HIV感染者外周血γδT细胞表型及功能分析及HIV相关γδT细胞特异性MicroRNAs的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类获得性免疫缺陷综合症(Acquired Immune Deficiency Syndrome, AIDS)是由人类免疫缺陷病毒(Human Immunodeficiency Virus, HIV)感染所引起的以免疫系统缺陷、机会性感染、恶性肿瘤等为临床特征的一种传染性疾病。慢性免疫活化(Chronic immune activation)是HIV感染及其致病过程中的主要特点。HIV感染后,活化的免疫细胞的比例增高,同时表面表达活化、增殖和凋亡标记。免疫活化的水平比血浆病毒载量能更好地预测HIV感染的疾病进展。γδT细胞是一种固有免疫细胞,以非主要组织相容性复合物限制性的方式识别抗原、通过自然杀伤样的杀伤机制或分泌抗病毒因子杀伤肿瘤细胞或病毒感染的细胞,且具有免疫调节和抗原提呈作用,这些特点决定了γ6T细胞在HIV感染中发挥重要的作用。然而,HIV感染后γδ T细胞的活化状态与成因以及γδ T细胞活化与其数量、功能变化之间的相关性迄今尚未阐明。这是本文试图探讨的第一个科学问题。
     微小RNA (microRNA, miRNA)是一类长度为20-22个核苷酸,高度保守的非编码核糖核酸(Ribonucleic acid, RNA)分子,能够与靶基因的3’非翻译区(Untranslated region, UTR)结合,抑制目的基因的转录,或降解目的基因信使RNA(message, mRNA),从而对基因进行转录后调控。近来研究表明,miRNA在免疫系统中发挥重要作用,参与免疫细胞的分化发育、调节免疫细胞的功能等。然而,目前尚缺乏对γδ T细胞特异性miRNA的研究。尤其在HIV感染过程中,miRNA对γδ T细胞的调节作用尚未明确。因此,本文的第二个科学问题将集中在HIV相关γδ T细胞特异性microRNA的研究上。
     本研究分为两部分,第一部分主要检测HIV感染者在高效活化的抗逆转录病毒治疗(Highly activate anti-retroviral therapy, HAART)前后γδ T细胞活化状态、数量和功能的变化,并对其影响因素进行研究;第二部分是对HIV感染相关的γδ T细胞特异性miRNA进行筛选,旨在为HIV感染过程中γδ T细胞的功能研究提供新线索。
     围绕第一个科学问题,我们开展了第一部分工作。首先以74例HIV感染者包括46例未经HAART治疗和28例经HAART治疗的HIV感染者和21名健康对照为研究对象。流式细胞术检测外周血单个核细胞(Peripheral Blood Mononuclear Cells,PBMCs)中γ6T细胞活化标志CD38和人类白细胞抗原-DR(Human leukocyte antigen DR, HLA-DR)的表达。结果显示,HIV感染者γδT细胞CD38和HLA-DR的表达水平显著高于健康对照,提示HIV感染者γδT细胞处于高度活化状态,而HAART治疗不能有效降低γδ T细胞的活化水平。同时,本研究还发现活化γδ T细胞的比例与CD4+T细胞的数量无相关性,而与HIV感染者(CD4+T细胞>350个/μl)血浆病毒载量呈明显正相关。利用酶联免疫吸附试验(Enzyme-linked Immunoabsobent Assay, ELISA)检测发现,HIV感染者血浆中微生物转位产物如脂多糖(lipopolysaccharide, LPS)的含量与健康对照相比无明显增加。且活化的γδ T细胞的比例与血浆LPS的水平无相关性,提示微生物转位不是引起HIV感染者γδ T细胞的高度活化的主要原因。
     随后,我们运用流式细胞术,发现HIV感染者γδ T细胞的总数与健康对照没有显著差异。γδT细胞亚群的比例分析发现,HIV感染者Vδ1T细胞的比例增加,而Vδ2T细胞的比例减少,且HAART治疗不能改善这种趋势。此外,与健康对照相比,HIV感染者中心记忆(central memoryTCM,CD27+CD45RA-)和效应记忆(effector memoryTEM,CD2TCD45RA-)γδ T细胞的比例均降低。而终末分化(terminally differentiatedTEMRA,CD2TCD45RA+)γδ T细胞的比例显著增加。TNaive、TCM、TEM和TEMRAγδ T细胞表面CD38的表达显著高于健康对照。相关性分析显示,TCM和TEMγδ T细胞的比例与CD38+γδ T细胞的比例呈负相关,而TEMRAγδ T细胞的比例与CD38+γδ T细胞的比例呈显著正相关。上述结果提示,HIV感染者记忆γδT细胞数量的下降可能与γδ T细胞活化有关。
     流式细胞内染色发现,与健康对照相比,未治疗的HIV感染者分泌白细胞介素(Interleukin, IL)-17的γδ T细胞比例明显增加,而分泌干扰素(interferon, IFN)-γ的γδT细胞的比例减少。HAART治疗使分泌IL-17的γδ T细胞的比例降低,但是对分泌IFN-y的γδ T细胞的比例没有影响。
     此外,本研究对HIV感染者γδ T细胞的功能进行分析。利用乳酸脱氢酶(Lactate dehydrogenase, LDH)法检测HIV感染者γδ T细胞的细胞毒活性。结果显示,与健康对照相比,HIV感染者γδ T细胞对Daudi细胞的杀伤能力降低。随着疾病的进展,γδ T细胞的杀伤能力下降。而HIV感染者γδ T细胞能够杀伤自体HIV感染和未感染的CD4+T细胞。这一结果提示,γδ T细胞活化有可能引起CD4+T细胞的耗竭。为探讨HIV感染者γδT细胞杀伤能力下降的潜在机制,我们采用ELISA法检测血浆中可溶性MHC Ⅰ类链相关基因A/B编码蛋白(soluble MHC class Ⅰ chain-related A/B, sMICA/B)的含量。结果显示,HIV感染者血浆中sMICA/B的含量显著高于健康对照,且sMICA/B的含量随着病毒载量的增加而增加。提示,sMICA/B含量的增加可能与γδ T细胞的杀伤能力下降有关。
     最后,本研究采用ELISA检测发现,HIV感染者血浆中IL-23的含量较健康对照降低。流式细胞内染色发现,HIV感染者γδ T细胞细胞毒性分子穿孔素和颗粒酶B等的表达较健康对照降低。而高剂量(20ng/ml)IL-23可促进HIV感染者γδ T细胞表达这些细胞毒性分子。同时,高剂量IL-23能增强HIV感染者γδ T细胞对Daudi细胞的杀伤能力,但对健康对照γδ T细胞的杀伤能力无影响。上述结果提示,IL-23可能成为辅助HIV/AIDS临床免疫治疗的候选因子。
     本研究第二部分工作主要围绕第二个科学问题,希望能够发现HIV相关γδ T细胞特异性miRNA。我们采用实时荧光定量PCR (Quantitative real-time PCR, qRT-PCR)技术对HIV感染相关的γδ T细胞特异性miRNA进行筛选。首先,检测3例健康对照αβT细胞和γδ T细胞347条T细胞相关的miRNA的表达。获得13条差异表达的γδ T细胞miRNA。进而,扩大健康对照样本量(20例),对上述13条差异表达的人γδT细胞miRNA和小鼠γδ T细胞特异表达的11条miRNA进行第二轮筛选,共获得14条γδT细胞特异性miRNA。最后比较了HIV感染不同病程阶段和健康对照γδ T细胞14条miRNA的表达差异,获得11条差异表达的HIV相关γδT细胞特异性miRNA。
     综上所述,本研究的主要结论与创新点体现在:(1)HIV感染者γδ T细胞高度活化,而HAART治疗不能完全降低γδ T细胞的活化水平。(2)微生物转位并非引起HIV感染者γδ T细胞活化的原因。(3)HIV感染者记忆γδ T细胞数量的下降。(4)首次报道HIV感染者γδT细胞能够杀伤自体HIV感染的CD4+T细胞,且高剂量IL-23可增强HIV感染者γδ T细胞的杀伤能力,为HIV/AIDS的临床免疫治疗提供了新的思路。(5)首次筛选出HIV相关的γδ T细胞特异性miRNA,为进一步研究γδ T细胞在抗HIV感染中的作用展示了新的方向。
Human acquired immune deficiency syndrome (AIDS) is an infectious disease, which is caused by human immunodeficiency virus (HIV) and characterized by immune system defects, opportunistic infections and malignancies. Chronic immune activation is a key characteristic of HIV infection and pathogenesis. The HIV-associated immune activation is typically characterized by a high frequency of activated immune cells, expressing markers of activation, proliferation, and apoptosis. The levels of chronic immune activation present in HIV-infected individuals could provide a better prediction of the progression and prognosis of AIDS than plasma viral load. γδ T cells, a crucial population of innate immune cells, recognize antigens in a non-major histocompatibility complex (MHC) restrict pattern and kill the infected cells or tumor cells in a natural killer-like (NK-like) manner or through the release of anti-viral factors. In addition, γδ T cells play important roles in immune regulation and antigen presentation. γδ T cells serve as a linker between the innate immune and the adaptive immune. All these features suggest that γδ T cells play crucial roles in HIV infection. However, the properties of γδ T cells in HIV-infected individuals have not been fully characterized. It is the first scientific question we want to discuss.
     MicroRNAs (miRNAs) are20-22nucleotide length non-coding ribonucleic acid (RNA) molecules. MiRNAs control the gene expression through posttranscriptional regulation by binding to the3'-untranslated region (UTR), thereby repressing the translation or inducing message RNA (mRNA) degradation. Recently, several studies demonstrated that miRNAs play very important roles in immune system, including the differentiation of immune cells or the functions of immune cells. However, there are few researches on miRNAs specifically related to γδ T cells. The profile of miRNAs of γδ T cells from HIV infected individuals is still unrevealed. Therefore, the second scientific question we will focus on the research on HIV-associated γδ T cell specific microRNAs.
