土壤次生盐渍化及其防治的模型与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤次生盐渍化过程是一种严重的土地退化现象,在世界各地普遍发生,尤其在干旱半干旱地区尤为明显,对粮食生产有极为严重的影响,甚而会影响到人类的生存和发展,因此长期以来引起世界各国的广泛关注。本文将多孔介质的热质传输理论应引入传统农业工程领域,对传统的农业土壤次生盐渍化过程进行研究。土壤作为一种典型的多孔介质,人们对其进行了长期的研究和探索,并取得了大量的研究成果。将多孔介质的研究成果引入对土壤次生盐渍化过程的研究,无疑为这一传统的研究领域开辟了新的研究思路,从而为问题的解决提供了新的可能。本文从多孔介质的研究视角,对土壤次生盐渍化过程进行了实验研究,对地下水位、蒸发量等环境因素对土壤水盐运动规律进行了定量测量和研究。研究了植被和根系的影响。并在多孔介质“七场-相变”模型基础上对土壤中水热盐耦合过程进行了数学建模和数值模拟。
     实验在环境风洞中进行,研究了环境因子,尤其是地下水位条件对于盐分运移过程的影响。研究结果表明,地下水临界深度(CDG)对于盐分的运移过程有十分重要而明显的作用。CDG是环境因子,如气温,湿度,风速,和土质,甚至植被等因素综合作用的结果。本文中通过实验手段进行了测量。通过对土壤次生盐渍化地区进行CDG的取样测量,取得的大量基础数据可以为农业灌溉等实践活动提供科学的指导,从而减少甚至避免土壤次生盐渍化过程的发生,对于世界粮食安全和人类的生存具有重大意义。基于对土壤次生盐渍化机理的认识,对典型的土壤表面“盐结皮”的形成要素分析和研究,并在实验条件下模拟了“盐结皮”现象,对“盐斑”的形成和消失进行了观察和研究,实验结果符合预期,证明我们对土壤次生盐渍化机理的认识在一定程度上是正确的。
     “七场-相变”模型从连续介质力学的观点,采用局部体积平均法,建立了描述湿分分层土壤中热湿迁移的数学模型,分析了湿分分层土壤中水、热、气的迁移机理;并在恒定环境条件下进行了稳态与非稳态的数值计算,得到了湿分分层土壤中的温度场、湿度场以及内部蒸发量场,分析了土壤内部热湿迁移规律。在此研究基础上,通过对土壤溶质运移过程的分析,建立了描述盐分运移方程,与“七场-相变-扩散模型”一起,构成土壤次生盐渍化过程的数学模型。并对盐分上升过程进行了初步的模拟,在趋势上表现出很好的一致性,为对其进行更为精确的模拟提供了良好的研究基础。
     在上述研究的基础上,本文总结了土壤次生盐渍化的发生机理,即环境气象因子(温度、湿度、风速),地下水位及其矿化度,植被和根系等。并提出了防止土壤次生盐渍化的根本原则,即“切断”水盐上升的通道,具体措施如地膜覆盖、产生表面干土层、降低地下水位(不大水漫灌)、改变土壤性质等都是防止土壤次生盐渍化过程的有效途径,提出了“坡地”种植模式的盐渍化防治理念。
Soil Secondary Salinization (SSS) is a hazadous phenomenon widely happening around the world, especially in arid and semi-arid regions. It has been studied all the time. In the present thesis, the theory of the flow and heat and mass transfer in porous media is applied to the traditional agricultural field. It may produce new solution to the old problem. In the study of SSS, combination of both mathematical simulation and experimental research is an effective way. In the present thesis, experimental researches were conducted to study the influence of environmental factors such as ground water, evaporation rate. The experiments with plants were also conducted. The mathematical model was established based on the porous media model of "seven field-phase change" and some simulation results were got and analyzed.
