钛基纳米管的制备工艺及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛基纳米管薄膜因其独特的管式结构、较大的比表面积及方便回收再利用的特点,在光催化降解有机物方面有着广阔的应用前景。本论文采用水热法和阳极氧化法分别制备出了钛酸盐纳米管薄膜和TiO2纳米管阵列薄膜,并利用XRD、TEM、SEM、UV-Vis等手段对制备出样品的结构、表面形貌以及光催化降解MO的性能进行了研究。
     以钛片和NaOH为原料,采用水热法成功制备出了钛酸盐纳米管薄膜。TEM和SEM结果表明,此薄膜由无序缠绕的纳米管组成,管径约为10nm。XRD结果表明,水热产物经水洗处理得到的是Na_2Ti_3O_7纳米管,而经酸洗处理后则变为H_2Ti_4O_9·H_2O纳米管。随着煅烧温度的提高,两种纳米管薄膜经历了不同的结构和形貌演变过程,最终Na_2Ti_3O_7纳米管转变成由Na_2Ti_6O_(13)和金红石相组成的纳米棒,而H_2Ti_4O_9·H_2O纳米管则转变为由纯金红石相组成的纳米片。光催化降解MO的实验结果表明,随着煅烧温度的升高,H_2Ti_4O_9·H_2O纳米管薄膜的光催化活性呈现先增加后减小的趋势,其中在500℃下煅烧的H_2Ti_4O_9·H_2O纳米管薄膜具有最高的光催化降解甲基橙(MO)的活性。
     以钛片为阴、阳极,在含氟的有机电解液中,采用阳极氧化法成功制备出微观形貌均一、与基体结合牢固、有序的TiO_2纳米管阵列薄膜。结合SEM的测试结果,简单分析了有机两步法制备TiO_2纳米管阵列薄膜的机理;分析发现,脱膜处理有利于提高Ti基体的平整度,同时第二次阳极氧化制备纳米管阵列是以原位生长的方式进行的。光催化降解MO的实验结果表明,有机两步法制备的纳米管阵列薄膜的光催化活性高于有机一步法制备的纳米管阵列薄膜的光催化活性;随着煅烧温度的升高,TiO_2纳米管阵列薄膜的光催化活性也呈现先增加后减小的趋势,其中在700℃下煅烧的TiO_2纳米管阵列薄膜具有最高的光催化活性。此外,本文还采用水浴加热、电镀和光致还原等三种不同的方法分别将Fe、Cu、Ag三种元素成功的负载到纳米管薄膜上。
TiO_2-based nanotube thin films show a wide application prospect in the filed of photocatalytic degradation of organic due to their special tubular structure, larger specific surface areas and convenient for recycling. In this paper, titanate nanotube thin films and TiO_2 nanotube thin films were prepared by hydrothermal method and anodization technique, respectively. The samples were characterized by X-ray diffraction(XRD), Transmission electron microscopy(TEM), Scanning electron microscopy(SEM) and UV-Vis spectroscopy(UV-Vis), while their properties for photocatalytic degradation of methyl orange(MO) were also investigated.
     Titanate nanotube thin films were successfully prepared by hydrothermal method using titanium plate and sodium hydroxide as the source materials. TEM and SEM images show that titanate nanotube thin films were composed of nanotubes with a diameter of 10nm which twisted together in a disordered way. XRD results indicate that hydrothermal products washed with distilled water result in Na2Ti3O7 nanotubes, while H_2Ti_4O_9·H2O nanotubes were obtained after washing with acid. As the calcination temperature increased, the two kinds of nanotube thin films experienced different structure and morphology evolution process. Finally, Na_2Ti_3O_7 nanotubes were transformed into nanorods which were composed of Na_2Ti_6O_(13) and rutile, while H_2Ti_4O_9·H2O nanotubes turned into nanosheets constituted of pure rutile. The experiment results of photocatalytic degradation of MO suggest that the photocatalytic activity of H_2Ti_4O_9·H2O nanotube thin films increased first and then decreased with the increasing calcination temperature. And the films calcined at 500℃show the highest photocatalytic activity for degradation of MO.
