc. (N. S.), 30, 2(1994), 222-226.
    [41] Gardner R. J., Geometric tomography, Notices Amer. Math. Soc. 42(1995), 422-429.
    [42] Gardner R. J., Koldobsky A. and Schlumprecht T., An analytic solution to the Busemann-petty problem on sections of convex bodies, Annals of Mathematics, 149, 2(1999), 691-703.
    [43] Gerber L., The orthocentric simplex as an extreme simplex, Pacific J. Math., 56(1975),97-111.
    [44] Giannopoulos A., Hartzoulaki M. and Paouris G., On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body, Proc. Amer. Math. Soc., 130(2002), 2403-2412.
    [45] Giannopoulos A., A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika, 37(1990), 239-244.
    [46] Goodey P. R. and Well W., Centrally symmetric convex bodies and the spherical Radon transform, J. Differential Geometry, 35(1992), 675-688.
    
    
    [47] Grinberg E. L., Isoperimetric inequalities and identities for k-dimensional crosssections of convex bodies, Annals of Mathematics, 291(1991), 75-86.
    [48] Groemer H.,《Geometric Applications of Fourier Series and Spherical Harmonics》, Gambridge University Press, (1996).
    [49] Gruber P. M., 《Baire categories in convexity》, Handbook of Convex Geometry, North-Holland, Amsterdam, (1993), 1327-1346.
    [50] Gruber P. M. and Lekkerkerker C. G,《Geometry of numbers》, North-Holland, Amsterdam, (1987).
    [51] Grunbaum B., 《Convex Polyeopes》, London, New York, Sydney, Wiley (1967).
    [52] 郭曙光,高维单形Barto体积公式的推广,数学研究与评论,18,4(1998),597-600.
    [53] 郭曙光,单形中面的性质及应用,数学杂志, 17,3(1997),413-416.
    [54] Hadwiger H.,《Vorlensungen über Inhalt, Oberfl che und Isoperimetrie》, Springer, Berlin, (1957).
    [55] Horn R. and Johnson C. R., 《Matrix Analysis》, Cambridge University Press, New York, (1985).
    [56] Johnson C. R. and Newman M., How bad is the Hadamard determinantal bound? J. Res. Nat. Bureau Stand., 78(1974), 167-169.
    [57] Johnson C. R. and Markham T., Compression and Hadamard power inequalities for matrices, Linear and Multilinear Algebra, 18(1985), 23-34.
    [58] Klamkin M. S., Geometric inequality via the polar moment of inertia, Math. Mag., 48(1975), 44-46.
    [59] Klamkin M. S., Problem 77-10, SIAM Rev., 20(1978), 400-401.
    [60] Koldobsky A., Intersection bodies and the Busemann-Petty problem, C. R. Acad. Sci. Paris Ser. Ⅰ Math., 325, 11(1997), 1181-1186.
    [61] Koldobsky A., Intersection bodies in R~4, Adv. Math., 136,1(1998), 1-14.
    [62] Koldobsky A., Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math., 120, 4(1998), 827-840.
    [63] Koldobsky A., Second derivative test for intersection bodies, Adv. Math., 136,1(1998), 15-25.
    [64] Larman D. G. and Rogers C. A., The existence of a centrally symmetric convex body with central sections that are unecpectedly small, Mathematika, 22(1975), 164-175.
    