     Based on theoretical analysis of soil solute transfer, the mathematical model of describing simultaneous heat, moisture and gas migration in porous media, and mathematical model of solute transfer in soil was developed using the volume-averaging method. Mathematical simulation was conducted to investigate soil secondary salinization owing to different watertable at environmental conditions, which might be applicable for agricultural practice. In this paper, the dynamic characteristics of soil salt migration and its influence factors are analyzed. Basing on the theories of solute transport and heat and mass transfer in porous media and taking the temperature effect into account, the model of moisture, heat and salt transport, which involved root water extraction, absorption-desorption, is established. By use of numerical method, the transient distributions of salt, temperature and moisture in soil, which might be useful to provide necessary information for preventing and curing soil salinization, are obtained and the influences of soil properties on salt migration are also analyzed.
     A series of experiments were designed and conducted in a closed-loop wind tunnel to study solute transport in porous media of soil. In such situation, Critical Depth of Ground watertable (CDG) acts an important role. Both mathematical simulation and experimental results indicate that moisture/solute transfer in the process of soil secondary salinization under different conditions of ground watertable exhibits different patterns as well. The influence of plant and its roots were also studied. Moreover, the comparisons of solute transfer between in cropped soil-bed and in bare soil-bed are also conducted.
     Based on the theoretical analysis and experimental result and mathematical simulation results, the quite typical phenomenon of "salt crusting" was simulated and observed in laboratory, which have not been reported in literature before.
     Based on present research work, the mechanism of soil secondary salinization was analysed to be the combination effect of temperature, humidity, wind speed, ground watertable , plant and its roots, etc. A new general principle of preventing soil secondary salinization was proposed as to "cut" the connecting channel between the saline groundwaer and the soil surface or root zone under vegetated condition. A new method of soil secondary salinization prevention was proposed as to be "slanted land" plantation pattern.
     The present work is financially supported by the National Natural Science Foundation of China (No.50376015).
引文
[1]赵明范.世界土壤盐渍化现状及研究趋势.世界林业研究,2001(2):84-86
    [2]V.A.柯夫达,I.沙波尔斯等著.土壤盐化和碱化过程的数值模拟.北京:科学出版社,1986
    [3]朱庭芸主编.灌区土壤盐渍化防治.北京:农业出版社,1992
    [4]王密侠,李新.北方旱区地下水位调控与盐渍化防治.地下水,1994,No.4:172-175
    [5]Richards L A.Capillary conduction of liquids through porous medium.Physics,1931,1:318-333
    [6]Sherwood Y K.Application of the theoretical diffusion equation to the drying of solids.Tran AICh E,1931,27:190-202
    [7]Ceaglske N H.Drying granular solids.Int Eng Chem,1937,29:805-813
    [8]Gurr C G..Movement of water in soil due to a temperature gradient.Soil Sci.Soc.Am.J,1952,74:335-345
    [9]Philip J R.The theory of infiltration I.The infiltration equation and its solution.Soil Sci.Soc.Am.J,1959,83:345-357
    [10]Luikov A V.Theory of energy and mass transfer.Prentice-Hall.Englewood Cliffs,N J,1961
    [11]Whitaker S.A theory of drying in porous media in advance heat transfer.Academic Press,1977
    [12]Huang C L.Governing differential equations of drying in porous media.NSF Report,1978
    [13]Brinkman H C.A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles.Applied Science Research AI,1947:27-34
    [14]Philip J R,De Vries D A.Moisture movement in porous materials under temperature gradients.Trams.Am.Geophs.Union,1957,38:222-232
    [15]Luikov A V.Heat and mass transfer in capillary-porous bodies.Advance Heat Transfer,1964,1:173-184
    [16]Luikov A V.System of differential equation of heat and mass transfer in capillary-porous bodies.Int.J Heat transfer,1975,18:1-14
    [17]Luikov A V.Thermal conductivity of porous system.Int.J Heat and mass transfer,1968,11:117-140
    [18]Van.Bavel,C H M,Hillel,D I.A simulation study of soil heat and moisture dynamics as affected by a dry mulch.Proc.of 1975 Summer Computer Simulation Conf.,San Franciso.CA Simulation Councils Inc.,la Jolla.CA,1975,:815-821
    [19]Van.Bavel,C H M,Hillel,D I.Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water heat.Agric.Meteorol,1976,17:453-476
    [20]Milly,P C D.Moisture and heat transport in hysteretic,inhomogeneous porous media:A matric heat-based formulation and a numerical model.Water Resour.Res.,1982,18:489-498
    [21]Liu W,Zhao X X.2D numerical simulation for simultaneous heat,water and gas migration in soil bed under different environmental conditions.Heat and Mass Transfer,1998,34:307-316.
