纳米氧化铝/有机改性硅氧烷复合溶胶在羊毛防毡缩整理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米Al_2O_3是一种高新无机材料,不仅具有一般纳米材料的特点如表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,还具有高硬度、高强度、耐热、耐腐蚀等许多优异性能,被广泛应用于陶瓷材料、复合材料和医学材料、弥散强化材料、表面保护涂层、电子组件、光学材料、半导体材料、催化剂及其载体。但由于纳米Al_2O_3颗粒粒径小,具有极高的比表面积,表面能高,在制备和使用过程中极易发生粒子凝并和团聚。
     为了解决纳米Al_2O_3的团聚问题,可以从两个方面进行:一种是在纳米颗粒制备过程中,控制工艺以防止团聚,可采用溶胶一凝胶法,即由小至大法;另一种是对制备好的纳米粉体进行分散处理、表面改性,也称由大至小法。对纳米粉体进行分散处理可以通过物理分散和化学分散,其中物理分散常用的方法有机械法和超声分散法,化学分散是在悬浮体中加入一种或多种适宜的分散剂如表面活性剂、小分子无机电解质或无机聚合物、聚合物等。对纳米粉体进行表面改性,按改性剂种类可分为有机改性和无机改性,有机改性中又分为醇酯化、酸酯化和偶联剂改性,无机改性可采用无机酸改性和无机盐改性。
     本文将纳米Al_2O_3与GPTMS溶胶混合制备复合溶胶来提高溶胶-凝胶膜赋予羊毛织物的防毡缩性能。将纳米Al_2O_3与GPTMS溶胶混合,所形成的复合网状物具有聚合物的特性,如高柔韧性及像陶瓷材料一样的硬度,同时由于纳米的比表面非常大,能促进复合溶胶在较低焙烘温度即可形成三维网状结构,而且将纳米氧化铝加入GPTMS溶胶能提高溶胶.凝胶膜的附着性,不仅能提高整理后羊毛织物的防毡缩性能,还能提高膜的耐洗性能。此外,在GPTMS溶胶中添加纳米Al_2O_3能够赋予复合溶胶-凝胶膜特殊的性能如亲疏水性、抗静电性等。
     本文采用三种方法制备纳米Al_2O_3,分别是分散剂分散法、无机酸改性法和溶胶一凝胶法。分散剂分散法结合超声波和表面活性剂共同制备出较为稳定的纳米Al_2O_3的分散液,通过筛选各种表面活性剂,讨论分散剂用量、超声波处理功率和时间,并用粒径大小和分布来确定最佳分散工艺。无机酸改性法采用正交法设计实验,本文选取了三个影响因子:无机酸用量、反应温度和反应时间,将改性后的纳米颗粒配成分散液,并测定其粒径大小和分布确定出最佳的改性工艺。溶胶-凝胶法讨论了盐酸的用量、水的用量、乙醇的用量、络合剂的种类及用量、水解温度对溶胶粒径的影响,确定了最佳合成处方。
     将以上三种方法制备的纳米Al_2O_3与GPTMS溶胶混合形成复合溶胶,通过浸轧-烘干-焙烘工艺整理到羊毛织物上,实验结果表明:在GPTMS溶胶整理(AST-0)、分散剂分散的纳米Al_2O_3/GPTMS复合溶胶整理(AST-1)、无机酸改性纳米Al_2O_3分散液/GPTMS复合溶胶整理(AST-2)、Al_2O3溶胶/GPTMS复合溶胶整理(AST-3)四种整理工艺中,AST-1、AST-2和AST-3均获得比AST-0更好的防毡缩效果,其中AST-2对羊毛的表面覆盖效果最充分、外观平整度最佳、整理后的羊毛织物具有亲水性,且防毡缩效果最佳,测得的羊毛织物的面积毡缩率达到国际羊毛局机可洗标准(TM31)(面积毡缩率=6%)。经四种溶胶整理后的羊毛织物的断裂强力比原布降低不多,甚至有所升高,断裂延伸度均有所降低;表面静电压值变化不大,但半衰期值降低明显,说明表面具有一定的抗静电性,尤其是添加了纳米Al_2O_3的复合溶胶;经溶胶整理后的织物均比原布手感发硬。
Nano Al_2O_3 is a kind of new inorganic material, it has not only properties like surface effect, small size effect, quantum size effect and macroscopic quantum tunneling effect, but also has some special performances like high hardness, high strength, heat resistance and corrosion resistance. So it is widely used in ceramic materials, compound materials, medical materials, dispersion-strengthened materials, surface protective coatings, electronic assemblies, optical materials, semiconductor materials, catalysts and their carriers. Due to its small particle size, nano Al_2O_3 is of high specific surface area and surface energy, it is easily conglomerated during the preparing and applying processes.
