光子晶体和电磁超颖材料在太赫兹频段的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹(THz)频谱代表一个特别有趣的频段,它既不能很明确地归于微波段或光波段,又不能用目前已有的微波或者光波理论去直接研究。但其有着广泛的应用前景,因此THz产生、接收、与物质的作用及其传输等相关领域成为目前国际上的研究热点和难点。由于缺少低损耗、低吸收、低色散传输THz波的波导材料,现有的THz波系统都是基于自由空间传播理论,而太赫兹波在自由空间中的传输损耗又很大,因此,以波导为基础的太赫兹材料和器件就成了太赫兹传输的重要基础,也是太赫兹波能否广泛应用的关键。光子晶体和电磁超颖材料作为一种新型人工材料有望在THz功能器件的开发和研制中起到越来越大的作用,也成为THz系统的集成化和小型化的研究热点。本论文主要围绕光子晶体和电磁超颖材料在THz频段的应用基础而展开,论文的主要内容包括:
     1.THz光子晶体功率分配器:利用平面波展开法理论,通过改变二维正方形THz光子晶体的结构对其带隙进行优化,在此基础上设计不同结构的二维正方形THz光子晶体功率分配器,并利用时域有限差分法对进行分析比较,结果发现改进型T形功率分配器通带幅频特性的平坦度为84%和92%,优于普通型T形功率分配器的频带平坦度76%,另外改进型T形功率分配器的两输出端口间的隔离度也高于普通型。改进型Y形功率分配器-3dB带宽达0.224THz,峰值为1655.73,都优于普通型的0.216 THz和1577.25,使改进型的Y形功率分配器更为实用。在以上理论分析的基础上,我们利用现代光刻工艺制备了相应的二维THz光子晶体功率分配器。
     2. THz光子晶体上/下载滤波器:设计了不同结构的二维正方形THz光子晶体上/下载滤波器并利用时域有限差分法对其进行分析比较,研究结果表明,三个点缺陷组成的L形谐振腔结构的上/下载滤波器可以同时上/下载三个频率点,四个点缺陷组成的右T形上/下载滤波器的峰间频率间隔达0.342 THz,可以实现较大频率间隔的双频点上/下载滤波。在以上理论分析的基础上,我们利用现代光刻工艺制备了相应的二维THz光子晶体上/下载滤波器,并已取得部分测试结果。
     3. THz光子晶体窄带滤波器:设计了不同结构的二维正方形THz光子晶体窄带滤波器并利用时域有限差分法对其进行研究,发现垂直于输入输出波导的三缺陷窄带滤波器可以同时对两个频率进行幅度接近100%的滤波,而且其带外抑制特性优良,该结构可利用于双频点的高Q值窄带滤波。由五个单缺陷形成的左向长T形结构的窄带滤波器有五个透射峰,其独特的幅频特性也可以利用。
     4.THz电磁超颖材料功能器件方面。利用现代光刻技术工艺制备了一种圆形和两种分别在X和Y方向伸展的椭圆形裂环谐振器,并在太赫兹时域系统进行测试,比较了尺寸结构参数和耦合系数对幅频特性的影响。根据测试结果提出包含LC谐振、偶极子谐振和第三种谐振模式的改进型TL-RLC理论模型使模型与实验数据更为吻合。另外研究了谐振臂和谐振缝隙同时旋转时角度改变对LC谐振和偶极子谐振之间的频率间隔产生的影响,提出扩展LC谐振和偶极子谐振之间的频率间隔的新方法。旋转角度为0.02°到0.24°或者-0.02°到-0.24°时,频率间隔的绝对增加值为25.2GHz,相对增加值为2.62%。当旋转角度为0.2°时的S参数与未旋转时的S参数差别很小,而且在S曲线上可以看出没有引入其他的谐振峰。还以包含LC谐振、偶极子谐振和第三种谐振模式的改进型TL-RLC理论模型为出发点,研究了第三种谐振模式,并推出其谐振频率表达式。
The terahertz (THz) spectrum (0.1–10 THz, 1 THz =1012Hz) represents a particularly interesting region. Terahertz frequencies cannot clearly be attributed to be either on the "electronic" side or on the "optics" side. The THz frequency radiation has been proven to be a fertile region in the electromagnetic spectrum and a powerful tool in scientific research and many applications. THz waves has significant transmission loss in free space, so waveguide-based terahertz devices have become very important foundation for the THz transmission, also the key to the wider use. Although enormous efforts have focused on the search for terahertz materials or alternative novel techniques to enable the construction of device components, much work remains. Photonic crystals (PCs) and metamaterials as a novel artificial material would play a more and more important role in the development of THz functional device and contribute to THz systems integration and miniaturization. The main contents are summarized as follows:
     1. Based on plane wave expansion method, the band gaps of two-dimensional (2D) THz PCs with typical square structures are optimized by changing structural parameters. The electromagnetic field distribution of THz waves in 2D photonic crystals functional device had been simulated through the finite difference time domain method. The improved T-splitter has better amplitude-frequency characteristics in pass-band and better separation degree between the two output ports than the common T-splitter. The improved Y-splitter excels to the common Y-splitter in the amplitude and -3dB bandwidth. The 2D THz splitter PCs components had been fabricated by modern micro-fabrication processes.