    
    [65] Leng G. S. and Zhang Y., The generalized sine theorem and inequalities for simplices, Linear Algebra and its Applications, 278(1998), 237-247.
    [66] Leng G. S., Zhang Y. and Ma B. L., Largest parallelotopes contained in simplices, Discrete Math., 211(2000), 111-123.
    [67] Leng G. S. and Zhou G. B., Inverse forms of Hadamard inequality, SIAM J. Matrix Anal. Appl., 23, 4(2002), 990-997.
    [68] Leng G. S., Shen Z. and Tang L. H., Inequalities for Two simplices, J. Math. Anal. Appl., 248(2000), 429-437.
    [69] Leng G. S., Wu D. H. and Zhou Y. G., Inequalities for vertex Distances of two simplices, J. Math. Anal. Appl. (accepted)
    [70] Leng G. S., Qian X. Z., Inequalities for any point and two simplices, Discrete Math., 202(1999), 163-172.
    [71] 冷岗松,唐立华,再论Pedoe不等式的高维推广及应用,数学学报, 40(1997),14-21.
    [72] 冷岗松,张连生,凸体均质积分的极值问题,中国科学, 31,3(2001),204-212。
    [73] 冷岗松,凸体的曲率映象与仿射表面积,数学学报,45,4(2002),797-802。
    [74] 冷岗松,赵长健,何斌吾,李小燕,混合投影体的极的不等式,中国科学 34,1(2004),118-128.
    [75] Leng G. S. and Li X. Y., Extreme properties of projection bodies and sections of balls, Acta Math. Sinica, (submited).
    [76] Li H.Q. and Leng G.S., A matrix inequality with weights and its applications, Linear Algebra and Its Applications, 185(1993), 273-278.
    [77] Li X. Y. and Leng G. S., Some inequalities about dual mixed volumes, Acta Mathematics Scientia, (accepted).
    [78] 李小燕,何斌吾,对偶Brunn-Minkowski-Firey定理,数学杂志, (accepted).
    [79] Li X. Y. and Leng G. S., The mixed volume of two finite vector sets, Discrete and Computer Geom. (accepted)
    [80] Li X. Y., He B. W. and Leng G. S., The mid-facets for a simplex, Applied Mathematics and Mechanics, 25, 4(2003).
    [81] Li X. Y., He B. W. and Leng G. S., Inequalities for a simplex and any point, Math. Scan.,(submited).
    [82] Lindenstrauss J. and Milman V. D., 《Geometric aspects of functional analysis》(Israel
    
    Seminar 1987-1988), Lecture Notes in Mathematics, Vol. 1376(1989), Springer, Berlin.
    [83] Lutwak E., Volume of mixed bodies, Trans. Amer. Math. Soc., 294(1986), 487-500.
    [84] Lutwak E., Daul mixed volumes, Pacific J. Math., 58(1975), 531-538.
    [85] Lutwak E., Centroid bodies and daul mixed volumes, Proc. London Math. Soc.,60(1990), 365-391.
    [86] Lutwak E., Mixed projection inequalities, Trans. Amer. Math. Soc., 287(1985), 92-106.
    [87] Lutwak E., Intersection bodies and dual mixed volumes, Adv. Math., 71(1988), 232-261.
    [88] Lutwak E.,Yang D. and Zhang G. Y., A new affine invaritar for polytopes and Schneider's projection problem, Trans. Amer. Math. Soc., 353(2001), 1767-1779.
    [89] Lutwak E., The Rrunn-Minkowski-Firey theory Ⅰ: Mixed volumes and the Minkowski problem, J. Differential Geom., 38(1993), 131-150.
    [90] Lutwak E., The Rrunn-Minkowski-Firey theory :affine and geominimal surface area, Adv. in Math., 118(1996), 244-294.
    [91] Lutwak E., Width-integrals of convex bodies, Proc. Amer. Math. Soc., 53(1975), 435-439.
    [92] Marcus M. and Lopes L., Inequalities for symmetric functions and Hermitian Matrices, Canad. J. Math., 8(1956),524-531.
    [93] Milman V., Randomness and pattern in convex geometric analysis, Doc. Math. J. DMV. Extra Volume ICM (1998),665-677.
    [94] Milman V., Global versus local asymptotic theories of finite dimensionalnormed space. Duke Math. J., 90(1997),73-93.
    [95] Mitrinovic D. S., Pecaric J. E., About the Neuberg-Pedoe inequality and Oppenheim inequalities, J. Math. Anal. Appl., 129(1988), 196-210.
    [96] Mitrinovic D. S., Peari J. E. and Volenee V., 《Recent Advances in Geometric Inequalities》, Kluwer Acad. Publ. Dordrecht, Boston, London, (1989).
    [97] Papadimitrakis M., On the Busemann-Petty problem about convex centrally symmetric bodies in R~n, Mathematika, 39(1992), 258-266.
    [98] Pedoe D., An inequality for two triangles, Math. Proc. Cambridge Philos. Soc.,38(1942), 397-398.
    