     This study contains two parts. The first part focused on examining the activation status of γδ T cells, frequencies of γδ T cells, and the potential factors related to these characteristics. In the second part, we performed a screen of miRNAs specifically related to the HIV infection-associated γδ T cell.
     In part one,74HIV-infected individuals including46HIV-infected individuals without highly activate anti-retroviral therapy (HAART) and28HIV-infected individuals with HAART treatment and21healthy controls were recruited. Flow cytometry was performed to examine the activation markers CD38and Human Leukocyte Antigen-DR (HLADR) on γδ T cells from HIV-infected patients and healthy controls. The result showed that the frequencies of CD38+and/or HLADR+γδ T cells were significantly elevated in HIV-infected individuals compared to healthy controls. HAART treatment could not reduce the level of γδ T cell activation. Activated γδ T cells were positively correlated to the plasma viral load in HIV-infected individuals with CD4+T cells more than350cells/μl, but not to CD4+T cell count. The levels of microbial translocation product lipopolysaccharide (LPS) in the plasma of HIV-infected patients and healthy controls were measured by enzyme-linked immunoabsobent assay (ELISA). No significant difference was found in levels of plasma LPS between HIV-infected patients and healthy controls, indicating that microbial translocation is not the cause of γδ T cells activation in HIV-infected individuals.
     Next, the frequencies of γδ T cells in HIV-infected individuals were assessed by using flow cytometry. No change was observed in the total cell numbers of γδ T cells between the healthy controls and HIV-infected individuals. However, the frequency of Vδ1T cells was significantly increased in HIV-infected individuals when compared to that of the healthy control. In contrast, the frequency of Vδ2T cells was decreased in HIV-infected individuals. HAART treatment cannot restore this bias. In addition, compared to healthy controls, the frequencies of central memory γδ T cells (TCM, CD27+CD45RA-) and effector memory γδ T cells (TEM, CD27-CD45RA-) were reduced in HIV-infected individuals. However, the frequency of terminally differentiated (TEMRA, CD27-CD45RA+)γδ T cells was significantly increased in HIV-infected individuals. Compared to healthy donors, the expression levels of CD38on TNaive, TCM, TEM and TEMRA γδ T cells were significantly elevated in HIV-infected individuals. Correlation analysis showed that the frequencies of Tcm and TEM cells were negatively correlated to that of CD38+γδ T cells, but the frequencies of TEMRA γδ T cells were positively correlated to that of CD38+γδ T cells. These results taken together indicate that the activation of γδ T cells might lead to the decrease of memory γδ T cells. We also found that the frequency of interleukin (IL)-17+(IL-17+)γδ T cells was increased in HIV-infected patients without HAART treatment compared to the healthy controls, but the frequency of interferon (IFN)-γ+γδ T cells were decreased. HAART treatment could reduce the frequency of IL-17+γδ T cells, but it had little effect on IFN-γ+γδ T cells.
     In addition, lactate dehydrogenase (LDH) assay was performed to assess the cytotoxicity of γδ T cells. Compared to healthy controls, the cytotoxicity of y8T cells to Daudi cells was reduced in HIV-infected patients and with the disease progression the cytotoxicity was lower. Intriguingly, γδ T cells from HIV-infected individuals could kill the autologous HIV-infected and uninfected CD4+T cells, indicating that activated γδ T cells might contribute to the depletion of CD4+T cells.
     To investigate the possible mechanisms responsible for the reduction of cytotoxicity of γδ T cells in HIV-infected individuals, the levels of soluble MHC class I chain-related A/B proteins (sMICA/B) were measured by using ELISA. The result showed that the levels of sMICA/B in the plasma of HIV-infected individuals were significantly elevated when compared to healthy controls. Moreover, the increased levels of sMICA/B were accompanied with the increase of plasma viral load. These results suggest that the elevated level of sMICA/B may be an important cause for the lower cytotoxicity of γδ T cells in HIV-infected individuals.
     Finally, we also found that the level of IL-23in the plasma of HIV-infected individuals were lower than that in the healthy controls. The expression of cytotoxicity molecules such as perforin and granzymeB in γδ T cells were reduced in HIV-infected individuals. The administration of high dose of IL-23could increase the expression of these molecules and enhance the cytotoxicity of γδ T cells in HIV-infected individuals in vitro. But it had little effect on the cytotoxicity of y8T cells in healthy controls. These results suggest that IL-23might be a potential novel candidate for HIV/AIDS treatment.