     Two methods can be adopted to resolve the conglomeration of nano Al_2O_3, one is bottom-up which is controlling preparation factors to avoid conglomeration, in this paper sol-gel method is introduced; the other one is bottom-down which is dispersing or surface-modifying prepared nano powder. Dispersing treatment can be divided into physical and chemical dispersion, physical dispersion includes mechanical dispersion and ultrasonic dispersion, chemical dispersion is a kind of method which is adding into the suspension with one or multi dispersants, like surfactant, small molecular inorganic electrolyte, inorganic polymer, or polymer, etc. There are organic and inorganic modifications in the surface-modifying treatment. Organic modification includes esterification reaction of alcohols, esterification reaction of acids and coupling agent modification. Inorganic modification can be applied with inorganic acid and inorganic salt.
     Nano alumina/organically modified siloxane (GPTMS) hybrid sol solution was prepared in this paper to apply in the anti-shrinkage treatment of wool fabrics. The mixture of nano Al_2O_3 and GPTMS sol solution will form a complex network which will possess similar characteristics of polymer, such as high flexibility and ceramic-like hardness. Because of the large surface area of nano particles, the hybrid sol solution will be able to form a three-dimensional network under low curing temperature. With the addition of nano Al_2O_3, the adhesive property of the sol-gel film formed by hybrid sol solution can be improved, then not only the anti-shrinkage property of the treated wool fabric can be enhanced, but also the washing resistance. Moreover, the hybrid sol solution will impart hydrophilic property, hydrophobic property, anti-static property, etc.
     There are three methods of preparing nano Al_2O_3 in this paper, they are dispersing method with dispersant, modifying method with inorganic acid and sol-gel method. Dispersing method combined ultrasonic technology and tenside to prepare stable nano Al_2O_3 dispersion. Several different tensides, the dosage of dispersant, ultrasonic power and ultrasonic time were discussed through the testing of nano size and particle distribution in the dispersing method, and finally an optimized dispersing process was determined. Modifying method adopted orthogonal design, and there were three influencing factors which are the dosage of inorganic acid, reacting temperature and time in the design. The acid-modified nano particle was prepared into dispersion whose nano size and distribution were measured to obtain an optimized modifying process. In sol-gel method, hydrolyzing temperature and the dosage of hydrochloric acid, water, ethanol and complexing agent were discussed through the testing of nano size and distribution to obtain optimized recipe.
     Mixing nano Al_2O_3 prepared by three different methods and GPTMS sol solution to form hybrid sol solution, then treated on wool fabrics with pad-dry-cure process, the results showed: during the four treatments of wool fabrics with AST-0 (GPTMS sol), AST-1(dispersing method prepared nano Al_2O_3 + GPTMS sol), AST-2(modifying method prepared nano Al_2O_3 + GPTMS sol) and AST-3(sol-gel method prepared nano Al_2O_3 + GPTMS sol), the latter three hybrid sol solutions, which are AST-1, AST-2 and AST-3, obtained better anti-shrinkage effect than AST-0. AST-2 treated wool fabric exhibited hydrophilic property, the best covering effect and appearance smoothness, and the most important was the best anti-shrinkage effect, the area shrinkage rate is less than 6% which reached the standard of International Wool Secretariat (TM 31). There was not much decrease of breaking strength of treated wool fabrics, but the breaking elongation of treated wool fabrics descended much comparing with untreated wool fabric. There was not much transformation of static voltage on the surface of treated wool fabrics, but the half life value of treated wool fabric decreased obviously, especially the ones treated by hybrid sol solutions. The handle of treated wool fabrics was harder than untreated one.
