地下目标电磁散射的时域有限差分计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下目标电磁散射是散射计、探地雷达、合成孔径雷达等遥感系统的理论基础之一。本文集成多项计算电磁学中的先进计算技术,建立了地下目标电磁散射的高效、精确计算模型;在建立的地下目标计算模型基础上,开发了地下目标散射的计算程序,并对程序的计算精度和效率作了深入仔细的研究;通过分析计算机软、硬件并行技术,指出了地下目标散射FDTD计算的难点和关键,给出了一种简单、易行的并行方案以及实施结果;利用开发的并行地下目标散射计算程序,对地下目标的散射特征作了计算和分析;最后本文还对各向异性目标,随机粗糙面下的目标的散射作了初步研究。
The electromagnetic scattering by buffed objects is one of theoretical basis of microwaveremote system, such as scatterometer, ground penetrating radar (GPR) and synthetic apertureradar (SAR). In this dissertation, a variety of advanced electromagnetic computationaltechniques are integrated to build the simulation model of scattering by buried targets. Basedon the built simulation model, a general, accurate, and efficient FDTD program is developedand numerically investigated for computing scattering by buried objects. Through analyzingthe recent developed parallel technologies in computer science including hardware andsoftware, the difficulties and the key points in parallelization are pointed out for computingscattering by buried targets. A simple and easy parallel approach is presented, implemented,and numerically studied for computing scattering by buried targets. The scatteringcharacteristics by the buried objects are analyzed and discussed by employing the developedparallel FDTD program. Besides, the scattering by anisotropic objects and random surfacesare also studied.
引文
[1] 舒士畏,赵立平.雷达图像及其应用[M].北京:中国铁道出版社,1988.
    [2] Xu X B, Butler C M. Scattering of TM excitation by coupled and partially buried cylinders at the interface between two media [J]. IEEE Trans Antennas Propag, 1987, 35(5): 529-538.
    [3] Butler C M, Xu X B. Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces [J]. IEEE Trans Antennas Propag, 1985, 33(6): 616-624.
    [4] Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions [J]. Journal of Computational Physics, 1990, 86(2): 414-439.
    [5] Brenger J P. Perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114(2): 185-200.
    [6] 闫玉波、葛宁、郑美艳等.网络并行FDTD方法分析电大目标电磁散射[J].电子学报,2003,31(6):821-824.
    [7] David H A. Electromagnetic scattering by buried objects of low contrast [J]. IEEE Trans Geosci Remote Sens, 1988, 26(2): 195-203.
    [8] Vitebskiy S, Sturgess K, Carin L. Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution [J]. IEEE Trans Antennas Propag, 1996, 44(2): 143-151.
    [9] Vitebskiy S, Carin L, Marc A. R, Francis H. L. Ultra-Wideband, Short-Pulse Ground-Penetrating Radar: Simulation and Measurement [J]. IEEE Trans Geosci Remote Sens, 1997, 35(3): 762-772.
    [10] Demarest K, Plumb R, and Huang Z B. FDTD modeling of scatterers in stratified media [J]. IEEE Trans Antennas Propag, 1995, 43(10): 1164-1168.
    [11] Demarest K, Huang Z B and Richard P. An FDTD near- to far-zone transformation for scatterers buried in stratified grounds [J]. IEEE Trans. Antennas Propag, 1996, 44(8): 1150-1156.
    [12] 李清亮、葛德彪、石守元等人.求解目标地波散射特性的方法研究[J].微波学报,1998,14(1):23-28.
    [13] 王均宏.有耗媒质的PML技术及其在目标探测中的应用[J].电子学报,1999,27(9):5-8.
    [14] 李清亮、葛德彪.平直有耗地面上目标地波散射FDTD近—远场外推.电子科学学刊,1999,21(3):428-432.
    [15] 方广有、张忠治、汪文秉.FDTD法分析无载频脉冲探地雷达特性[J].电子学报,1999,27(3):74-78.
    [16] Liu C, Shen L C. Numerical simulation of subsurface radar for detecting buried pipes [J]. IEEE Trans Geosci Remote Sens, 1991, 29(5): 795-798.
    [17] Vitebskiy S, Carin L. Resonances of perfectly conducting wires and bodies of revolution buried in a lossy dispersive half-space [J]. IEEE Trans Antennas Propag, 1996, 44(12): 1575-1583.