     In the second part, we look forward to find some miRNAs which specifically expressed by γδ T cells and associated with HIV infection. Quantitative real-time PCR (qRT-PCR) was used to screen the miRNAs specifically related to HIV infection-associated γδ T cell. First, the expression profiles of347miRNAs were detected in both γδ T cells and αβ T cells from3healthy donors.13miRNAs differentially expressed by γδ T cells were identified. The expression profiles of these13miRNAs combined with11miRNAs from mouse y8T cells were further assessed in20 healthy donors.14miRNAs showed differentially expression in γδ T cells. By comparison of the expression profiles of these14miRNAs in γδ T cells from healthy controls and HIV-infected individuals,11miRNAs specifically related HIV infection-associated γδ T cells were identified.
     In conclusion, our findings in this study include:(1)γδ T cells were hyperactivated in HIV-infected individuals and HAART treatment cannot reduce the activation status of γδ T cells;(2) Microbial translocation is not the major cause for γδ T cells activation;(3) Memory γδ T cells were reduced in HIV-infected individuals;(4) To our knowledge, it's the first time to report that γδ T cells from HIV-infected individuals could kill the autologous HIV-infected or uninfected CD4+T cells, and high doses of IL-23could increase the cytotoxicity of γδ T cells from HIV-infected individuals, which provide a new strategy for the clinical treatment of HIV/AIDS;(5) It is the first time to report the y8T cells specific miRNAs in HIV infection, which provide a new direction for better understanding the roles of γδ T cells in HIV infection.
引文
1. Silvestri, G., D. L. Sodora, R. A. Koup, M. Paiardini, S. P. O'Neil, H. M. McClure, S. I. Staprans, and M. B. Feinberg.2003. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18:441-452.
    2. Sumpter, B., R. Dunham, S. Gordon, J. Engram, M. Hennessy, A. Kinter, M. Paiardini, B. Cervasi, N. Klatt, H. McClure, J. M. Milush, S. Staprans, D. L. Sodora, and G. Silvestri.2007. Correlates of preserved CD4(+) T cell homeostasis during natural, nonpathogenic simian immunodeficiency virus infection of sooty mangabeys:implications for AIDS pathogenesis. J Immunol 178:1680-1691.
    3. Moir, S., T. W. Chun, and A. S. Fauci.2011. Pathogenic mechanisms of HIV disease. Annu Rev Pathol 6:223-248.
    4. Murray, S. M., C. M. Down, D. R. Boulware, W. M. Stauffer, W. P. Cavert, T. W. Schacker, J. M. Brenchley, and D. C. Douek.2010. Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol 84:12082-12086.
    5. Ensoli, B., S. Bellino, A. Tripiciano, O. Longo, V. Francavilla, S. Marcotullio, A. Cafaro, O. Picconi, G. Paniccia, A. Scoglio, A. Arancio, C. Ariola, M. J. Ruiz Alvarez, M. Campagna, D. Scaramuzzi, C. Iori, R. Esposito, C. Mussini, F. Ghinelli, L. Sighinolfi, G. Palamara, A. Latini, G. Angarano, N. Ladisa, F. Soscia, V. S. Mercurio, A. Lazzarin, G. Tambussi, R. Visintini, F. Mazzotta, M. Di Pietro, M. Galli, S. Rusconi, G. Carosi, C. Torti, G. Di Perri, S. Bonora, F. Ensoli, and E. Garaci.2010. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One 5:e13540.
    6. Brenchley, J. M., D. A. Price, T. W. Schacker, T. E. Asher, G. Silvestri, S. Rao, Z. Kazzaz, E. Bornstein, O. Lambotte, D. Altmann, B. R. Blazar, B. Rodriguez, L. Teixeira-Johnson, A. Landay, J. N. Martin, F. M. Hecht, L. J. Picker, M. M. Lederman, S. G. Deeks, and D. C. Douek.2006. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365-1371.
    7. Paiardini, M., I. Frank, I. Pandrea, C. Apetrei, and G. Silvestri.2008. Mucosal immune dysfunction in AIDS pathogenesis. AIDS Rev 10:36-46.
    8. Brenchley, J. M., D. A. Price, T. W. Schacker, T. E. Asher, G. Silvestri, S. Rao, Z. Kazzaz, E. Bornstein, O. Lambotte, D. Altmann, B. R. Blazar, B. Rodriguez, L. Teixeira-Johnson, A. Landay, J. N. Martin, F. M. Hecht, L. J. Picker, M. M. Lederman, S. G. Deeks, and D. C. Douek.2006. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365-1371.
    9. Nowroozalizadeh, S., F. Mansson, Z. da Silva, J. Repits, B. Dabo, C. Pereira, A. Biague, J. Albert, J. Nielsen, P. Aaby, E. M. Fenyo, H. Norrgren, B. Holmgren, and M. Jansson.2010. Microbial translocation correlates with the severity of both HIV-1 and HIV-2 infections. J Infect Dis 201:1150-1154.
    10. Wallet, M. A., C. A. Rodriguez, L. Yin, S. Saporta, S. Chinratanapisit, W. Hou, J. W. Sleasman, and M. M. Goodenow.2010. Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS 24:1281-1290.
    11. Cassol, E., S. Malfeld, P. Mahasha, S. van der Merwe, S. Cassol, C. Seebregts, M. Alfano, G. Poli, and T. Rossouw.2010. Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J Infect Dis 202:723-733.
    12. Chege, D., P. M. Sheth, T. Kain, C. J. Kim, C. Kovacs, M. Loutfy, R. Halpenny, G. Kandel, T. W. Chun, M. Ostrowski, and R. Kaul.2011. Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS 25:741-749.
    13. Marchetti, G., A. Cozzi-Lepri, E. Merlini, G. M. Bellistri, A. Castagna, M. Galli, G. Verucchi, A. Antinori, A. Costantini, A. Giacometti, A. di Caro, and A. D'Arminio Monforte.2011. Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+cell count. AIDS 25:1385-1394.
    14. Hayday, A. C.2000. [gamma][delta] cells:a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975-1026.
    15. Battistini, L., N. Caccamo, G. Borsellino, S. Meraviglia, D. F. Angelini, F. Dieli, M. T. Cencioni, and A. Salerno.2005. Homing and memory patterns of human gammadelta T cells in physiopathological situations. Microbes Infect 7:510-517.
    16. Cummings, J. S., C. Cairo, C. Armstrong, C. E. Davis, and C. D. Pauza.2008. Impacts of HIV infection on Vgamma2Vdelta2 T cell phenotype and function:a mechanism for reduced tumor immunity in AIDS. JLeukoc Biol 84:371-379.
    17. Kong, Y., W. Cao, X. Xi, C. Ma, L. Cui, and W. He.2009. The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood 114:310-317.
    18. Tikhonov, I., C. O. Deetz, R. Paca, S. Berg, V. Lukyanenko, J. K. Lim, and C.D. Pauza.2006. Human Vgamma2Vdelta2 T cells contain cytoplasmic RANTES. Int Immunol 18:1243-1251.