     2. Introducing the photonic band gap structure with L-type defects composed of three defects, three high-Q resonant frequencies had been simultaneously dropped (or added). The rightward T-type structure filter can extend the interval between two dropping (or adding) frequencies to 0.342 THz. The upload (or download) PCs filter had been fabricated.
     3. The cavity with three defect, perpendicular to the three-defect input and output waveguide, can simultaneously select two frequencies about 100% amplitude, and can be used in the dual-points or dual-band high-Q narrow-band filter. The leftward T-shaped structure formed by five single-defects has five transmission peaks. The amplitude-frequency property can be used in high-Q narrow-band filter.
     4. Three geometries of split ring resonators,a circular geometry and two elliptical geometries, are fabricated by a series of micro-fabrication processes for terahertz metamaterials. The samples are measured by the transmission spectroscopy in terahertz time domain. These transmission spectra had been compared for the change effect of the structure parameters and coupling coefficient on the amplitude-frequency characteristics. An improved Transmission-line RLC circuit model is used to help us understand this coupling behavior and the extent of its effects. The gap and gap-bearings are simultaneously in-plane rotated for widening the metamaterials separation between the inductive-capacitive (LC) and dipole resonances. According to improved TL-RLC model, another kind of resonant modes is studied by simulation software, and derived its expression of resonant frequency.
引文
[1]张怀武.我国太赫兹基础研究.中国基础科学,2008,1:15-20
    [2] Hosako I., Sekine N., Patrashin M., et al. At the Dawn of a New Era in Terahertz Technology. Proceedings of the IEEE, 2007, 95 (8):1611-1623
    [3] A. Redo-Sanchez, X.-C. Zhang. Terahertz science and technology trends. Sel. Top. Quantum Electron. 2008, 14: 260–269
    [4]刘盛纲.太赫兹科学技术的新发展.中国基础科学, 2006, 1:7-12
    [5] HUANG Yi, LI Di, SHEN Yao-chun. Terahertz antennas. 2008 China-UK/Europe Workshop on Millimetre Waves and Terahertz Technologies. 2008:24-28
    [6]刘盛纲,钟任斌.太赫兹科学技术及其应用的新发展.电子科技大学学报,2009,38:481-486
    [7] Tadao Nagatsuma. Exploring Sub-Terahertz Waves for Future Wireless Communications. Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006. Joint 31st International Conference, 4-4
    [8] Matt Griffin, G?ran Pilbratt, Thijs de Grauw, et al. THz Astronomy with the Herschel Space Observatory. 2008 China-UK/Europe Workshop on Millimetre Waves and Terahertz Technologies, 2008:11-14
    [9] http://news.xinhuanet.com/world/2010-01/01/content_12738842.htm
    [10] R.Kohler, A.Tredicucci, F.Beltram, et al. Terahertz semiconductor-heterostructure laser, Nature, 2002, 417:156-159
    [11] Sushil Kumar, Benjamin S. Williams, Stephen Kohen, et al. Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature. Appl. Phys. Lett. 2004. 84: 2494-2496
    [12] J. C. Cao. Interband Impact Ionization and Nonlinear Absorption of Terahertz Radiation in Semiconductor Heterostructures. Phys. Rev. Lett. 2003, 91, 237401
    [13] M. Yu. Glyavin, A. G. Luchinin, G. Yu. Golubiatnikov. Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field. Phys. Rev. Lett. 2008, 100, 015101