    [22]Barnes,C J,Allison,G B.Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen.Journal of Hydrology,1988,100:143-176
    [23]Lascano R J,Van Bavel C H M.Experimental verification of a model to predict soil moisture and temperature profiles.Soil Sci.Soc.Am.J,1983,47:441-448
    [24]Horton R.Canopy shading effects on soil heat and water flow.Soil Sci.Soc.Am.J.,1989,53:669-679
    [25]E.Shimojima et al.Salinisation owing to evaporation from bare-soil surfaces and its influences on the evaporation.Journal of Hydrology,1996,178:109-136
    [26]刘炳成,刘伟,范爱武.太阳辐照下湿分分层土壤中热湿迁移的非稳态数值模拟.中国太阳能学会学术会议论文集,2003,上海,中国
    [27]Liu Bingcheng,Liu Wei,Tong Xiaojun.Environmental effect on the heat and mass transfer in porous soil with dry surface layer.Advances in Systems Science and Applications,2003,3(3):475-481
    [28]苗澎,贾克力,灌区土壤盐分随机预测预报.内蒙古水利,1994,4:17-21
    [29]J.W.Gowing,F.Konukcu,D.A.Rose,Evaporative flux from a shallow watertable:The influence of a vapor-liquid phase transition.Journal of Hydrology,2006,321:77-89
    [30]David Russo,Jacob Zaidel,Asher Laufer,Numerical analysis of transport of interacting solutes in a three-dimensional unsaturated heterogeneous soil.Vadose Zone journal,2004,3:1286-1299
    [31]M.Illic,Convective drying of a consolidated slab of wet porous material.Int.J,heat Mass Transfer,1989,32:2351-2362
    [32]S.Sarkar,S.Kar,Comparison between simulated and measured profile water distribution.Agric.Water Management,1995,27:341-350
    [33]Bear.J.,Dynamics of fluids in porous media.Elsevier,New York,1972
    [34]Ellsworth,T.R.,W.A.Jury,F.E.Ernest,and P.J.Shouse,A three-dimensional field study of solute transport through unsaturated layered porous media.1.Methodology,mass recovery and mean transport.Water Resource Res.,1991,27:951-965
    [35]Roberts,P.V.,M.N.Goltz,and D.M.Mackay,A natural gradient experiment on solute transport in a sand aquifer.Water Resour.Res.1986,22:2047-2058
    [36]Russo,D.Mumerical analysis of the nonsteady transport of interacting solutes through unsaturated soil:1.Homogeneous systems.Water Resour.Res.1988a,24:271-284
    [37]Feddes R A,Brelser A E.Field test of a modified numerical model for water uptake by water system.Water Resources Research,1974,10:1199-1206
    [38]Hillel D,Talpaz H.A macroscopic-scale model of water uptake by a non-uniform root system and of water and salt movement in the soil profile.Soil Sci Soc Amer.J.,1976,121:242-255
    [39]Russo,D.Mumerical analysis of the nonsteady transport of interacting solutes through unsaturated soil:2.Layered systems.Water Resour.Res.1988b,24:285-291
    [40]康绍忠,刘晓明,高新科.土壤-植物-大气连续体水分传输动态计算机仿真.水利学报,1992,3:1-12
    [41]Russo,D.Field-scale transport of interacting solutes through the unsaturated zone.1.Analysis of the spatial variability of the input parameters Water Resour.Res.1989a,25:2475-2485
    [42]Warrick A W.Simultaneous solute and water transfer for unsaturated soil.Water Resource Research,1971,7:1216-1225
