铝制品化学抛光新工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,对材料表面光洁度和平整度的要求越来越高,这对表面光整技术提出了新的挑战,同时也为该技术的发展和应用提供了机遇。化学抛光技术已在金属精加工、金属样品制备、控制金属表面质量与提高金属表面光洁度等方面获得了极其广泛的应用。
     化学抛光是铝及铝合金表面处理中的一个重要工序,通过化学抛光可以获得光洁度高、平整性好的表面,使铝及铝合金的光反射能力、耐腐蚀性能以及热反射能力得到加强,同时该金属制品的装饰效果得到了提高。传统的化学抛光是将铝制品在三酸(磷酸-硫酸-硝酸)溶液中浸蚀,从而得到增亮整平的效果。但在该化学抛光过程中会产生大量的氮氧化合物(NOx),像“黄烟”一样的NOx气体严重破坏环境、危害人们的身体健康,由于该方法存在严重大气污染而日益受到关注。
     目前国内外报道的无氮氧化物酸性化学抛光工艺(俗成无黄烟化学抛光工艺)和碱性化学抛光工艺还存在抛光亮度低或存在点腐蚀等主要缺陷,只能用于对抛光质量要求不高的一些场合,致使大气污染问题依然存在。
     在广泛查阅文献和分析调研的基础上,论文从化学抛光基础液的选择、抛光液中添加成分的选择、抛光液中添加成分含量的优化、抛光工艺条件的优化等方面进行了试验,同时建立了表征金属表面光洁度的方法,具体工作主要体现在以下几个方面:
     1.化学抛光基础液的选择:对以氢氧化钠和硝酸钠为基液的碱性化学抛光液和以磷酸-硫酸为基液的酸性化学抛光液的抛光效果进行了比较,确定开发以磷酸-硫酸为基液的环保型化学抛光液,由于该化学抛光液中不含硝酸,实现了氮氧化物的零排放,不存在环境污染。
     2.抛光液中添加成分的选择:三酸化学抛光液中含有硝酸,硝酸在铝化学抛光中的主要作用是抑制点腐蚀,提高抛光亮度。通过考察在磷酸-硫酸基液中的化学抛光效果,我们认为在磷酸-硫酸中添加的特殊物质应能够抑制点腐蚀、减缓全面腐蚀,同时必须具有较好的整平和光亮效果。研究发现,某些氧化剂、大分子有机化合物、表面活性剂和某些金属盐类化合物的加入有利于提高化学抛光效果。论文采用正交设计的方法对这些化合物及其协同作用进行试验,经过对正交试验结果的分析,选定了改善抛光效果的复合添加剂成分及用量,并对抛光工艺条件进行了进一步的优化,建立了铝制品化学抛光的新工艺。该工艺不但实现了氮氧化物的零排放,还能有效减缓物件失重、抑制点腐蚀,同时具有较好的整平和光亮效果。
     3.金属表面光洁度表征方法的建立:抛光质量的好坏主要通过考察表面的反射率和工件的失重率,目前,对金属表面光洁度的表征主要有测定金属表面粗糙度和反射率以及采用扫描电镜对金属表面进行观察等方法。金属表面粗糙度的测定对金属尺寸有一定的要求,当尺寸较小时会造成测量结果不准确,扫描电镜仪器较贵,不易于普遍推广应用,故本文采用傅立叶变换红外反射光谱技术对化学抛光后铝制品表面光洁度测定方法进行了研究。建立了应用傅里叶变换红外反射光谱表征金属表面光洁度的新方法。
     综上所述,本论文开发了一种环保型铝制品化学抛光新工艺,该工艺实现了氮氧化物的零排放且克服以往类似技术存在的质量缺陷。该工艺的关键是在磷酸-硫酸基液中添加一些具有特殊作用的化合物来代替硝酸。抛光亮度达到甚至超过传统三酸化学抛光,是一种很有发展前途的环保型化学抛光工艺。同时,建立了利用红外反射光谱法表征金属表面光洁度的方法。
As the development of material technologies, most attentions are attracted to material surface smoothness and brightness. This brings up a big challenge for smooth-technology, and it also creates an opportunity for the development and application of this technology. Nowadays chemical polishing technology has been widely used in metal fine machining, metal sample preparation, metal surface quality control and surface smoothness improvement.