    [14] Eric R. Mueller, Robert Henschke, William E. Robotham, et al. Terahertz local oscillator for the Microwave Limb Sounder on the Aura satellite. Applied Optics, 2007, 46:4907-4915
    [15] Justin T. Darrow, Xi-Cheng Zhang, David H. Auston, et al. Saturation properties of large-aperture photoconducting antennas. J. Quantum Electronics, 1992, 28:1607-1616
    [16] Jepsen P Uhd, Jacobsen R H, Keiding, S R. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B, 1996, 13:2424-243
    [17]刘欢.用于差频产生THz波的激光器及THz光子晶体带隙特性的研究:[博士学位论文].天津:天津大学,2007,10
    [18] X.-C. Zhang, Y. Jin, K. Yang, et al. Resonant nonlinear susceptibility near the GaAs band gap. Phys. Rev. Lett. 1992, 69:2303–2306
    [19] Shun Lien Chuang, Stefan Schmitt-Rink, Benjamin I. Greene, et al. Optical rectification at semiconductor surfaces. Phys. Rev. Lett. 1992, 68:102–105
    [20] T. L?ffler, F. Jacob, H. G. Roskos. Generation of terahertz pulses by photoionization of electrically biased air. Appl. Phys. Lett. 2000, 77:453-455
    [21]张存林,张岩,赵国忠,等.太赫兹感测与成像.北京:国防工业出版社,2008,16
    [22] T. Edwards, D. Walsh, M. Spurr, et al. Compact source of continuously and widely-tunable terahertz radiation. Optics Express, 2006, 14:1582-1589
    [23]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007,63-66
    [24]刘欢.用于差频产生THz波的激光器及THz光子晶体带隙特性的研究:[博士学位论文].天津:天津大学,2007,17
    [25] R. Mendis, D. Grischkowsky. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Optics Letters, 2001, 26:846-848
    [26] Kanglin Wang, Daniel M. Mittleman. Metal wire for terahertz wave guiding. Nature, 2004, 432: 376-379
    [27] Stefan A. Maier, Steve R. Andrews, L. Martín-Moreno, et al. Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires. Phys. Rev. Lett. 2006,97,176805
    [28] H. Han, H. Park, M. Cho, et al. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 2002, 80:2634-2636
    [29] Pobre R., Quema A., Estacio E. et al. Modal analysis of teflon photonic crystal fiber as a terahertz waveguide. Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005. IRMMW-THz 2005. The Joint 30th International Conference, 2005: 103-104
    [30] James Harrington, Roshan George, Pal Pedersen, et al. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Optics Express, 2004, 12:5263-5268
    [31] T. Hidaka, H. Minamide, H. Ito, et al. Ferroelectric PVDF cladding THz waveguides. Proc. of SPIE,2003,5135:70-77
    [32] R. Mendis, D. Grischkowsky Plastic ribbon THz waveguides. J. Appl. Phys., 2000, 88, 4449
    [33] S. P. Jamison, R. W. McGowan, D. Grischkowsky. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers. Appl. Phys. Lett., 2000, 76:1987-1989
    [34] Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58: 2059
    [35] John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58: 2486
    [36] J. Lee, M. Seo, D. Park, et al. Shape resonance omni-directional terahertz filters with near-unity transmittance. Optics Express, 2006, 14:1253-1259
    [37] Zhang, Yao, Li Zhangjian, Li Baojun. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves. Optics Express, 2006, 14:2679-2689
    [38] Li Zhangjian, Zhang Yao, Li Baojun. Terahertz photonic crystal switch in silicon based on self-imaging principle. Optics Express, 2006, 14:3887-389