     Using titanium plates as cathode and anode, ordered TiO_2 nanotube array thin films with uniform morphology were successfully prepared by anodization technique in organic solution containing F-, which combined with substrste firmly. Based on the SEM results, we simply analysed the mechanism of TiO_2 nanotube array thin films prepared by two step anodization. It was found that the film-wiped off treatment was helpful for improving the surface smoothness of titanium substrate, and the nanotube arrays growed in-situ during second anodiation process. The experiment results of photocatalytic degradation of MO indicate that the photocatalytic activity of the film prepared by two step anodation is higher than that of the films prepared by one step anodation. Moreover, as the calcination temperature increased, the photocatalytic activity of TiO_2 nanotube array thin films increased first and then decreased. And the films calcined at 700℃show -the highest photocatalytic activity. In this paper, Fe, Cu and Ag elements were successfully loaded onto TiO_2 nanotube array thin films by water heated process, electroplating method and photoinduced reduction technique, respectively.
引文
1 A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semicon- ductor Electrode. Nature. 1972, 238: 37~38
    2张青红,高濂,郑珊等.制备均一形貌的长二氧化钛纳米管.化学学报. 2002, 60(8): 1439~1444
    3宋旭春,岳林海,徐铸德等.水热法合成掺杂铁离子的小管径TiO2纳米管.无机化学学报. 2003, 19(8): 899~901
    4 T. Kasuga, M. Hiramatsu, A. Hoson et al. Formation of Titanium Oxide Nanotube. Langmuir. 1998, 14: 3160~3163
    5 G. H. Du, Q. Chen, C. Chen et al. Preparation and Structure Analysis of Titanium Oxide Nanotubes. Appl. Phys. Lett. 2001, 79(22): 3702~3704
    6 X. M. Sun, Y. D. Li. Synthesis and Characterization of Ion-exchangeable Titanate Nanotubes. Chem. Eur. J. 2003, 9: 2229~2238
    7 W. Z. Wang, O. K. Vargchese, M. Paulose et al. A Study on the Growth and Structure of Titania Nanotubes. J. Mater. Res. 2004, 19(2): 417~422
    8王芹,陶杰,翁履谦等.氧化钛纳米管的合成机理与表征.材料开发与应用. 2004, 19(5): 9~12
    9 B. D. Yao, Y. F. Chan, X. Y. Zhang et al. Formation Mechanism of TiO2 Nanotubes. Appl. Phys. Lett. 2003, 82(2): 281~283
    10 J. J. Yang, Z. S. Jin, X. D. Wang et al. Study on Composition Process of Nanotube Na 2 Ti2O4 (OH) 2. Daltom.Trans. 2003, 3898~3901
    11 V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille et al. Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surf. Interface Anal. 1999, 27: 629~637
    12 D. Dong, C. A. Grimes, O. K. Varghese et a1. Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Mater. Res. Soc. 2001, 16(12): 3331~3334
    13 M. Paulose, K. Shankar, S. Yoriya et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134μm in Length. J. Phys. Chem. B. 2006, 110, 16179~16184
    14 Y. Yang, X. H. Wang, L. T. Li. Synthesis and Growth Mechanism of Graded TiO2 Nanotube Arrays by Two-step Anodization. Materials Science and Enginering B. 2008, 149, 58~62.