    
    [99] Pedoe D., Thinking geometrically, Amer. Math. Monthly, 77(1970), 711-721.
    [100] Petty C. M., Centroid surfaces, Pacific J. Math., 11(1961), 1535-1547.
    [101] Petty C. M., Isoperimetric problem, In: Proc. Conf. Convexity and Combinatorical Geometry, Univ. Oklahoma, (1971), 26-41.
    [102] Petty C. M., Affine isoperimetric problem, In: Discrete Geometry and Convexity(eds J. E. Coodman, E. Lutwak, etc), Ann. New York Acad. SCi., 440(1985), 113-127.
    [103] Petty C. M., Projection bodies, in: Proceedings, Coll Convexity, Copenhagen, (1965), 234-241, Kφbenhavns Univ Mat Inst. (1967).
    [104] Petty C. M. and Waterman D., An Extremal Theorem for n-simplexes, Monatsh, Math., 59(1955), 320-322.
    [105] Pisier G., 《The Volume of convex bodies and Banach space geometry》, Cambridge Tracts in Math., 94(1989).
    [106] Ren D. L., 《Topics in Integral Geometry》, World Scientic: New Jersey, London, and Hong Kong, 1994.
    [107] 任德麟, 《积分几何学引论》,上海:上海科学技术出版社, (1988).
    [108] Reznikov A. G., Determinant inequalities with applications to isoperimatrical inequalities, Operator Theory Adv. Appl., 77(1995), 139-244.
    [109] Reznikov A. G., A strenghened isoperimetric inequality for simplices, in Geometric Aspects of Functional Analysis, Lecture Notes in Math. J. Lindenstrauss and V. D. Milmar, eds., Springer, New York, (1991), 90-93
    [110] Santaló L. A., Integral geometry in projective and affine spaces, Annals of Mathematics, 51, 2(1950), 739-755.
    [111] Sanyal A., Medians of a simplex, Amer. Math. Monthly, 74, 8(1967), 967-998.
    [112] Schneider R., 《Convex Bodies: The Brunn-Minkoeski Theory》, Cambridge Univ. Press, Cambridge, (1993).
    [113] Schneider R., Zu einem problem yon Shephard über die projectionen konvexer krper, Math. Z., 101(1967), 71-82
    [114] Schneider R., On the determination of convex bodies by projection and girth functions, Result Math., 33(1998), 155-160.
    [115] Shephard G. C., Shadow systems of convex bodies, Israel J. Math., 2 (1964), 229-236.
    [116] Slepian D., The Content of Some Extreme Simplexes, Pacific J. Math., 31(1969),
    
    795-808.
    [117] Smith J. D., Generalization of the triangle and ptolemy inequalities, Geom. Dedicata, 50(1994), 251-259.
    [118] Stanley R. P., Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Combin. Theory Ser. (A) 31(1981), 56-65.
    [119] Veljan D., The sine theorem and inequalities for volumes of simplices and determinants, Linear Algebra Appl., 219(1995), 79-91.
    [120] Vitale R. A., Expected absolute random determinants and zonoids, Ann. Appl. Probability, 1 (1991), 293-300.
    [121] Volcic A., A three-point solution to Hammer's X-ray problem, J. London Math. Soc., 34, 2(1986), 349-359.
    [122] Weissbach G., On isoperimetric tetrahedra, Colloq. Math. Soc., János Bolyai, Intuitive Geometry, Siófok, 48(1985), 631-637.
    [123] Wolkowitz H. and Styan G., Bounds for eigenvalues using traces, Linear Algebra Appl., 29(1980), 471-506.
    [124] Yang L. and Zhang J. Z., A generalization to several dimensions of the Neuberg-Pedoe inequality with applications, Bull. Austral. Math. Soc., 27(1983), 203-214.
    [125] 杨路,张景中,Neuberg-Pedoe不等式的高维推广及其应用,数学学报,24,3(1981),401-402.
    [126] 杨路,张景中,预给二面角的单形嵌入E~n的充分必要条件,数学学报,26,2(1983),250-256.
    [127] 杨路,张景中,关于有限点集的一类几何不等式,数学学报,23,5(1980),740-749.
    [128] Yang D. H., The Geometric relation involving k-dimensional vertex angle of two simplicies and its applications, (to appear).
    [129] 张景中,杨路,关于质点组的一类几何不等式,中国科技大学学报,11,2(1981),1-8.
    [130] Zhang G. Y., Centered bodies and daul mixed volumes, Trans. Amer. Math. Soc., 345(1994), 777-801.
    [131] Zhang G. Y., Section of convex bodies, Amer. J. Math., 118(1996), 319-340.
    [132] Zhang G. Y., Dual Kinematic formulas, Trans. Amer. Math. Soc., 351(1999), 985-995.
    
    
    [133] Zhang G. Y., A positive answer in the Busemann Petyy roblem in R~4, Ann. Math., 149(1999), 535-543.
    [134] Zhang Y., A conjection for the volume of simplex with feet of perpendicular as vertices, J. Sys. Sci. Math. Sci., 12(1992), 371-375.
    [135] 张晗方,《几何不等式导引》,中国科学文化出版社,(2003)
    [136] Zong C. M., 《Strange Phenomena in Convex and Discrete Geometry》, SpringVrelag, New York(1996).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700