    19. Sindhu, S. T., R. Ahmad, R. Morisset, A. Ahmad, and J. Menezes.2003. Peripheral blood cytotoxic gammadelta T lymphocytes from patients with human immunodeficiency virus type 1 infection and AIDS lyse uninfected CD4+T cells, and their cytocidal potential correlates with viral load. J Virol 77:1848-1855.
    20. Wallace, M., Y. H. Gan, C. D. Pauza, and M. Malkovsky.1994. Antiviral activity of primate gamma delta T lymphocytes isolated by magnetic cell sorting. J Med Primatol 23:131-135.
    21. Kosub, D. A., G. Lehrman, J. M. Milush, D. Zhou, E. Chacko, A. Leone, S. Gordon, G. Silvestri, J. G. Else, P. Keiser, M. K. Jain, and D. L. Sodora.2008. Gamma/Delta T-cell functional responses differ after pathogenic human immunodeficiency virus and nonpathogenic simian immunodeficiency virus infections. J Virol 82:1155-1165.
    22. Agrati, C., G. D'Offizi, M. L. Gougeon, M. Malkovsky, A. Sacchi, R. Casetti, V. Bordoni, E. Cimini, and F. Martini.2011. Innate gamma/delta T-cells during HIV infection:Terra relatively Incognita in novel vaccination strategies? AIDS Rev 13:3-12.
    23. Groh, V., J. Wu, C. Yee, and T. Spies.2002. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734-738.
    24. Marten, A., M. von Lilienfeld-Toal, M. W. Buchler, and J. Schmidt.2006. Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 119:2359-2365.
    25. Nolting, A., A. S. Dugast, S. Rihn, R. Luteijn, M. F. Carrington, K. Kane, S. Jost, I. Toth, E. Nagami, G. Faetkenheuer, P. Hartmann, M. Altfeld, and G. Alter. MHC class I chain-related protein A shedding in chronic HIV-1 infection is associated with profound NK cell dysfunction. Virology 406:12-20.
    26. Moens, E., M. Brouwer, T. Dimova, M. Goldman, F. Willems, and D. Vermijlen. 2011. IL-23R and TCR signaling drives the generation of neonatal Vgamma9Vdelta2 T cells expressing high levels of cytotoxic mediators and producing IFN-gamma and IL-17. JLeuko Biol 89:743-752.
    27. Lim, L. P., M. E. Glasner, S. Yekta, C. B. Burge, and D. P. Bartel.2003. Vertebrate microRNA genes. Science 299:1540.
    28. Ambros, V.2004. The functions of animal microRNAs. Nature 431:350-355.
    29. Chen, C. Z., L. Li, H. F. Lodish, and D. P. Bartel.2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83-86.
    30. Neilson, J. R., G. X. Zheng, C. B. Burge, and P. A. Sharp.2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578-589.
    31. Zhou, B., S. Wang, C. Mayr, D. P. Bartel, and H. F. Lodish.2007. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 104:7080-7085.
    32. Wu, H., J. R. Neilson, P. Kumar, M. Manocha, P. Shankar, P. A. Sharp, and N. Manjunath.2007. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One 2:e 1020.
    33. Li, Q. J., J. Chau, P. J. Ebert, G. Sylvester, H. Min, G. Liu, R. Braich, M. Manoharan, J. Soutschek, P. Skare, L. O. Klein, M. M. Davis, and C. Z. Chen. 2007. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147-161.
    34. Lecellier, C. H., P. Dunoyer, K. Arar, J. Lehmann-Che, S. Eyquem, C. Himber, A. Saib, and O. Voinnet.2005. A cellular microRNA mediates antiviral defense in human cells. Science 308:557-560.
    35. Jopling, C. L., M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow.2005. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577-1581.
    36. Huang, J., F. Wang, E. Argyris, K. Chen, Z. Liang, H. Tian, W. Huang, K. Squires, G. Verlinghieri, and H. Zhang.2007. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+T lymphocytes. Nat Med 13:1241-1247.
    37. Fogli, M., D. Mavilio, E. Brunetta, S. Varchetta, K. Ata, G. Roby, C. Kovacs, D. Follmann, D. Pende, J. Ward, E. Barker, E. Marcenaro, A. Moretta, and A. S. Fauci.2008. Lysis of endogenously infected CD4+T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals. PLoS Pathog 4:e 1000101.
    38. Lundquist, C. A., M. Tobiume, J. Zhou, D. Unutmaz, and C. Aiken.2002. Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol 76:4625-4633.
    39. Wildum, S., M. Schindler, J. Munch, and F. Kirchhoff.2006. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J virol 80:8047-8059.
    40. Imlach, S., C. Leen, J. E. Bell, and P. Simmonds.2003. Phenotypic analysis of peripheral blood gammadelta T lymphocytes and their targeting by human immunodeficiency virus type 1 in vivo. Virology 305:415-427.
    41. Neaton, J. D., J. Neuhaus, and S. Emery.2010. Soluble biomarkers and morbidity and mortality among people infected with HIV:summary of published reports from 1997 to 2010. Curr Opin HIV/AIDS 5:480-490.
    42. Gregson, J. N., A. Steel, M. Bower, B. G. Gazzard, F. M. Gotch, and M. R. Goodier.2009. Elevated plasma lipopolysaccharide is not sufficient to drive natural killer cell activation in HIV-1-infected individuals. AIDS 23:29-34.
    43. Redd, A. D., D. Dabitao, J. H. Bream, B. Charvat, O. Laeyendecker, N. Kiwanuka, T. Lutalo, G. Kigozi, A. A. Tobian, J. Gamiel, J. D. Neal, A. E. Oliver, J. B. Margolick, N. Sewankambo, S. J. Reynolds, M. J. Wawer, D. Serwadda, R. H. Gray, and T. C. Quinn.2009. Microbial translocation, the innate cytokine response, and HIV-1 disease progression in Africa. Proc Natl Acad Sci U S A 106:6718-6723.
    44. Redd, A. D., K. P. Eaton, X. Kong, O. Laeyendecker, T. Lutalo, M. J. Wawer, R. H. Gray, D. Serwadda, and T. C. Quinn.2010. C-reactive protein levels increase during HIV-1 disease progression in Rakai, Uganda, despite the absence of microbial translocation. JAcquir Immune Defic Syndr 54:556-559.
    45. Autran, B., F. Triebel, C. Katlama, W. Rozenbaum, T. Hercend, and P. Debre. 1989. T cell receptor gamma/delta+ lymphocyte subsets during HIV infection. Clin Exp Immunol 75:206-210.
    46. Zheng, N. N., M. J. McElrath, P. S. Sow, A. Mesher, S. E. Hawes, J. Stern, G. S. Gottlieb, S. C. De Rosa, and N. B. Kiviat.2011. Association between peripheral gammadelta T-cell profile and disease progression in individuals infected with HIV-1 or HIV-2 in West Africa. J Acquir Immune Defic Syndr 57:92-100.