    [39] Wilk R., Krumbholz N., Rutz F. et al. Dielectric Reflectors for Terahertz Frequencies, Journal of Nanoelectronics and Optoelectronics, 2007, 2: 77-82
    [40] T. D. Drysdale, R. J. Blaikie, D. R. S. Cumming. Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies. Appl. Phys. Lett., 2003, 83:5362-5364
    [41] M. D. Settle, R. J. P. Engelen, M. Salib, et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Optics Express, 2007, 15:219-226
    [42] L. Andrea Dunbar, Virginie Moreau, Rolando Ferrini, et al. Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. Optics Express, 2005, 13:8960-8968
    [43] H. Nˇemec, P. Ku?el, L. Duvillaret, et al. Highly tunable photonic crystal filter for the terahertz range. Optics Letters, 2005, 30:549-551
    [44] Adam Bingham, Yuguang Zhao, D. Grischkowsky. THz parallel plate photonic waveguides. Appl. Phys. Lett. 2005, 87, 051101
    [45] Attila Mekis, J. C. Chen, I. Kurland, et al. High Transmission through Sharp Bends in Photonic Crystal Waveguides. Phys. Rev. Lett., 1996, 77: 3787-3790
    [46] C. Lin, C. Chen, G. Schneider, et al. Wavelength scale terahertz two-dimensional photonic crystal waveguides. Opt. Express,2004,12:5723-5728
    [47] Jiusheng Li,Terahertz modulator using photonic crystals. Optics Communications, 2007,269: 98-101
    [48] H. Kurt, D. S. Citrin, Photonic crystals for biochemical sensing in the terahertz region. Appl. Phys. Lett., 2005, 87:041108-1-3
    [49] H. Kurt, D. S. Citrin, Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region. Appl. Phys. Lett., 2005, 87:241119-1-3
    [50] T. Hasek, H. Kurt, D. S. Citrin, et al. Photonic crystals for fluid sensing in the subterahertz range. Appl. Phys. Lett., 2006, 89:173508-1-3
    [51] Sergey Savel’ev, A. L. Rakhmanov, Franco Nori. Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals. Phys. Rev. Lett. 2005, 94: 157004
    [52] Gao Q., Yin Y., Yan D.-B, et al. Application of metamaterials to ultra-thin radar-absorbing material design. Electronics Letters, 2005, 41:3-4
    [53] N Fang, D Xi, J Xu, ultrasonic metamaterials with negative modulus. Nature Materials, 2006, 5: 452-456
    [54] M Kafesaki, Th Koschny, R S Penciu et al. Left-handed metamaterials: detailed numerical studies of the transmission properties. J. Opt. A: Pure Appl. Opt. 2005, 7: S12-S22
    [55] David R. Smith, David C. Vier. Design of metamaterial with negative refractive index. Proc. SPIE, 2004, 5359: 52-63
    [56] H. O. Moser, B. D. F. Casse, O. Wilhelmi, et al. Terahertz Response of a Microfabricated Rod–Split-Ring-Resonator Electromagnetic Metamaterial. Phys. Rev. Lett., 2005, 94: 063901
    [57] Viktor A. Podolskiy, Leonid V. Alekseyev, Evgenii E. Narimanov. Strongly anisotropic media: the THz perspectives of left-handed materials. Journal of Modern Optics, 2005, 52, 2343-2349
    [58] Ruth M. Woodward, Terahertz technology in homeland security and defense. Proc. SPIE, 2005, 5781, 22-31
    [59] John F. Federici, Dale Gary, Robert Barat, et al. THz standoff detection and imaging of explosives and weapons. Proc. SPIE 2005, 5781, 75-84