    [18] Gurel L, Oguz U. Three-dimensional FDTD modeling of a ground-penetrating radar [J]. IEEE Trans Geosci Remote Sens, 2000, 38(4): 1513-1521.
    [19] Oguz U, Gurel L. Modeling of ground-penetrating-radar antennas with shields and simulated absorbers [J]. IEEE Trans Atennas Propag, 2001, 49(11): 1560-1567.
    [20] Oguz U, Gurel L. Frequency responses of ground-penetrating radars operating over highly lossy grounds [J]. IEEE Trans Geosci Remote Sens, 2002, 40(6): 1385-1394.
    [21] Oguz U, Gurel L. FDTD simulations of multiple GPR systems [J]. Antennas and Propagation Society International Symposium, 2003, 4: 764-767.
    [22] Shubitidze F, O'Neill K, Shamatava I et al. Analysis of GPR scattering by multiple subsurface metallic objects to improve UXO discrimination [J]. IGARSS, 2003, 7:4163-4165.
    [23] Jacqueline M B, Glenn S S. A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment [J]. IEEE Trans Geosci Remote Sens, 1996, 34(1): 36-44.
    [24] Thorsten W H. Analysis and design of conical spiral antennas in free space and over ground [D]. Atlanta: Georgia institute of technology, 2001.
    [25] Teggatz A, Joestingmeier A, Meyer T et al. Simulation of a ground penetrating radar environment by means of FDTD methods using an automatic control approach [J]. Antennas and Propagation Society International Symposium, IEEE, 2004, 2: 2095-2098.
    [26] Araneo R, Celozzi S. Numerical analysis of subsurface object discrimination systems [J]. IEEE Trans Magne, 2003, 39(3): 1219-1222.
    [27] Baron J E. Numerical simulation of diffuse radiowave scattering from planetary surfaces [D]. Stanford: Stanford University, 2001.
    [28] Wong P B, Tyler G L, Baron J E et al. A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surfaces [J]. IEEE Trans Antennas Propag, 1996, 44(4): 504-514.
    [29] Emanuela B, Andrea B, Salvatore C. An innovative real-time technique for buffed object detection [J]. IEEE Trans Geosci Remote Sens, 2003, 41 (4): 927-931.
    [30] Yu Y J, Yu T J, Carin L. Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space [J]. IEEE Trans Geosci Remote Sens, 2004, 42(5): 957-973.
    [31] 葛德彪、田春明.应用遗传算法反演地下金属物体[J].1999年全国天线理论、电磁散射与逆散射学术会议论文集.
    [32] 葛德彪、闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002.32-64.
    [33] 王长清、祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社.1994.
    [34] 高本庆.时域有限差分法.北京:国防工业出版社,1995.
    [35] Fang J Y, Wu Z H. Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media [J]. IEEE Trans Microwave Theory Tech, 1996, 44(12): 2216-222.
    [36] Gedney S D. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J]. IEEE Trans. Antennas Propag, 1996, 44(12): 1630-1639.
    [37] 詹毅.复杂有耗色散地层的FDTD方法及在冲击探地雷达中的应用[D].西安:西安电子科技大学,1998.
    [38] Liu Q H. PML and PSTD algorithm for arbitrary lossy anisotropic Media [J]. IEEE Microwave Guided Wave Lett, 1999, 9(2): 48-51.
    [39] Krumpholz M, Katehi L P B. MRTD: New time-domain schemes based on multiresolution analysis [J]. IEEE Trans Microwave Theory Tech, 1996, 44(4): 555-571.
    [40] Ramadan O. Unconditionally stable ADI-FDTD implementation of PML for frequency dispersive Debye media [J]. Electron Lett. 2004, 40(4): 230-232.
    [41] 莫则尧、袁国兴.消息传递并行编程环境[M].北京:科学出版社,2001.
    [42] 都志辉.高性能计算并行编程技术——MPI并行程序设计[M].北京:清华大学出版社,2001.
    [43] 潘小敏.计算电磁学中的并行技术及其应用[D].北京:中国科学院电子学研究所,2006.
    [44] 郭琨毅.超宽测绘带微波成像若干新体制的并行仿真研究[D].北京:中国科学院电子学研究所,2005.