    47. Poles, M. A., S. Barsoum, W. Yu, J. Yu, P. Sun, J. Daly, T. He, S. Mehandru, A. Talal, M. Markowitz, A. Hurley, D. Ho, and L. Zhang.2003. Human immunodeficiency virus type 1 induces persistent changes in mucosal and blood gammadelta T cells despite suppressive therapy. J Virol 77:10456-10467.
    48. Gougeon, M. L.2003. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3:392-404.
    49. Chang, J. J., and M. Altfeld.2010. Innate immune activation in primary HIV-1 infection. J Infect Dis 202 Suppl 2:S297-301.
    50. Herbeuval, J. P., J. C. Grivel, A. Boasso, A. W. Hardy, C. Chougnet, M. J. Dolan, H. Yagita, J. D. Lifson, and G. M. Shearer.2005. CD4+T-cell death induced by infectious and noninfectious HIV-1:role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 106:3524-3531.
    51. Mattapallil, J. J., D. C. Douek, B. Hill, Y. Nishimura, M. Martin, and M. Roederer. 2005. Massive infection and loss of memory CD4+T cells in multiple tissues during acute SIV infection. Nature 434:1093-1097.
    52. Zhou, D., X. Lai, Y. Shen, P. Sehgal, L. Shen, M. Simon, L. Qiu, D. Huang, G. Z. Du, Q. Wang, N. L. Letvin, and Z. W. Chen.2003. Inhibition of adaptive Vgamma2Vdelta2+ T-cell responses during active mycobacterial coinfection of simian immunodeficiency virus SIVmac-infected monkeys. J Virol 77:2998-3006.
    53. Libri, V., R. I. Azevedo, S. E. Jackson, D. Di Mitri, R. Lachmann, S. Fuhrmann, M. Vukmanovic-Stejic, K. Yong, L. Battistini, F. Kern, M. V. Soares, and A. N. Akbar.2011. Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+CD45RA+CD27+T cells:the potential involvement of interleukin-7 in this process. Immunology 132:326-339.
    54. Kovaiou, R. D., and B. Grubeck-Loebenstein.2006. Age-associated changes within CD4+T cells. Immunol Lett 107:8-14.
    55. Effros, R. B., Z. Cai, and P. J. Linton.2003. CD8 T cells and aging. Crit Rev Immunol 23:45-64.
    56. Hislop, A. D., G. S. Taylor, D. Sauce, and A. B. Rickinson.2007. Cellular responses to viral infection in humans:lessons from Epstein-Barr virus. Annu Rev Immunol 25:587-617.
    57. van Lier, R. A., I. J. ten Berge, and L. E. Gamadia.2003. Human CD8(+) T-cell differentiation in response to viruses. Nat Rev Immunol 3:931-939.
    58. Goronzy, J. J., and C. M. Weyand.2005. Rheumatoid arthritis. Immunol Rev 204:55-73.
    59. Kosub, D. A., G. Lehrman, J. M. Milush, D. Zhou, E. Chacko, A. Leone, S. Gordon, G. Silvestri, J. G. Else, P. Keiser, M. K. Jain, and D. L. Sodora.2008. Gamma/Delta T-cell functional responses differ after pathogenic human immunodeficiency virus and nonpathogenic simian immunodeficiency virus infections. J Virol 82:1155-1165.
    60. Caccamo, N., C. La Mendola, V. Orlando, S. Meraviglia, M. Todaro, G. Stassi, G. Sireci, J. J. Fournie, and F. Dieli.2011. Differentiation, phenotype, and function of interleukin-17-producing human Vgamma9Vdelta2 T cells. Blood 118:129-138.
    61. Fenoglio, D., A. Poggi, S. Catellani, F. Battaglia, A. Ferrera, M. Setti, G. Murdaca, and M. R. Zocchi.2009. Vdeltal T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 113:6611-6618.
    62. Cao, W., and W. He.2004. UL16 binding proteins. Immunobiology 209:283-290.
    63. Fogli, M., D. Mavilio, E. Brunetta, S. Varchetta, K. Ata, G. Roby, C. Kovacs, D. Follmann, D. Pende, J. Ward, E. Barker, E. Marcenaro, A. Moretta, and A. S. Fauci.2008. Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals. PLoS pathogens 4:e1000101.
    64. Richard, J., S. Sindhu, T. N. Pham, J. P. Belzile, and E. A. Cohen.2010. HIV-1 Vpr up-regulates expression of Iigands for the activating NKG2D receptor and promotes NK cell-mediated killing. Blood 115:1354-1363.
    65. Ward, J., Z. Davis, J. DeHart, E. Zimmerman, A. Bosque, E. Brunetta, D. Mavilio, V. Planelles, and E. Barker.2009. HIV-1 Vpr triggers natural killer cell-mediated lysis of infected cells through activation of the ATR-mediated DNA damage response. PLoS pathogens 5:e1000613.
    66. Kunzmann, V, M. Smetak, B. Kimmel, K. Weigang-Koehler, M. Goebeler, J. Birkmann, J. Becker, I. G. Schmidt-Wolf, H. Einsele, and M. Wilhelm.2012. Tumor-promoting versus tumor-antagonizing roles of gammadelta T cells in cancer immunotherapy:results from a prospective phase Ⅰ/Ⅱ trial. J Immunother 35:205-213.
    67. Poccia, F., C. Gioia, F. Martini, A. Sacchi, P. Piacentini, M. Tempestilli, C. Agrati, A. Amendola, A. Abdeddaim, C. Vlassi, M. Malkovsky, and G. D'Offizi.2009. Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vgamma9Vdelta2 T cells. AIDS 23:555-565.
    68. Poonia, B., and C. D. Pauza.2012. Gamma delta T cells from HIV+donors can be expanded in vitro by zoledronate/interleukin-2 to become cytotoxic effectors for antibody-dependent cellular cytotoxicity. Cytotherapy 14:173-181.
    69. Tan, G., Y. Shi, and Z. H. Wu.2012. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochem Biophys Res Commun 417:546-551.
    70. Chen, J., X. Zhang, C. Lentz, M. Abi-Daoud, G. C. Pare, X. Yang, H. E. Feilotter, and V. A. Tron.2011. miR-193b Regulates Mcl-1 in Melanoma. Am J Pathol 179:2162-2168.
    71. Tzur, G., A. Levy, E. Meiri, O. Barad, Y. Spector, Z. Bentwich, L. Mizrahi, M. Katzenellenbogen, E. Ben-Shushan, B. E. Reubinoff, and E. Galun.2008. MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS One 3:e3726.
    72. Lal, A., Y. Pan, F. Navarro, D. M. Dykxhoorn, L. Moreau, E. Meire, Z. Bentwich, J. Lieberman, and D. Chowdhury.2009. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16:492-498.
    73. Brunner, S., D. Herndler-Brandstetter, C. R. Arnold, G. J. Wiegers, A. Villunger, M. Hackl, J. Grillari, M. Moreno-Villanueva, A. Burkle, and B. Grubeck-Loebenstein.2012. Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell.