    [60] N Wongkasem, A Akyurtlu, J Li et al. Novel broadband terahertz negative refractive index metamaterials: analysis and experiment. Progress In Electromagnetics Research, 2006, 64: 205–218
    [61] M. Gokkavas, K. Guven1, I. Bulu, et al. Experimental demonstration of a left-handed metamaterial operating at 100 GHz. Phys. Rev. B 2006, 73, 193103
    [62] W. J. Padilla, M. T. Aronsson, C. Highstrete, et al. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B, 2007, 75, 041102(R)
    [63] Chen Hou-Tong, Padilla Willie J., Zide Joshua M. O., et al. Active terahertz metamaterial devices. Nature, 2006, 444, 597-600
    [64]舒柏宏,侯静,陆启生,等.砷化镓材料与激光相互作用的实验研究.红外与激光工程,1999,28:40-42
    [65] W. J. Padilla, A. J. Taylor, C. Highstrete, et al. Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies. Phys. Rev. Lett., 2006, 96: 107401
    [66] J.B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory & Tech., 1999, 47:2075-2084
    [67] H. J. Schneider, P. Dullenkopf. Slotted tube resonator: a new NMR probe head at high observing frequencies. [J] Rev. Sci. Instrum., 1977, 48: 68-73
    [68] W. N. Hardy, L. A. Whitehead. Split-ring resonator for use in magnetic resonance from 200-2000 MHz. [J] Rev. Sci. Instrum., 1981, 52: 213-216
    [69] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang. Terahertz Magnetic Response from Artificial Materials. Science, 2004, 303:1494-1496
    [70] Stefan Linden, Christian Enkrich, Martin Wegener, et al. Magnetic Response of Metamaterials at 100 Terahertz. Science, 2004, 306:1351-1353
    [71] SOUKOULIS Costas M., KOSCHNY Thomas, JIANGFENG ZHOU, et al. Magnetic response of split ring resonators at terahertz frequencies. Physica status solidi. B. Basic research, 2007, 244:1181-1187
    [72] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 2000, 84:4184-4187
    [73] N. I. Landy, S. Sajuyigbe, J. J. Mock2 et al. Perfect Metamaterial Absorber, Phys. Rev. Lett. 2008, 100:207402
    [74] Hu Tao, Nathan I. Landy, Christopher M. Bingham, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization, Optics Express, 2008, 16:7181-7188
    [75] Qi-Ye Wen, Huai-Wu Zhang, Yun-Song Xie, et al. Dual band terahertz metamaterial absorber Design, fabrication, and characterization. Appl. Phys. Lett., 2009. 95: 241111
    [76] Qi-Ye Wen, Huai-Wu Zhang, Yun-Song Xie, et al. Transmission line model and fields analysis of metamaterial absorber in the terahertz band, Optics Express, 17:20256-20265
    [77] P. H. Siegel, Terahertz Technology. IEEE Trans. Microwave Theory and Tech., 2002, 50:910-928
    [78] G. Gallot, S. P. Jamison, R. W. McGowan, et al. Terahertz waveguides. J. Opt. Soc. Am. B, 2000, 17:851-863
    [79]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007,20
    [80]张存林,张岩,赵国忠,等.太赫兹感测与成像.北京:国防工业出版社,2008,2-5
    [81]黄婉文,李宝军.太赫兹波导器件研究进展.激光与光电子学进展,2006,43:9-15
    [82]刘欢.用于差频产生THz波的激光器及THz光子晶体带隙特性的研究:[博士学位论文].天津:天津大学,2007,103
    [83] J.D. Joannopoulos, R.D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light (second edition). New York, Princeton University Press, 2007,1-5
    [84] A. L. Reynolds, H. M. H. Chong, I. G. Thayne, et al. Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures.IEEE Trans. Microwave Theory and Tech.,2001,49:1254-1261