     Chemical polishing is an important procedure in surface treatment of aluminum and aluminum alloy. Advantaged surface will be obtained after the process, which is quite important and helpful to improve light reflection, anti-erosion property and caloric refection, also it helps to improve the decoration effect of the metal parts. Traditional chemical polishing technology dipped the aluminum parts in acid solution with phosphoric acid, sulfuric acid and nitric acid to achieve bright and smooth surface. But large amount of nitrogen oxidation (NOx) will be produced during the polishing process, and the yellow fume of nitrogen oxidation is noxious to environment and human being health. Due to this advantaged technology development was desired to replace the traditional method.
     Currently, some chemical polishing methods without yellow fume and alkali chemical polishing process are reported, but these processes has some serious defects on polishing brightness as well as the pitting erosion problem. So these methods can only be used in some situations which didn't have high requirement on surface polishing quality, and the environment pollution problem is still a concern.
     Based on the collection and study of related literatures, a series of tests and experiments were conducted in this paper, which referring to the basic polishing liquid and additive selection, additive amount optimization and polishing process optimization. Also measurement method of metal surface smoothness was established, which will be explained in details as follow:
     1. Polishing liquid selection:comparison was made between alkali solutions which containing sodium hydroxide as well as sodium nitrate and acid solution which containing phosphoric acid-sulfuric acid. This paper used the second one for research since it's a green chemical polishing liquid and also there's no nitric acid inside and hence nitrogen oxidation and environment pollution are avoided.
     2. Polishing liquid additive selection:traditional triple-acid chemical polishing liquid includes nitric acid which plays an important role in pitting erosion restriction and polishing brightness improvement. According to the comparison and study of polishing liquid ingredients, polishing condition and their effect to polished surface, the special material is thought to be able to inhibit corrosion and decrease comprehensive corrosion which is added to the solution of phosphoric acid and sulfuric acid. At the same time, it must have a better effect in leveling and brightness of the surface. It had been found that some oxidant, macromolecular organic compounds, surfactant and metal salts have advantage to improve the polishing results. Orthogonal concept was used during the experiments, based on the results analysis composite additives and content are selected, Some conditions such as polish temperature and time are optimized, a novel chemical polishing process for aluminum was developed. This new process achieved zero production of nitrogen oxidation; it effectively reduced weight loss and pitting corrosion, and also achieved better smoothness and brightness.
     3. Surface brightness testing method:The quality of polishing surface are inspected mainly through reflectivity of the metal surface and metal weight loss rate. At present, metal surface smoothness characterization mainly includes the determination of the metal surface roughness and reflectivity, as well as the use of scanning electron microscopy to observe the metal surface. Determination of metal surface roughness has a certain size requirement, if the size is small, it will result in inaccurate measurements, and also the instrument of scanning electron microscopy is too expensive to be used universally. So in this paper, Fourier Transform Infrared Reflectance Spectroscopy was adopted to study the approach of determination of aluminum products surface polishing finish. Finally a new method which applies Fourier Transform Infrared Reflectance Spectroscopy to characterize metal surface smooth finish was set up.
     To sum up, a new green chemical polishing process for aluminum products was developed in this paper. It can solve the problem of nitrogen oxidation and some other defaults of traditional method. Special additives were added in acid polishing solution to replace nitric acid. The brightness of polishing metal by use of the new polishing process is better than the traditional polishing method. It can be widely developed and applied in green chemical polishing process. Also, the testing method based on FT-Infrared is developed to demonstrate metal surface smoothness. So it can not solve the pollution problem.