    74. Buscaglia, L. E., and Y. Li.2011. Apoptosis and the target genes of microRNA-21. Chin J Cancer 30:371-380.
    75. Fellay, J., K. V. Shianna, D. Ge, S. Colombo, B. Ledergerber, M. Weale, K. Zhang, C. Gumbs, A. Castagna, A. Cossarizza, A. Cozzi-Lepri, A. De Luca, P. Easterbrook, P. Francioli, S. Mallal, J. Martinez-Picado, J. M. Miro, N. Obel, J. P. Smith, J. Wyniger, P. Descombes, S. E. Antonarakis, N. L. Letvin, A. J. McMichael, B. F. Haynes, A. Telenti, and D. B. Goldstein.2007. A whole-genome association study of major determinants for host control of HIV-1. Science 317:944-947.
    76. Kulkarni, S., R. Savan, Y. Qi, X. Gao, Y. Yuki, S. E. Bass, M. P. Martin, P. Hunt, S. G. Deeks, A. Telenti, F. Pereyra, D. Goldstein, S. Wolinsky, B. Walker, H. A. Young, and M. Carrington.2011. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472:495-498.
    1. Ascher, M. S., and H. W. Sheppard.1988. AIDS as immune system activation:a model for pathogenesis. Clin Exp Immunol 73:165-167.
    2. Grossman, Z., and R. B. Herberman.1997. T-cell homeostasis in HIV infection is neither failing nor blind:modified cell counts reflect an adaptive response of the host. Nat Med 3:486-490.
    3. Giorgi, J. V., R. H. Lyles, J. L. Matud, T. E. Yamashita, J. W. Mellors, L. E. Hultin, B. D. Jamieson, J. B. Margolick, C. R. Rinaldo, Jr., J. P. Phair, and R. Detels. 2002. Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. JAcquir Immune Defic Syndr 29:346-355.
    4. Deeks, S. G., C. M. Kitchen, L. Liu, H. Guo, R. Gascon, A. B. Narvaez, P. Hunt, J. N. Martin, J. O. Kahn, J. Levy, M. S. McGrath, and F. M. Hecht.2004. Immune activation set point during early HIV infection predicts subsequent CD4+T-cell changes independent of viral load. Blood 104:942-947.
    5. Giorgi, J. V., L. E. Hultin, J. A. McKeating, T. D. Johnson, B. Owens, L. P. Jacobson, R. Shih, J. Lewis, D. J. Wiley, J. P. Phair, S. M. Wolinsky, and R. Detels.1999. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179:859-870.
    6. Lipscomb, M. F., J. Hutt, J. Lovchik, T. Wu, and C. R. Lyons. The pathogenesis of acute pulmonary viral and bacterial infections:investigations in animal models. Annu Rev Pathol 5:223-252.
    7. Ensoli, B., S. Bellino, A. Tripiciano, O. Longo, V. Francavilla, S. Marcotullio, A. Cafaro, O. Picconi, G. Paniccia, A. Scoglio, A. Arancio, C. Ariola, M. J. Ruiz Alvarez, M. Campagna, D. Scaramuzzi, C. Iori, R. Esposito, C. Mussini, F. Ghinelli, L. Sighinolfi, G. Palamara, A. Latini, G. Angarano, N. Ladisa, F. Soscia, V. S. Mercurio, A. Lazzarin, G. Tambussi, R. Visintini, F. Mazzotta, M. Di Pietro, M. Galli, S. Rusconi, G. Carosi, C. Torti, G. Di Perri, S. Bonora, F. Ensoli, and E. Garaci. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One 5:e 13540.
    8. Silvestri, G., D. L. Sodora, R. A. Koup, M. Paiardini, S. P. O'Neil, H. M. McClure, S. I. Staprans, and M. B. Feinberg.2003. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18:441-452.
    9. Sumpter, B., R. Dunham, S. Gordon, J. Engram, M. Hennessy, A. Kinter, M. Paiardini, B. Cervasi, N. Klatt, H. McClure, J. M. Milush, S. Staprans, D. L Sodora, and G. Silvestri.2007. Correlates of preserved CD4(+) T cell homeostasis during natural, nonpathogenic simian immunodeficiency virus infection of sooty mangabeys:implications for AIDS pathogenesis. J Immunol 178:1680-1691.
    10. Silvestri, G., A. Fedanov, S. Germon, N. Kozyr, W. J. Kaiser, D. A. Garber, H. McClure, M. B. Feinberg, and S. I. Staprans.2005. Divergent host responses during primary simian immunodeficiency virus SIVsm infection of natural sooty mangabey and nonnatural rhesus macaque hosts. J Virol 79:4043-4054.
    11. Kawakami, K.., C. Scheidereit, and R. G. Roeder.1988. Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-kappa B) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci USA 85:4700-4704.
    12. Decrion, A. Z., I. Dichamp, A. Varin, and G. Herbein.2005. HIV and inflammation. Curr HIV Res 3:243-259.
    13. Stockmann, M., H. Schmitz, M. Fromm, W. Schmidt, G. Pauli, P. Scholz, E. O. Riecken, and J. D. Schulzke.2000. Mechanisms of epithelial barrier impairment in HIV infection. Ann N YAcad Sci 915:293-303.
    14. Paiardini, M., I. Frank, I. Pandrea, C. Apetrei, and G. Silvestri.2008. Mucosal immune dysfunction in AIDS pathogenesis. AIDS Rev 10:36-46.
    15. Hirsch, I., C. Caux, U. Hasan, N. Bendriss-Vermare, and D. Olive.2010. Impaired Toll-like receptor 7 and 9 signaling:from chronic viral infections to cancer. Trends Immunol 31:391-397.
    16. Juno, J. A., and K. R. Fowke.2010. Clarifying the role of G protein signaling in HIV infection:new approaches to an old question. AIDS Rev 12:164-176.
    17. Yim, H. C., J. C. Li, J. S. Lau, and A. S. Lau.2009. HIV-1 Tat dysregulation of lipopolysaccharide-induced cytokine responses:microbial interactions in HIV infection. AIDS 23:1473-1484.
    18. Ensoli, B., S. Bellino, A. Tripiciano, O. Longo, V. Francavilla, S. Marcotullio, A. Cafaro, O. Picconi, G. Paniccia, A. Scoglio, A. Arancio, C. Ariola, M. J. Ruiz Alvarez, M. Campagna, D. Scaramuzzi, C. Iori, R. Esposito, C. Mussini, F. Ghinelli, L. Sighinolfi, G. Palamara, A. Latini, G. Angarano, N. Ladisa, F. Soscia, V. S. Mercurio, A. Lazzarin, G. Tambussi, R. Visintini, F. Mazzotta, M. Di Pietro, M. Galli, S. Rusconi, G. Carosi, C. Torti, G. Di Perri, S. Bonora, F. Ensoli, and E. Garaci.2010. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One 5:e 13540.
    19. Schindler, M., J. Munch, O. Kutsch, H. Li, M. L. Santiago, F. Bibollet-Ruche, M. C. Muller-Trutwin, F. J. Novembre, M. Peeters, V. Courgnaud, E. Bailes, P. Roques, D. L. Sodora, G. Silvestri, P. M. Sharp, B. H. Hahn, and F. Kirchhoff. 2006. Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125:1055-1067.