    [85] PV Parimi, WT Lu, P Vodo, J Sokoloff, et al. Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals. Phys. Rev. Lett. 2004, 92, 127401
    [86] J. C. Knight, T. A. Birks, P. St. J. Russell, All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21:1547-1549
    [87] J.D. Joannopoulos, R.D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light (second edition). New York, Princeton University Press, 2007, 190-228
    [88] K. M. Ho, C. T. Chan, C.M.Soukoulis. Existence of a photonic gap in periodic structures. Phys.Rev.Lett.,1990,65:3152-3155
    [89] M. Plihal, A. A. Maradudin. Photonic band structure of two-dimensional systems: The triangular lattice, Phys. Rev. B 1991, 44: 8565–8571
    [90]黄昆原著,韩汝琦改编.固体物理学.北京:高等教育出版社,1988,6-11
    [91]黄昆原著,韩汝琦改编.固体物理学.北京:高等教育出版社,1988,16-18
    [92]黄昆原著,韩汝琦改编.固体物理学.北京:高等教育出版社,1988,154-157
    [93] J.D. Joannopoulos, R.D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light (second edition). New York, Princeton University Press, 2007, 25-43
    [94] C. T. Chan, Q. L. Yu, K. M. Ho. Order-N spectral method for electromagnetic waves, Phys. Rev. B, 1995, 51:16635–16642
    [95] Min Qiu, Sailing He. A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions. J. Appl. Phys. 2000, 87:8268-8275
    [96] K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat., 1996, AP-14:302-307
    [97] J.D. Joannopoulos, R.D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light (second edition). New York, Princeton University Press, 2007, 6-25
    [98] Yuguang Zhao, D. Grischkowsky. Terahertz demonstrations of effectively two dimensional photonic bandgap structures. Optics Letters, 2006, 31:1534-1536
    [99] Yuguang Zhao, D. Grischkowsky, 2D THz Metallic Photonic Crystals in Parallel Plate Waveguides. IEEE Trans. on Microwave Theory and Techniques, 2007, 55: 656-663
    [100] A. Bingham, D. Grischkowsky, THz 2-D high-Q photonic crystal waveguide cavities, Optics Letters, 2008, 33: 348-350
    [101] D. Grischkowsky, S?ren Keiding, Martin van Exter and Ch Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Am. B, 1990, 7: 2006-2015
    [102]刘欢.用于差频产生THz波的激光器及THz光子晶体带隙特性的研究:[博士学位论文].天津:天津大学,2007,112
    [103] J. C. Chen, K. Li. Quartic Perfectly Matched Layers for Dielectric Waveguides and Gratings. Microwave Opt. Technol. Lett. 1995, 10:319-323
    [104] Sheng LI, Huai-Wu ZHANG, Qi-Ye WEN, et al. Improved Amplitude- Frequency Characteristics for T-splitter Photonic Crystal Waveguides in Terahertz Regime. Applied Physics B:Lasers and Optics, 2009, 95:745–749
    [105] J.D. Joannopoulos, R.D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light (second edition). New York, Princeton University Press, 2007, 66-93
    [106] Sheng LI, Huai-Wu ZHANG, Qi-Ye WEN, et al. Improved Y-splitter Photonic Crystal Waveguides in Terahertz Regime, Applied Physics B:Lasers and Optics, 2010, DOI:10.1007/s00340-010-3928-7
    [107] ZHANG Hui, GUO Peng, CHANG Sheng-Jiang, et al. Magnetically Tunable Terahertz Switch and Band-Pass Filter. Chinese Physics Letters, 2008, 25 (11): 3898-3900
    [108] T.D.Drysdale, R.J.Blaikie, D.R.S.Cumming, Calculated and measuredtransmittance of a tunable metallic photonic crystal filter for terahertz frequencies. Appl.Phys.Lett., 2003, 83: 5362-5364