引文
[1]陈祖秋.国内铝制品无铬酸电化学抛光工艺开发现状[J].材料保护,2001,34(3):23-24.
    [2]焦树强,周海晖,陈金华,旷亚非.铝及铝合金的表面抛光[J].电镀与涂饰,2001,20(6):32-35.
    [3]陈祖秋.我国铝制品化学抛光工艺开发现状[J].表面技术,1999,28(6):1.
    [4]张浩,屠炳林,王灿,刘传烨,沈文莹,朱莉.铝及铝合金化学抛光工艺的比较[J].材料保护,2003,36(4):20-23.
    [5]庞洪涛.铝及铝合金环保型化学抛光研究(D).武汉:武汉材料保护研究所,2002.
    [6]王学武.金属表面处理技术[M].北京:机械工业出版社,2008.
    [7]陈祖秋.国内铝制品无黄烟化学抛光工艺的研究现状[J].材料保护,1999,32(4):9-10.
    [8]朱祖芳.铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社,2004.
    [9]韩蜀生.浅谈铝及其合金的化学抛光[J].材料保护,1992,26(3):41-42.
    [10]张浩,屠炳林,王灿,刘传烨,沈文莹,朱莉.铝及铝合金化学抛光工艺的比较[J].材料保护,2003,36(4):20-23.
    [11]Hong-Shi Kuo, Wen-Ta Tsai. Effect of alumina and hydrogen peroxide on the chemical-mechanical polishing of aluminum in phosphoric acid base slurry[J].Materials Chemistry and Physics,2001,69:53-61.
    [12]陈江汉,熊新国.铝材无硝烟化学抛光工艺简介[J].材料保护,1997,30(9):37.
    [13]Jing Li Fang, Nai Jun Wu. Determination of the composition of viscous liquid film on electropolishing copper surface by XPS and AES[J]. J. Electrochem. Soc., 1989,136(12),3800-3803
    [14]M.Matlosg, D.Landolt.Shape Changes in Electrochemical Polishing:Themperature on the Anodic Leveling of Fe-24Cr[J].J. Electrochem. Soc,1989,136(4):919-929.
    [15]王祝堂.铝材及其表面处理手册[M].南京:江苏科学技术出版社,1992.
    [16]马跃洲,王泽荫,梁卫东.铝焊丝化学抛光生产线关键技术及设备研究[J].兰州理工大学学报,2005,31(4):1-5.
    [17]李国英.表面处理工程手册[M].北京:机械工业出版社,1997.
    [18]刘东光.H2SO4-H3PO4为基液的模具钢化学抛光工艺研究(D).武汉:武汉理工大 学,2008.
    [19]陈鸿海.金属腐蚀学[M].北京:北京理工大学出版社,1996.
    [20]鲍剑辉,徐国钢,刘保正,徐嘉敏.铝型材三酸化学抛光技术研究[J].世界有色金属,1998,(11):44-46.
    [21]暨调和.建筑铝型材的阳极氧化和电解着色[M].长沙:湖南科学技术出版社
    [22]张秀广.抑制氮氧化物产生的铜件酸洗工艺[J].电镀与环保,1988,8(3):17.
    [23]何小荣,周锦.高浓度氮氧化物的测定方法[J].石油化工应用,2009,28(1):90-92.
    [24]王新方.铝及铝合金的低硝酸光亮浸蚀的研究[J].电镀与环保.1988,8(2)15.
    [25]刘如利.活性炭净化NOX废物讨论与研究[J].电镀与环保,1988,8(3):19.
    [26]赵改明,葛宁贤.活性炭治理NOX气体的工艺与设计[J].电镀与环保,1986,6(6):24-26.
    [27]陈毅侯.活性炭吸附净化氮氧化物废气[J].电镀与环保,1992,12(3):25.
    [28]赵建荣.湿法吸收处理氮氧化物废气[J].江苏环境科技,1999,12(4):9-11.