    20. Schmokel, J., D. Sauter, M. Schindler, F. H. Leendertz, E. Bailes, M. C. Dazza, S. Saragosti, F. Bibollet-Ruche, M. Peeters, B. H. Hahn, and F. Kirchhoff.2011. The presence of a vpu gene and the lack of Nef-mediated downmodulation of T cell receptor-CD3 are not always linked in primate lentiviruses. J Virol 85:742-752.
    21. Brenchley, J. M., D. A. Price, T. W. Schacker, T. E. Asher, G. Silvestri, S. Rao, Z. Kazzaz, E. Bornstein, O. Lambotte, D. Altmann, B. R. Blazar, B. Rodriguez, L. Teixeira-Johnson, A. Landay, J. N. Martin, F. M. Hecht, L. J. Picker, M. M. Lederman, S. G. Deeks, and D. C. Douek.2006. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365-1371.
    22. Lane, H. C.2010. Pathogenesis of HIV infection:total CD4+T-cell pool, immune activation, and inflammation. Top HIV Med 18:2-6.
    23. Catalfamo, M., M. Di Mascio, Z. Hu, S. Srinivasula, V. Thaker, J. Adelsberger, A. Rupert, M. Baseler, Y. Tagaya, G. Roby, C. Rehm, D. Follmann, and H. C. Lane. 2008. HIV infection-associated immune activation occurs by two distinct pathways that differentially affect CD4 and CD8 T cells. Proc Natl Acad Sci US A 105:19851-19856.
    24. Lackner, A. A., M. Mohan, and R. S. Veazey.2009. The gastrointestinal tract and AIDS pathogenesis. Gastroenterology 136:1965-1978.
    25. Brenchley, J. M., M. Paiardini, K. S. Knox, A. I. Asher, B. Cervasi, T. E. Asher, P. Scheinberg, D. A. Price, C. A. Hage, L. M. Kholi, A. Khoruts, I. Frank, J. Else, T. Schacker, G. Silvestri, and D. C. Douek.2008. Differential Thl7 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112:2826-2835.
    26. Favre, D., S. Lederer, B. Kanwar, Z. M. Ma, S. Proll, Z. Kasakow, J. Mold, L. Swainson, J. D. Barbour, C. R. Baskin, R. Palermo, I. Pandrea, C. J. Miller, M. G. Katze, and J. M. McCune.2009. Critical loss of the balance between Thl7 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog 5:e 1000295.
    27. El Hed, A., A. Khaitan, L. Kozhaya, N. Manel, D. Daskalakis, W. Borkowsky, F. Valentine, D. R. Littman, and D. Unutmaz.2010. Susceptibility of human Thl7 cells to human immunodeficiency virus and their perturbation during infection. J Infect Dis 201:843-854.
    28. Macal, M., S. Sankaran, T. W. Chun, E. Reay, J. Flamm, T. J. Prindiville, and S. Dandekar.2008. Effective CD4+T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Thl7 cells and polyfunctional HIV-specific T-cell responses. Mucosal Immunol 1:475-488.
    29. Ivanov, II, B. S. McKenzie, L. Zhou, C. E. Tadokoro, A. Lepelley, J. J. Lafaille, D. J. Cua, and D. R. Littman.2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+T helper cells. Cell 126:1121-1133.
    30. Vanpouille, C., A. Lisco, and L. Margolis.2009. Acyclovir:a new use for an old drug. Curr Opin Infect Dis 22:583-587.
    31. Nagot, N., A. Ouedraogo, V. Foulongne, I. Konate, H. A. Weiss, L. Vergne, M. C. Defer, D. Djagbare, A. Sanon, J. B. Andonaba, P. Becquart, M. Segondy, R. Vallo, A. Sawadogo, P. Van de Perre, and P. Mayaud.2007. Reduction of HIV-1 RNA levels with therapy to suppress herpes simplex virus. N EnglJ Med 356:790-799.
    32. Doisne, J. M., A. Urrutia, C. Lacabaratz-Porret, C. Goujard, L. Meyer, M. L. Chaix, M. Sinet, and A. Venet.2004. CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection. J Immunol 173:2410-2418.
    33. Papagno, L., C. A. Spina, A. Marchant, M. Salio, N. Rufer, S. Little, T. Dong, G. Chesney, A. Waters, P. Easterbrook, P. R. Dunbar, D. Shepherd, V. Cerundolo, V. Emery, P. Griffiths, C. Conlon, A. J. McMichael, D. D. Richman, S. L. Rowland-Jones, and V. Appay.2004. Immune activation and CD8+T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2:E20.
    34. Engram, J. C., B. Cervasi, J. A. Borghans, N. R. Klatt, S. N. Gordon, A. Chahroudi, J. G. Else, R. S. Mittler, D. L. Sodora, R. J. de Boer, J. M. Brenchley, G. Silvestri, and M. Paiardini.2010. Lineage-specific T-cell reconstitution following in vivo CD4+ and CD8+ lymphocyte depletion in nonhuman primates. Blood 116:748-758.
    35. Iwashiro, M., R. J. Messer, K. E. Peterson, I. M. Stromnes, T. Sugie, and K. J. Hasenkrug.2001. Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc Natl Acad Sci USA 98:9226-9230.
    36. Maloy, K. J., and F. Powrie.2005. Fueling regulation:IL-2 keeps CD4+ Treg cells fit. Nat Immunol 6:1071-1072.
    37. Zandman-Goddard, G., and Y. Shoenfeld.2002. HIV and autoimmunity. Autoimmun Rev 1:329-337.
    38. Aandahl, E. M., J. Michaelsson, W. J. Moretto, F. M. Hecht, and D. F. Nixon. 2004. Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol 78:2454-2459.
    39. Baker, C. A., R. Clark, F. Ventura, N. G. Jones, D. Guzman, D. R. Bangsberg, and H. Cao.2007. Peripheral CD4 loss of regulatory T cells is associated with persistent viraemia in chronic HIV infection. Clin Exp Immunol 147:533-539.
    40. Kinter, A., J. McNally, L. Riggin, R. Jackson, G. Roby, and A. S. Fauci.2007. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc Natl Acad Sci USA 104:3390-3395.
    41. Noraz, N., J. Gozlan, J. Corbeil, T. Brunner, and S. A. Spector.1997. HIV-induced apoptosis of activated primary CD4+T lymphocytes is not mediated by Fas-Fas ligand. AIDS 11:1671-1680.
    42. Silvestri, G., and M. B. Feinberg.2003. Turnover of lymphocytes and conceptual paradigms in HIV infection. J Clin Invest 112:821-824.
    43. Appay, V, J. R. Almeida, D. Sauce, B. Autran, and L. Papagno.2007. Accelerated immune senescence and HIV-1 infection. Exp Gerontol 42:432-437.
    44. Cao, W., B. D. Jamieson, L. E. Hultin, P. M. Hultin, R. B. Effros, and R. Detels. 2009. Premature aging of T cells is associated with faster HIV-1 disease progression. J Acquir Immune Deflc Syndr 50:137-147.
    45. Chang, J. J., and M. Altfeld.2010. Innate immune activation in primary HIV-1 infection. J Infect Dis 202 Suppl 2:S297-301.