    [109] M.V Exter, C. Fattinger, D. Grischkowsky. Terahertz time-domain spectroscopy of water vapor, Opti. Lett.,1989, 14: 1128-1130
    [110] Robert E. Miles, Paul Harrison, D. Lippens. Terahertz sources and systems. Kliwer Academic Publishers. 2001, 261-269
    [111] Susumu Noda, Alongkarn Chutinan, Masahiro Imada. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 2000, 407: 608-610
    [112] A. Bingham, D. Grischkowsky, Terahertz 2D Photonic Crystal Waveguides, IEEE Microwave and Wireless Components Letters, 2008, 18: 428-430
    [113] Sheng LI, Huai-Wu ZHANG, Qi-Ye WEN, et al. Wavelength-drop properties of L-type defects in photonic bandgap structure for the terahertz regime. Opt. Quant. Electron. 2009, 41:159–168
    [114]温熙森.光子/声子晶体理论与技术.北京:科学出版社,2006,125-128
    [115] Attila Mekis, Shanhui Fan, J. D. Joannopoulos. Bound states in photonic crystal waveguides and waveguide bends. Phys. Rev. B, 1998, 58: 4809-4817
    [116] Fan, S., Villeneuve, P. R., Joannopoulos J. D. Channel drop tunneling through localized states. Phys. Rev. Lett. 1998, 80: 960-963
    [117] J.D. Joannopoulos, R.D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light (second edition). New York, Princeton University Press, 2007, 196-198
    [118] J.D. Joannopoulos, R.D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light (second edition). New York, Princeton University Press, 2007, 131-133
    [119] V. G. Veselago, The electrodynamics of substances with simultaneously negative values ofεandμ, Sov. Phys. Uspekhi, 1968, 10:509-514
    [120] D. Schurig, J. J. Mock, B. J. Justice, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 2006, 314:977-980
    [121] Jie Yao, Zhaowei Liu, Yongmin Liu, et al. Optical Negative Refraction in Bulk Metamaterials of Nanowires, Science, 2008, 321:930
    [122] Ivana Sersic, Martin Frimmer, Ewold Verhagen, et al. Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays. Phys. Rev. Lett., 2009, 103:213902
    [123] Abul K. Azad, Antoinette J. Taylor, Evgenya Smirnova, et al. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl. Phys. Lett. 2008, 92:011119
    [124] J. F. O’Hara, E. Smirnova, A. K. Azad, et al. Effects of microstructure variations on macroscopic terahertz metafilm properties. Active and Passive Elec. Comp. 2007, 2007:49691
    [125] Sheng LI, Huai-Wu ZHANG, Qi-Ye WEN, et al. Microfabrication and properties of the metamaterials for the terahertz regime. Infrared Physics & Technology, 2010, 53:61-64
    [126] Yuan Yu, Bingham Christopher, Tyler Talmage, et al. Dual-band planar electric metamaterial in the terahertz regime, Optics Express, 2008, 16:9746-9752
    [127] H.-T. Chen, J. F. O’Hara, A. J. Taylor, et al. Complementary planar terahertz metamaterials. Optics Express, 2007, 15:1084-1095
    [128] G. Dolling, C. Enkrich, M. Wagener, et al. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 2005, 30: 3198-3200
    [129] Ben A. Munk. Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, Inc. 2000: 1-26
    [130] W. J. Padilla. Group theoretical description of artificial electromagnetic metamaterials, Optics Express, 2007, 15:1639-1646
    [131] J.A. Kong, Electromagnetic Wave Theory, John Wiley & Sons, Inc. 1990: 81-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700