    [43]van Genuchten M Th.A comparison of numerical solutions of the one-dimensional unsaturated flow and mass transport equations.Advance in Water Resources,1982,12:47-55
    [44]Nielsen D R.Water flow and solute transport processes in the unsaturated zone.Water Resource Research,1986,22:898- 1008
    [45]Bresler E.Simultaneous transport of solutes and water under transient unsaturated flow conditions.Water Resource Research,1973,9(4):975-985
    [46]丘华昌,陈明亮.土壤学.北京:中国农业科技出版社,1995
    [47]张蔚臻.地下水与土壤水动力学.北京:中国水利水电出版社,1996
    [48]李韵珠,李保国.土壤溶质运移.北京:科学出版社,1998
    [49]Russo,D.Field-scale transport of interacting solutes through the unsaturated zone.1.Analysis of the spatial variability of the field response.Water Resour.Res.1989b,25:2487-2495
    [50]Celia M A.A general mass-conservative numerical solution for unsaturated flow equation.Water Resource Research,1990,26:1482-1496
    [51]任理.混合拉普拉斯变换有限单元法计算二维地下水溶质运移问题.水利学报,1997,4:17-25
    [52]Cardon G E.Soil-based irrigation and salinity management model.Soil Sci.Soc.Am.,1992,56:1881-1892
    [53]邵明安,王全九,黄明斌.土壤物理学,北京:高等教育出版社,2006
    [54]Bresler E.Irrigation management for soil salinity control:theories and tests.Soil Sci.Soc.Am.,1986,50:1552-1560
    [55]Smiles D E,Philip J R.Solute transport during absorption of water by soil:Laboratory studies and their practical implication.Soil Sci.Soc.Am J,1978,42:537-544
    [56]Russo,D.,Stochastic analysis of vadose-zone solute transfer in a vertical cross section of heterogeneous soil during nonsteady water flow.Water Resour.Res.1991.27:267-283
    [57]Kaviary M.Principles of heat transfer in porous media.Springer-Verlag,1995
    [58]Horton R.Canopy shading effects on soil heat and water flow.Soil Sci.Soc.Am.J.,1989,53:669-679
    [59]Russo,D.,and M.Bouton,Statistical analysis of spatial variability in unsaturated flow parameters.Water Resour.Res.1992,28:1911-1925
    [60]Patankar S著,郭宽良译.流体流动与传热的数值计算.合肥:安徽科学技术出版社,1984
    [61]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001
    [62]Sharatchandra M C,Rhode D L.New strongly conservative finite-volume formulation for fluid flows in irregular geometries using contravariant velocity components:Part 2,assessment,Numerical Heat Transfer,1994,26:53-62
    [63]Whitaker S.Diffussion and dispersion in porous media.AICHE J.,1967,13:1066-1071
    [64]Slattery J C.Momentum,Energy and Mass Transfer in Continua.McGraw-Hill,New York,1972
    [65]Gray W G.A derivation of the equations for multi-phase transport.Chem.Eng.Sci.,1975,30:229-233
    [66]Cheng P.Heat transfer in geothermal systems.Adv.Heat Transfer,1978,14:100-105
    [67]Hsu C T,Cheng P.Closure schemes of the macroscopic energy equation for convective heat transfer in porous media.Int.Comm.Heat Mass Transfer,1988,15:689-698
    [68]Hsu C T,Cheng P.Thermal dispersion in porous media.Int.J.Heat Mass Transfer,1990,33:1587-1597
    [69]Gardner W.R.Solution of the flow equation for the drying of soil and the porous media.Soil Sci.Soc.Amer.Proc.,1959,23:183-187
    [70]Russo,D.,J.Zaidel,and A.laufer,Stochastic anslysis of solute transport in partially saturated hrterogeneous soil:1.Numerical experiments.Water Resour.Res.1994,30:769-779