    46. Poccia, F., S. Boullier, H. Lecoeur, M. Cochet, Y. Poquet, V. Colizzi, J. J. Fournie, and M. L. Gougeon.1996. Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol 157:449-461.
    47. Martinez-Maza, O., E. Crabb, R. T. Mitsuyasu, J. L. Fahey, and J. V. Giorgi.1987. Infection with the human immunodeficiency virus (HIV) is associated with an in vivo increase in B lymphocyte activation and immaturity. J Immunol 138:3720-3724.
    48. Crowe, S. M., and R. S. Kornbluth.1994. Overview of HIV interactions with macrophages and dendritic cells:the other infection in AIDS. J Leukoc Biol 56:215-217.
    49. Haynes, B. F., L. P. Hale, K. J. Weinhold, D. D. Patel, H. X. Liao, P. B. Bressler, D. M. Jones, J. F. Demarest, K. Gebhard-Mitchell, A. T. Haase, and J. A. Bartlett. 1999. Analysis of the adult thymus in reconstitution of T lymphocytes in HIV-1 infection. J Clin Invest 103:453-460.
    50. Dion, M. L., J. F. Poulin, R. Bordi, M. Sylvestre, R. Corsini, N. Kettaf, A. Dalloul, M. R. Boulassel, P. Debre, J. P. Routy, Z. Grossman, R. P. Sekaly, and R. Cheynier.2004. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21:757-768.
    51. Estes, J. D., S. Wietgrefe, T. Schacker, P. Southern, G. Beilman, C. Reilly, J. M. Milush, J. D. Lifson, D. L. Sodora, J. V. Carlis, and A. T. Haase.2007. Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor beta 1-positive regulatory T cells and begins in early infection. J Infect Dis 195:551-561.
    52. Schacker, T. W., P. L. Nguyen, G. J. Beilman, S. Wolinsky, M. Larson, C. Reilly, and A. T. Haase.2002. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J Clin Invest 110:1133-1139.
    53. Fernandez, S., A. Lim, and M. French.2009. Immune activation and the pathogenesis of HIV disease:implications for therapy. J HIV Ther 14:52-56.
    54. Paiardini, M., B. Cervasi, R. Dunham, B. Sumpter, H. Radziewicz, and G. Silvestri.2004. Cell-cycle dysregulation in the immunopathogenesis of AIDS. Immunol Res 29:253-268.
    55. Dandekar, S., M. D. George, and A. J. Baumler.2010. Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS 5:173-178.
    56. Cecchinato, V., and G. Franchini.2010. Th17 cells in pathogenic simian immunodeficiency virus infection of macaques. Curr Opin HIV AIDS 5:141-145.
    57. Gulick, R. M., J. W. Mellors, D. Havlir, J. J. Eron, C. Gonzalez, D. McMahon, D. D. Richman, F. T. Valentine, L. Jonas, A. Meibohm, E. A. Emini, and J. A. Chodakewitz.1997. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 337:734-739.
    58. Este, J. A., and T. Cihlar.2010. Current status and challenges of antiretroviral research and therapy. Antiviral Res 85:25-33.
    59. Dahl, V., L. Josefsson, and S. Palmer.2010. HIV reservoirs, latency, and reactivation:prospects for eradication. Antiviral Res 85:286-294.
    60. Deeks, S. G., and A. N. Phillips.2009. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity.BMJ 338:a3172.
    61. Scherer, E., D. Douek, and A. McMichael.2008.25 years of HIV research on virology, virus restriction, immunopathogenesis, genes and vaccines. Clin Exp Immunol 154:6-14.
    62. Chomont, N., M. El-Far, P. Ancuta, L. Trautmann, F. A. Procopio, B. Yassine-Diab, G. Boucher, M. R. Boulassel, G. Ghattas, J. M. Brenchley, T. W. Schacker, B. J. Hill, D. C. Douek, J. P. Routy, E. K. Haddad, and R. P. Sekaly. 2009. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15:893-900.
    63. Mavigner, M., P. Delobel, M. Cazabat, M. Dubois, F. E. L'Faqihi-Olive, S. Raymond, C. Pasquier, B. Marchou, P. Massip, and J. Izopet.2009. HIV-1 residual viremia correlates with persistent T-cell activation in poor immunological responders to combination antiretroviral therapy. PLoS One 4:e7658.
    64. Chun, T. W., D. C. Nickle, J. S. Justement, J. H. Meyers, G. Roby, C. W. Hallahan, S. Kottilil, S. Moir, J. M. Mican, J. I. Mullins, D. J. Ward, J. A. Kovacs, P. J. Mannon, and A. S. Fauci.2008. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis 197:714-720.
    65. Mehandru, S., M. A. Poles, K. Tenner-Racz, P. Jean-Pierre, V. Manuelli, P. Lopez, A. Shet, A. Low, H. Mohri, D. Boden, P. Racz, and M. Markowitz.2006. Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection. PLoS Med 3:e484.
    66. Guadalupe, M., S. Sankaran, M. D. George, E. Reay, D. Verhoeven, B. L. Shacklett, J. Flamm, J. Wegelin, T. Prindiville, and S. Dandekar.2006. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J Virol 80:8236-8247.
    67. Paiardini, M.2010. Th17 cells in natural SIV hosts. Curr Opin HIV AIDS 5:166-172.
    68. Sheth, P. M., D. Chege, L. Y. Shin, S. Huibner, F. Y. Yue, M. Loutfy, R. Halpenny, D. Persad, C. Kovacs, T. W. Chun, G. Kandel, M. Ostrowski, and R. Kaul.2008. Immune reconstitution in the sigmoid colon after long-term HIV therapy. Mucosal Immunol 1:382-388.
    69. Schacker, T. W., C. Reilly, G. J. Beilman, J. Taylor, D. Skarda, D. Krason, M. Larson, and A. T. Haase.2005. Amount of lymphatic tissue fibrosis in HIV infection predicts magnitude of HAART-associated change in peripheral CD4 cell count. AIDS 19:2169-2171.
    70. Dinoso, J. B., S. Y. Kim, A. M. Wiegand, S. E. Palmer, S. J. Gange, L. Cranmer, A. O'Shea, M. Callender, A. Spivak, T. Brennan, M. F. Kearney, M. A. Proschan, J. M. Mican, C. A. Rehm, J. M. Coffin, J. W. Mellors, R. F. Siliciano, and F. Maldarelli.2009. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci U S A 106:9403-9408.
    71. Buzon, M. J., M. Massanella, J. M. Llibre, A. Esteve, V. Dahl, M. C. Puertas, J. M. Gatell, P. Domingo, R. Paredes, M. Sharkey, S. Palmer, M. Stevenson, B. Clotet, J. Blanco, and J. Martinez-Picado.2010. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16:460-465.
    72. Garcia, F., E. Fumero, and J. M. Gatell.2008. Immune modulators and treatment interruption. Curr Opin HIV AIDS 3:124-130.
    73. Grund, B., J. Neuhaus, and A. Phillips.2009. Relative risk of death in the SMART study. Lancet Infect Dis 9:724-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700