    [45] 吴少刚、章隆兵、蔡飞等.机群OpenMP系统的设计与实现[J].计算机学报.2004,27(7):904-912.
    [46] 陈勇、陈国良、李春生等.SMP机群混合编程模型研究[J].小型微型计算机系统.2004,25(10):1763-1767.
    [47] 冯云、周淑秋.MPI+OpenMP混合编程模型应用研究[J].计算机系统应用.2006,1(2):86-89.
    [48] 赵永华、迟学斌.基于SMP集群的MPI+OpenMP混合编程模型及有效实现[J].微电子学与计算机.2005,22(10):7-11.
    [1] 葛德彪、闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002.32-64.
    [2] 王长清、祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社.1994.
    [3] 高本庆.时域有限差分法[M].北京:国防工业出版社,1995.
    [4] Taflov A, Hagness S C. Computational electrodynamics: the finite-difference time-domain method [M]. Boston, London: Artech house, 2000.
    [5] Dennis M S. Electromagnetic simulation using the FDTD method [M]. New York: Institute of electrical and electronics engineers, 2000.
    [6] 盛新庆.计算电磁学要论[M].北京:科学出版社,2004.
    [7] 王秉中.计算电磁学[M].北京:科学出版社,2002.
    [8] Wong P B, Tyler G L, Baron J E et al. A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surfaces [J]. IEEE Trans Antennas Propag, 1996, 44(4): 504-514.
    [9] Demarest K, Plumb R, and Huang Z B. FDTD modeling of scatterers in stratified media [J]. IEEE Trans Antennas Propag, 1995, 43(10): 1164-1168.
    [10] 夏明耀.近代电磁理论讲义[M].北京:北京大学,2004.
    [11] Baron J E. Numerical simulation of diffuse radiowave scattering from planetary surfaces [D]. Stanford: Stanford University, 2001.
    [12] Demarest K, Huang Z B and Richard P. An FDTD near- to far-zone transformation for scatterers buried in stratified grounds [J]. IEEE Trans. Antennas Propag, 1996, 44(8): 1150-1156.
    [13] 葛德彪.FDTD-XD目标特性可视化软件.西安电子科技大学,2005.
    [14] 中算软件1.0.北京理工大学电磁仿真中心,2006.
    [15] 余文华,苏涛,Mittra R,刘永峻.并行时域有限差分[M].北京:中国传媒大学出版社,2005.
    [16] Jurgens T G, Taflove A, Umashankar K et al. Finite-difference time-domain modeling of curved surfaces [J]. IEEE Trans Antennas Propag, 1992, 40(4): 357-366.
    [17] Dey S, Mittra R. A locally conformal finite-difference time-domain(FDTD) algorithm for modeling three-dimensional perfectly conducting objects. IEEE Microwave Guided Wave lett [J]. 1997, 7(9): 273-275.
    [18] 李龙、张玉、梁昌洪.波导宽边缝隙天线的改进共行FDTD分析[J].电子学报.2003,31(6):860-863.
    [1] Baron J E. Numerical simulation of diffuse radiowave scattering from planetary surfaces [D]. Stanford: Stanford university, 2001, 86-87.
    [2] Wong P B, Tyler G L, Baron J E et al. A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surfaces [J]. IEEE Trans Antennas Propag, 1996, 44(4): 504-514.
    [3] Demarest K, Huang Z B and Richard P. An FDTD near- to far-zone transformation for scatterers buried in stratified grounds [J]. IEEE Trans. Antennas Propag, 1996, 44(8): 1150-1156.
    [4] 李清亮、葛德彪、石守元等人.求解目标地波散射特性的方法研究[J].微波学报,1998,14(1):23-28.
    [5] 汤炜、李清亮、吴振森等人.有耗平面和三维目标复合散射的FDTD分析.电波科学学报,2004,19(4):438-443.
    [6] 葛德彪、闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002.32-64.
    [7] Taflov A, Hagness S C. Computational electrodynamics: the finite-difference time-domain method [M]. Boston, London: Artech house, 2000.
    [8] 孟粉霞、王建国、童长江等.UPML在有耗介质截断中的应用.第三届物理学术会议.2001,63-69.