    [29]周国斌,李国有.能降低NO2烟害的铝材二步化学抛光法[P].CN 1821447A.2006,8,23.
    [30]暨调和.建筑铝型材的阳极氧化和电解着色[M].长沙:湖南科学技术出版社,1994.
    [31]吴水清.金属化学抛光液的进展[J].电镀与涂饰,1991,10(1):57
    [32]刘昌平.金属表面处理中NOX气体的防止方法[J].电镀与精饰,1985,7(4):39
    [33]Sakae Tajima. New Nontoxic Chemical Polishing Baths for Aluminum[J] Plating and Surface Finishing,1985,72(6):64-67
    [34]波庇洛夫著,熊大章、王子馨译.金属电抛光工艺学[M].北京:机械工业出版社,1957.
    [35]庞洪涛,李鑫庆,王菊荣.铝及铝合金高亮度无黄烟化学抛光工艺[J].材料保护,2002,35(11):
    [36]钟建华,张聚国.铝材无黄烟化学抛光剂的研制[J].材料保护,2006,39(4):1-5.
    [37]于维平,何叶东,蒲焕希.铝及铝合金碱性化学抛光溶液[P].CN 1031574A,1989,3,8.
    [38]郭忠诚.铝和铝合金的碱性抛光及着色工艺研究[J].电镀与涂饰,1994,13(3):34
    [39]刘东光.H2SO4-H3PO4为基液的模具钢化学抛光工艺研究(D).武汉:武汉理工大学,2008.
    [40]高景曦,蒋先觉等.铝装饰型材碱性化学抛光法探讨[J].河南化工,1994,(9):16-18.
    [41]方景礼.金属的化学抛光技术系列讲座[J].电镀与涂饰,2005,24(9):12-15.
    [42]刘平波.铝件碱性化学抛光工艺[J].Electroplating & Finishing.1991,10(1):40-41.
    [43]周荣明,严惠根.铝和铝合金碱性化学抛光液及工艺的研究[J].上海大学学报(自然科学版),2000,6(4):371-374.
    [44]王加宽.铝及铝合金碱性化学抛光[J].电镀与精饰,1989,11(1):33-34.
    [45]陈祖秋.国内铝制品无铬酸电化学抛光工艺开发现状[J].材料保护,2001,34(3):23-24.
    [46]谭卫红.环保型锻铝化学抛光工艺[J].涂装与电镀,2007,(6):41-43.
    [47]刘承霖,刘玉玲,贾英钳,张伟.InSb抛光片表面粗糙度分析[J].微纳电子技术,2006.(12):352-354.
    [48]庞洪涛,李鑫庆,王菊荣.铝及铝合金无黄烟化学抛光工艺[J].材料保护,2002.35(11):
    [49]李皓然,袁洪福.多重衰减全反射红外光谱测定加氢渣油四组分方法的建立[J].研究报告,2004,(6):14-17.
    [50]于昊.散射法表面粗糙度测量的数学模型分析[J].长春理工大学学报,2006,29(1):109-112.
    [51]安福生.金属表面光学反射特性的研究[J].计量学报,1988,9(1):51-54.
    [52]胡凤兰,董丽君,高为国.利用激光散射原理测量零件的表面粗糙度[J].湖南工程学院学报,2206,16(4):39-41.
    [53]Dan Sheffer, Uri P. Oppenheim, and Adam D. Devir. Absolute reflectometer for the mid infrared region[J]. APPLIED OPTICS,1990,29(1):129-132.
    [54]R.Sautebin,H.Froidevauv,D.Landolt.Theortical and Experimental Modeling of Surface Leveling in ECM under Primary Current Didtribution Conditions[J].J.Electrochem, Soc, 1989,127(5);1096-1100.
    [55]吴水清.金属化学抛光液进展[J].电镀与涂饰,1991,10(1):57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700