引文
1 贾维妮.纳米技术在纺织业的应用及展望.新纺织,2002(12):19-20
    2 赵小玲,郭人民.纳米氧化铝的制备及改性工艺研究.[学位论文].西北大学,2003
    3 耿新玲,袁伟.纳米氧化铝的制备与应用进展.河北化工,2003(3):1-4
    4 李慧韫,张天胜,杨南.纳米氧化铝的制备方法及应用.天津轻工业学院学报,2003,18(4):34-37
    5 高霞,童海英,李金霞.纳米氧化铝.化学教学,2006(2):26-28
    6 高濂,靳喜海,郑珊,等.纳米复相陶瓷.北京:化学工业出版社,2004:4-6
    7 阎子峰.纳米催化技术.北京:化学工业出版社,2003:10-11
    8 张玉龙,李长德,张银生,等.纳米技术与纳米塑料.北京:中国轻工业出版社,2003:8-9
    9 罗振扬,沈吉静,赵石林.纳米氧化铝对水性聚氨酯硬度和耐磨性能的影响.化学建材,2005,21(4):14-16
    10 张永刚,闫裴.纳米氧化铝的制备及应用.无机盐工业,2001,33(3):19-22
    11 唐海红,焦淑红,杨红菊,等.纳米氧化铝的制备及应用.中国粉体技术,2002,8(6):37-39
    12 王玄玉,潘功配,何艳兰.几种纳米氧化铝的红外消光性能研究.含能材料,2005,13(5):312-314
    13 陈广文,殷景华,薛占林,等.溶胶-凝胶法制备的Al_2O_3感湿膜及其性质.材料研究学报.1995,9(3):255-258
    14 韩丽华,金建新,宰学荣,等.纳米SnO_2粉体团聚的控制.材料开发与应用,2005,20(6):30-33
    15 崔红梅,刘宏,王继扬,等.纳米粉体的团聚与分散.机械工程材料,2004,28(8):38-41
    16 Pam Pach R, Haberkc K. Ceramic powder, Amsterdam. Elsevier Scientific Pub, Company, 1983:623
    17 郝顺利,王新,崔银芳,等.纳米粉体制备过程中粒子的团聚及控制方法研究.人工晶体学报,2006,35(2):342-346
    18 李凤生.超细粉体技术.北京:国防工业出版社,2000:277-288
    19 周学永,李彩文,王玲香.纳米粉体的团聚特性和提高分散性的措施.硫磷设计与粉体工程,2006(1):17-20
    20 张世伟,杨乃恒.纳米粒子在气体流动中的团聚过程研究.真空科学与技术,2001,21(3):87
    21 A. Singhal, G. Skandan, etal. On nanoparticle aggregation during vapor phase synthesis. Nano Structured Materials, 1999, 11(4):545-552
    22 C. R. Cammarata. Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering, 1999, A237:180-184
    23 Maskra AIok, Smith M. Douglas. Agglomeration during the drying of fine silica powders, Part Ⅱ : The role of particle solubility. J Am Ceram Soc, 1997, 80:1715-1722
    24 W. Scherer George. Drying Gels L General Theory. J Noncryst, Solids, 1986, 87:199-225
    25 朱燕萍,徐连来,李长福.纳米颗粒团聚问题的研究进展.天津医科大学学报,2005,11(2):338-341
    26 Kim JU. O'Shaughnessy B. Morphology selection of nanoparticle dispersions by polymer media. Phys Rev Lett, 2002, 89(23):238-301
    27 Qu NS, Chan KC, Zhu BD. Pulse co-electrodeposition of nano Al_2O_3 whiskers nickel composite coating. Scripta Materialia, 2004, 50:1131-1134
    28 朱海清.超声波对沉淀二氧化硅的分散解聚研究.无机盐工业,2002,34(1):12-13
    29 Chow PY, Gan LM. Microemulsion processing of silica-polymer nanocomposites. Nanosci Nanotechnol, 2004, 4(1-2):197
    30 孙秀果,张建民.分散剂对纳米TiO_2粉体分散性的影响.支撑技术,2006,31(5):362-366
    31 顾峰,沈悦,徐超,等.分散剂聚合度对纳米氧化铝粉体特性的影响.功能材料,2005,36(2):318-320
    32 吴腊英.纳米二氧化钛粒子分散性能的研究.中国稀土学报,2003,31(5):546-549
    33 于志纲,贾朝霞.蒙脱土改性的研究进展.精细石油化工进展,2005,6(8):5-8
    34 车剑飞.纳米氧化物表面改性与分散技术及其住高分子胯擦材料中的应用.[学位论文].南京理工大学,2005:6-8
    35 A. Tuel, H. Hommel, AP Legrand, etc. Conformations of a-ω diols and n-alcohols grafted on silica studied by solid state ~(13)C NMR. Colloids and Surfaces, 1991, 58(1-2):17
    36 Katsumi Kamegawa, Hisayoshi Yoshida. Carbon coating of silica surface Ⅱ: Pyrolysis of silica gels esterified with phenols. Journal of Colloid and Interface Science, 1995, 172(1):94
    37 R. Leboda, E. Mendyk, V V Sidorchuk, etc. Methods of simultaneous physical and chemical modification of silica gels. Mater Chem Phys, 1994, 38:146