    15 T. Kasuga, M. Hiramatsu, A. Hoson et al. Titania Nanotubes Prepared by Chemical Processing. Adv. Mater. 1999, 11: 1307~1311
    16 Y. C. Zhu, H. L. Li, A. Gedanken et al. Sonochemical synthesis of tita-nia whiskers and nanotubes. Chem. Commun. 2001, 24: 2616~2617
    17 R. Ma, Y. Bando, T. Sasaki. Nanotubes of Lepidocrocite. Chemical Physics Letters. 2003, 380: 577~582
    18陈清,杜高辉.电子显微学报.层状钛酸(H2 Ti3O7)形成的纳米管. 2002, 21(3): 265~269
    19 A. Kukovecz, M. Hodos, E. Horvath et al. Oriented Crystal Growth Model Explains the Formation of Titania Nanotubes. Journal of Physical Chemistry, 2005, 109(38): 17781~17783
    20郑青,周保学,白晶等. TiO2纳米管阵列及其应用.化学进展. 2007, 19(1): 117~122
    21 J. Zhao, X. Wang, R. Chen et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid-State Commun. 2005, 134: 705~710
    22 G. K. Mor, O. K. Varghese, C. A. Grimes et a1. Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 2003, 18: 2588~2593
    23余家国,赵修建,叶晓川等.溶胶-凝胶法制备TiO2纳米薄膜及其光催化性能的研究.光学技术, 1998, 4: 17~19
    24 G. Y. Popova, T. V. Andrushkevich, Y. A. Chesalov et al. In situ FTIR Study of the Adsorption of Formaldehyde, Formic Acid, and Methyl Formiate at the Surface of TiO2 (Anatase). Kinetics and Catalysis. 2000, 41(6): 805~811
    25 M. E. Zorn, D. T. Tompkins, W. A. Zeltner et al. Photocatalytic Oxidation of Acetone Vapor on TiO2 /ZrO2 Thin Films. Applied Catalysis B: Environmental. 1999, 23: 1~8
    26范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展.科学通报. 2001, 46: 265~269
    27 R. I. Bickley, T. Gonzalea-Carreno, J. S. Lees. A Structural Investigation of Titanium Dioxide Photocatalysts. J. Solid State Chem. 1991, 92: 178~190
    28施利毅,李春忠,房鼎业等. TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究.无机材料学报. 1999, 14: 717~724
    29 P. Salvador, M. L. G. Gonzalez, F. Manoz. Catalytic Role of Lattice Defects in the Photoassisted Oxidation of Water at (001) n-TiO2 Rutile. J. Phys. Chem. 1992, 96: 10349~10353
    30高伟,吴凤清,罗臻等. TiO2晶型与光催化活性关系的研究.高等学校化学学报. 2001, 22: 660~662
    31 S. A. Bilmes, P. Mandelbaum, F. Alvarez et al. Surface and Electronic Structure of Titanium Dioxide Photocatalysts. J. Phys. Chem. B. 2000, 104: 9851~9858
    32冯良荣,谢卫国,吕绍洁等.纳米TiO2催化剂微晶结构对光催化反应的影响.中国科学(B辑). 2001, 31: 536~541
    33 A. J. Hoffinan, Q. Mills, H. Yee, et al. Q-Sized Cadmiun Sulfide: Synthesis, Characterization, and Efficiency of Photoinitiation of Polymerization of Several Vinylic Monomers. J. Phys. Chem. 1992, 96: 5546~5552
    34 L. E. Brus. A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites. J. Chem. Phys. 1983, 79: 5566~5571
    35 L. E. Beus. Electron-electron and Electron-hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys. 1984, 80: 4403~4409
    36 N. Negishi, K. Takeuchi, T. Ibusuki. The Surface Structure of the TiO2 Thin Film Photocatalyst. Appl. Surf. Sci. 1997, 121/122: 417~420
    37余家国,赵修建,陈文梅等.太阳光TiO2多孔纳米薄膜光催化降解有机磷农药的研究.太阳能学报. 2000, 21: 165~169
    38胡岗,姜义华.载TiO2膜多孔催化剂光催化氧化三氯甲烷的研究.太阳能学报. 2000, 21: 114~116
    39 K. Shaw, P. Christensen, A. Hamnett. Photo-electrochemical Oxidation of Organics on Single-crystal TiO2: an in situ FTIR Study. Electrochim. Acta. 1996, 41: 719~728
    40 Y. Chen, Y. Cao, Y. Bai et al. Study on Photoelectric Properties of a TiO2 Nanoparticle. J. Vac. Sci. Technol. B. 1997, 15: 1442~1444
    41陈龙武,盛闻超,甘礼华. TiO2功能薄膜的制备及影响其光催化活性的因素.功能材料. 2002, 33: 246~249