    [71]Russo,D.,J.Zaidel,and A.laufer,Numerical anslysis of flow and transport in a three-dimensional partially saturated hrterogeneous soil.Water Resour.Res.1998,34:1451-1468
    [72]Jackson Ray D.Temperature and soil-water diffusivity relation.Soil Sci.Soc.Amer.J.,1963,27:363-366
    [73]Schulin,R.,M.Th.van Genuchten,H.Fluhler,and P.Ferlin An experimental study of solute transport in a stony field soil.Water Resour.Res.1987,23:1785-1794
    [74]Smith W.O.Thermal conductivities in moisture soils.Soil Sci.Soc.Amer.Proc.,1940,4:32-40
    [75]Curr C.G.Marshall T.J.,Hutton J.T.Movement of water in soil due to a temperature gradient.Soil Science,1952,72:335-344
    [76]Giakoumakis S.G.,Tsakiris G.P.Eliminating the effect of temperature form unsaturated soil hydraulic functions,J.Hydrology,1991,129:109-125
    [77]北京农业大学土壤教研组.土壤学实验指导.北京农业大学自编教材
    [78]陈崇希,李国敏.地下水溶质运移理论及模型.武汉:中国地质大学出版社,1996
    [79]刘伟,赵绪新,黄素逸等.HIPAS系统中热湿传输的理论模型.华中理工大学学报,1997,25(5):1-4
    [80]David Russo,Jacob Zaidel,Aher Laufer.Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil,Water Resources Research,1985,34(6):1451-1468
    [81]高新科,张富仓.非饱和土壤溶质运移数值模拟的初步研究.西北农业大学学报,1996,24(2):66-70
    [82]Norman J Rosenberg.Microclimate:The Biological Environment.John Wiley &Sons,1974
    [83]赵绪新.作物生长的热力系统理论与计算机仿真研究.华中理工大学博士论文,1997
    [84]赵绪新,刘伟,李永平等.土壤中热、水、气运动的研究.华中理工大学学报,1997,25(5):5-7
    [85]李航,薛家骅.土壤中离子扩散的动力学研究.土壤学报,1996,33(4):327-335
    [86]陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究.水利学报,1996,1:38-46
    [87]刘逸浓,杨居荣,马太和.农业和环境.北京:化学工业出版社,1988
    [88]Cheng P.Heat transfer in geothermal systems.Adv.Heat Transfer,1978,14:100-105
    [89]Hsu C T,Cheng P.Closure schemes of the macroscopic energy equation for convective heat transfer in porous media.Int.Comm.Heat Mass Transfer,1988,15:689-698
    [90]Hsu C T,Cheng P.Thermal dispersion in porous media.Int.J.Heat Mass Transfer,1990,33:1587- 1597
    [91]Patankar S著,郭宽良译.流体流动与传热的数值计算.合肥:安徽科学技术出版社,1984
    [92]Sharatchandra M C,Rhode D L.New strongly conservative finite-volume formulation for fluid flows in irregular geometries using contravariant velocity components:Part 2,assessment,Numerical Heat Transfer,1994,26:53-62
    [93]D.希勒尔著,罗焕炎译.土壤水动力学的计算机模拟.农业出版社,北京:1978
    [94]畅东华.不可逆热力学原理及工程应用.北京:科学出版社,1989
    [95]De Vries D A.Simultaneous transfer of heat and moisture in porous media.Trans.Am.Goephys.Union,1958,39:909-916
    [96]Hopmans J W,Dane J H.Temperature dependence of soil hydraulic properties.Soil Sci.Sco.Am.J.,1986,50:4-9
    [97]尤文瑞.土壤盐渍化预测预报的研究.土壤学进展,1988,16(1):1-8
    [98]De Smedt F,Wierenga P J.Solute transfer through columns of glass beads.Water Resour.Res.,1984,20(2):225-233
    [99]李法虎.土壤中水、热、溶质运移的研究现状及展望.灌溉排水,1994,13(1):7-9
    [100]Olsen S R,Kemper W D.Movement of nutrients to plant roots.Adv.Agron,1968,80:91-151
    [101]Bear J.Dynamics of fluid in porous media.American Elsevier,New York,1972.(中译本,多孔介质流体动力学,J.贝尔著,李竞生,陈崇希译,北京:中国建筑工业出版社,1983)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700