    38 Erika Fekete, Bela Pukanszky, Andras Toth. Surface modification and characterization of particulate mineral fillers. Journal of Colloid and Interface Science, 1990, 135:200-208
    39 林轩,张平民,尹周澜,等.纳米SnO_2的表面改性研究.化工进展,2005,24(4):395-398
    40 朱利中,陈宝梁.有机蒙脱土在废水处理中的应用及其进展.环境污染治理技术与设备,1998,6(3):53-61
    41 马进,邓先和,潘朝群.纳米碳酸钙的表面改性研究进展.橡胶工业,2006,53(6):377-381
    42 卢寿慈.粉体加工技术.北京:中国轻工业出版社,1990:25-30
    43 徐莉,刘琴,祁欣.溶胶-凝胶技术制备纳米材料的研究进展.南京林业大学学报,2002,26(4):81-84
    44 罗敏.溶胶-凝胶技术在纺织上的应用与研究.[学位论文].东华大学,2003
    45 金华峰,唐小东,韩波.溶胶-凝胶技术在化学领域中的新应用.安康师专学报,2001,13(1):71-75
    46 Weng Wenjian, Zhang Sam, Cheng Kui, etc. Sol-gel preparation of bioactive apatite films. Surface and Coatings Technology, 2003, 167:292-296
    47 李青莲.溶胶-凝胶技术在制备超细颗粒中的应用.火工品,1998:45-49
    48 洪新华,李保国.溶胶-凝胶(Sol-Gel)方法的原理与应用.天津师范大学学报,2001,21(1):5-8
    49 杨南如,余桂郁.溶胶-凝胶法简介(第一讲:溶胶-凝胶法的基本原理与过程).硅酸盐通报,1992(2):56-63
    50 余桂郁,杨南如.溶胶-凝胶简介(第三讲:溶胶.凝胶法工艺过程).硅酸盐通报,1993(6):60-66
    51 王宝友,黄传真,艾兴,等.Al_2O_3溶胶的制备工艺优化及性质的探讨.陶瓷学报,1998,19(4):209-212
    52 Sakka Sumio. In "Ultrastructure Processing of Advanced Ceramics". Wiely, N.Y., 1998:159-170
    53 Yoldas B.E.. In "Ultrastructure Processing of Advanced Ceramics". Wiely, N.Y., 1988:333-345
    54 胡安止,唐超群.Sol-Gel法制备纳米TiO_2的原料配比和胶凝过程机理探研.功能材料,2002,33(4):394-397
    55 E.Y. Kaneko, S.H. Pulcinelli, V. Teixeira da Silva, etc. Sol-gel synthesis of titania-alumina catalyst supports. Applied Catalysis A: General, 2002, 235:71-78
    56 张晓莉.TiO_2溶胶的制备及其在棉织物上的应用研究.[学位论文].东华大学,2003
    57 T. Textor, T. Bahners, E. Schollmeyer. Coating Wool and Silk by Sol-Gel-Technique. The 10th International Wool Textile Research Conference, F1-12:1-5
    58 T. Textor, T. Bahners, E. Schollmeyer. Surface modification of textile fabrics by coating based on the sol-gel process. Melliand Textilberichte, 1999, 10:E229 (G847-848)
    59 T. Textor, T. Bahner, E. Schollmeyer. Inorganic organic hybrid polymers to protect technical textiles. Technical Textiles, 2002(45): E103-105
    60 T. Textor, T. Bahner, E. Schollmeyer. Organically modified ceramics for coating textile materials. Progr Colloid Polym. Sci, 2001, 117:76-79
    61 王小亚,赵正农,钱曙华.羊毛陶瓷整理技术研究.染整技术,1997,19(1):19-21
    62 李妍.氧化物溶胶体系对羊毛的阻燃研究.[学位论文].河北大学,2005
    63 刘付胜聪,肖汉宁,李玉平,等.纳米TiO_2表面吸附聚乙二醇及其分散稳定性的研究.无机材科学报,2005,20(2):311
    64 张芳,胡志强,蔡英骥.聚乙二醇加入量对锆钛酸铅粉体细度的影响.大连轻工业学院学报,2002,21(3):165-167
    65 曹凤国.超声加工技术.北京:化学工业出版社,2004:177~178
    66 陈彩凤,陈志刚.超声场中湿法制备氧化铝纳米粉.江苏大学学报(自然科学版),2003,24(1):79
    67 张蕾,张丹凤,于桂英,等.纳米微粒的表面改性及表征方法研究.当代化工,2005,34(1):49~51
    68 窦雁巍,徐明霞,徐廷献.溶胶-凝胶法制备TiO_2薄膜中溶胶结构的研究.硅酸盐学报,2003,30:87-89
    69 杨刚,阎克路.精纺毛织物的防毡缩整理综述.上海纺织科技,2001,29(2):42~44
    70 叶早萍.溶胶-凝胶技术在羊毛防毡缩整理中的应用研究.[学位论文].东华大学,2006
    71 阎克路.染整工艺学教程.北京:中国纺织出版社,2005:275
    72 严灏景.纤维材料导论.北京:纺织工业出版社,1990:223~228
    73 何天虹.羊毛抗静电新途径的研究.[学位论文].天津工业大学,2001
    74 S. Kato, Y. Ueno, A. Kishida. Surface Characterization of Poly (styrene-to-fluoroalkylfumarate): XPS and Contact Angle Measurement Study. J. Appl Polym. Sci, 1999, 71:1049

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700