    42 X. Wang, J. C. Yu, P. Liu et al. Probing of Photocatalytic Surface Sites on SO42-/TiO2 Solid Acids by in situ FT-IR Spectroscopy and Pyridine Adsorption, J. Photoehem. Photobio. A-Chem. 2005, 179: 339~347
    43 S. Yin, H. Yamaki, Q. Zhang et al. Mechanochemical Synthesis of Nitrogen-doped Titania and Its Visible Light Induced NOx Destruction Ability. Solid State Ion. 2004, 172: 205~209
    44 H. Irie, Y. Watanabe, K. Hashimoto. Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chem.Lett. 2003, 32: 772~773
    45 C. H. Ao, S. C. Lee. Combination Effect of Activated Carbon with TiO2 for the Photodegradation of Binary Pollutants at Typical Indoor Air Level, J. Photochem. Photobio. A-Chem. 2004, 161: 131~140
    46 T. Ohno, T. Mitsui, M. Matsumura. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chem. Lett. 2003, 32: 364~365
    47 T. Umebayashi, T. Yamaki, S. Tanaka et al. Visible Light-induced Degradation of Methylene Blue on S-doped TiO2 , Chem.Lett. 2003, 32: 330~331
    48 T. Yamaki, T. Umebayashi, T. Sumita et al. Fluorine-doping in Titanium Dioxide by Ion Implantation Technique. Nucl. Instrum. Methods Phys. Res. B-Beam Interact. Mater. Atoms. 2003, 206: 254~258
    49 J. C. Yu, J. Yu, W. Ho et al. Effeets of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002, 14: 3808~3816
    50 W. Choi, A. Termin, M. R. Hoffmann. Effects of Metal-ion Dopants on the Photocatalytic Reactivity of Quantum-sized TiO2 Partieles. Angew. Chem.-Int. Edit. 1994, 33: 1091~1092
    51籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展.科学通报. 2003, 48: 2199~2204
    52 T. Wu, G. Liu, J. Zhao et al. Photoassisted Degradation of Dye Pollutants V. Self-photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions. J. Phys. Chem. B. 1998, 102: 5845~5851
    53 S. S. Kim, J. H. Yum, Y. E. Sung. Improved Performance of a Dye-sensitized Solar Cell Using a TiO2/ZnO/Eosin Y Electrode. Sol. Energy Mater. Sol. Cells. 2003, 79: 495~505
    54 Y. Amao, Y. Yamada, K. Anki. Preparation and Properties of Dye-sensitized Solar Cell Using Chlorophyll Derivative Immobilized TiO2 Film Electrode. J. Photochem. photobio. A: Chem. 2004, 164: 47~51
    55 R. Dillert, A. E. Cassano, R. Goslich et al. Large Scale Studies in Solar Catalytic Wastewater Treatment. Catal. Today. 1999, 54: 267~282
    56李明,方亚男,洪樟连等.表面敏化改性纳米晶TiO2的光谱响应特性研究及其应用进展.材料导报. 2007, 21: 15~18
    57 S. Yamazaki, S. Matsunaga, K. Hori. Photocatalytic Degradation of Trichloroethylene in Water Using TiO2 Pellets. Water Res. 2001, 35: 1022~1028
    58查振林,罗亚田.纳米TiO2的改性及应用研究.北方环境, 2004, 29: 30~33
    59 X. Li, C. Chen, J. Zhao. Mechanism of Photodecomposition of H 2 O2 on TiO2 Surface Under Visible Light Irradiation. Langmuir. 2001, 17: 4118~4122
    60 A. K. Ray. Design, Modeling and Experimentation of a New Large-scale Photocatalytic Reactor for Water Treatment. Chem. Eng. Sci. 1999, 54: 3113~3125
    61 J. Zhang, T. Ayusawa, M. Minagawa et al. Investigation of TiO2 Photocatalysts for the Decomposition of NO in the Flow System: the Role of Pretreatment and Reaction Conditions in the Photocatalytic Efficiency. J. Catal. 2001, 198: l~8
    62 H. E. Chao, Y. U. Yun, H. U. Xingfang et al. Effeet of Silver Doping on the Phase Transformation and Grain Growth of Sol-gel Titania powder. J. European Ceram. Soc. 2003, 23: 1457~1464
    63 T. Lopez, R. Gomez, G. Peeci et al. Effeet of pH on the Incorporation of Platinum into the Lattice of Sol-gel Titania Phases. Mater. Lett. 1999, 40: 59~65
    64 S. Rengaraj, X. Z. Li. Enhanced Photocatalytic Activity of TiO2 by Doping with Ag for Degradation of 2,4,6-trichlorophenol in Aqueous Suspension. J. Mol. Catal. A-Chem. 2006, 243: 60~67
    65 J. Yu, J. Xiong, B. Cheng et al. Fabrication and Characterization of Ag-TiO2: Multiphase Nanocomposite Thin Films with Enhanced Photocatalytic Activity. Appl. Catal. B-Environ. 2005, 60: 211~221
    66刘守新,曲振平,韩秀文等. Ag担载对TiO2光催化活性的影响.催化学报. 2004, 25: 133~137
    67 C. M. Wang, A. Heller, H. Gerischer et al. Palladium Catalysis of O2 Reduction by Electrons Accumulated on TiO2 Particles during Photoassisted Oxidation of Organic Compounds. J. Am. Chem. Soc. 1992, 114: 5230~5234
    68 F. B. Li, X. Z. Li. The Enhancement of Photodegradation Efficiency Using Pt-TiO2 Catalyst. Chemosphere. 2002, 48: 1103~1111
    69史月萍,杨祝红,冯新等.掺铂二氧化钛纤维光催化降解氯仿的研究.催化学报. 2003, 24: 663~668
    70 A. Berko, T. Biro, F. Solymosi. Formation and Migration of Carbon Produced in the Dissociation of CO on Rh/TiO2(110)-(1×2) Model Catalyst: a scanning Tunneling Microscopy Study. J. Phys. Chem. B. 2000, 104: 2506~2510
    71 J. M. Macak, R. J. Barczuk, H. Tsuchiya et al. Self-organized Nanotubular TiO2 Matrix as Support for Dispersed Pt/Ru Nanoparticles: Enhancement of the Electrocatalytic Oxidation of Methanol. Electrochem. Commun. 2005, 7: 1417~1422
    72 S. J. Liao, D. G. Huang, D. H. Yu et al. Preparation Characterization of ZnO/TiO2, SO4 2-/ZnO/TiO2 Photocatalyst and Their Photocatalysis. J. Photochem. Photobiol. A-Chem. 2004, 168: 7~13
    73 S. W. Ding, L. Y. Wang, S. Y. Zhang et al. Hydrothermal Synthesis, Structure and Photocatalytic Property of Nano-TiO2 -MnO2. Sci. China Ser. B-Chem. 2003, 46: 542~548
    74李芳柏,古国榜,李新军等. WO3 -TiO2纳米材料的制备及光催化性能.物理化学学报. 2000, 16: 997~1002
    75 E. Celik, A. Y. Yildiz, N. F. A. Azem et al. Preparation and Characterization of Fe 2 O3 -TiO2 Thin Films on Glass Substrate for Photocatalytic Applications. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2006, 129: 193~199
    76施利毅,古宏晨,李春忠等. SnO2 -TiO2复合光催化剂的制备和性能.催化学报.1999, 20: 338~342
    77 Y. Bessekhouad, D. Robert, J. V. Weber. Bi2 S3 /TiO2 and CdS/TiO2 Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant. J. Photochem. Photobio. A-Chem. 2004, 163: 569~580
    78张天永,朱丹丹,付强等.纳米光催化氧化降解染料污染物的进展.染料与染色. 2004, 41: 238~240
    79 J. M. Hemnann. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal.Today. 1999, 53: 115~129
    80 A. Nakahira, W. Kato, M. Tamai et al. Synthesis of Nanotube from a Layered H2 Ti 4 O9 Center dot H2O in a Hydrothermal Treatment Using Various Titania Sources. J. Mater. Sci. 2004, 39(13): 4239~4245
    81 A. Thorne, A. Kruth, D. Tunstall et al. Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity. J. Phys. Chem. B. 2005, 109(12): 5439~5444
    82 Y. P. Guo, N. H. Li, H. J. Oh et al. The Growth of Oriented Titanate Nanotube Thin Film on Titanium Metal Flake. Surf. Coat. Tech. 2008, 202: 5431~5435
    83 Y. P. Guo, N. H. Li, H. J. Oh et al. Preparation of Titanate Nanotube Thin Film using Hydrothermal Method. Thin Solid Films. 2008, 516: 8363~8371
    84 L. Z. Zhang, H. Lin, N. Wang et al. The Evolution of Morphology and Crystal Form of Titanate Nanotubes under Calcination and Its Mechanism. J. Alloy. Compd. 2007, 431: 230~235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700