    [9] Liu Q H. An FDTD algorithm with perfectly matched layers for conductive media [J]. Microwave Optical Tech Lett. 1997, 14(2): 134-137.
    [10] 张晓燕、盛新庆.地下目标散射的FDTD计算[J].电子与信息学报(已录用).
    [11] X. Y. Zhang, X. Q. Sheng, FDTD computation of scattering by buried objects [J]. 北京理工大学学报(已录用).
    [12] Demarest K, Plumb R, and Huang Z B. FDTD modeling of scatterers in stratified media [J]. IEEE Trans Antennas Propag, 1995, 43(10): 1164-1168.
    [13] 詹毅.复杂有耗色散地层的FDTD方法及在冲击探地雷达中的应用[D].西安:西安电子科技大学.1998,25-31.
    [14] David H A. Electromagnetic scattering by buried objects of low contrast [J]. IEEE Trans Geosci Remote Sens, 1988, 26(2): 195-203.
    [15] 余文华、苏涛、Mittra R等.并行时域有限差分[M].北京:中国传媒大学出版社,2005.
    [1] 薛正辉、杨仕明、高本庆等.FDTD算法的网络并行运算实现[J].电子学报.2003,31(12):1839-1843.
    [2] 张玉、宋健、梁鸿昌.并行共行FDTD算法及其在PBG结构仿真中的应用[J].电子学报.2003,31(12):2142-2144.
    [3] 张玉、李斌、梁鸿昌.PC集群系统中MPI并行FDTD性能研究[J].电子学报.2005,33(9):1694-1697.
    [4] 闫玉波、葛宁、郑美艳等.网络并行FDTD方法分析电大目标电磁散射[J].电子学报.2003,31(6):821-824.
    [5] 杨利霞、葛德彪、郑奎松等.电各向异性介质FDTD并行算法的研究[J].电波科学学报.2006,21(1):43-48.
    [6] Guiffaut C, Mahdjoubi K. A parallel FDTD algorithm using the MPI libray [J]. IEEE Antennas propag magazine. 2001, 43(2): 94-103.
    [7] Liu Z M, Mohan A S, Aubrey T A et al. Techniques for implementation of the FDTD method on a CM-5 parallel computer [J]. IEEE Antennas propag magazine. 1995, 37(5): 64-71.
    [8] 汤炜、李清亮、吴振森等.有耗平面和三维目标复合散射的FDTD分析[J].电波科学学报.2004,19(4):438-443.
    [9] 潘小敏.计算电磁学中的并行技术及其应用[D].北京:中国科学院电子学研究所,2006.
    [10] 郭琨毅.超宽测绘带微波成像若干新体制的并行仿真研究[D].北京:中国科学院电子学研究所,2005.
    [11] 莫则尧、袁国兴.消息传递并行编程环境[M].北京:科学出版社,2001.
    [12] 都志辉.高性能计算并行编程技术——MPI并行程序设计[M],北京:清华大学出版社,2001.
    [13] Wen Y H, Wang D X, Shen M M et al. A parallel programming environment based on message passing. IEEE 1994, 724-729.
    [14] Darlington J, Guo Y k, Yang J. The parallel fortran family and a new perspective. 1995 IEEE, 126-133.
    [15] 余文华、苏涛、Mittra R等.并行时域有限差分[M].北京:中国传媒大学出版社,2005.
    [16] Seguin S A, Cracraft M A, Drewniak J L. Static and quasi-dynamic load balancing in parallel FDTD codes for signal integrity, power integrity and packaging applications [J]. Proc. of the 2004 IEEE International Symposium on Electromagnetic Compatibility, 2004, 1:107-112.
    [17] 刘新、李康、孔繁敏.FDTD并行计算中的区域划分及负载平衡[J].系统仿真学报.2004,16(1):94-96.
    [18] 梁丹、冯菊、陈星.高效率FDTD网络并行计算研究[J].四川大学学报(自然科学版).2006,43(3):549-554.
    [1] 胡进峰、周正欧、孔令讲.探地雷达多目标识别方法的研究[J].电子与信息学报.2006,28(1):26-30.
    [2] 李建勋、郑军庭.超宽带探地雷达自动目标识别研究[J].电波科学学报.2005,20(4):535-540.
    [3] 张明、杨绍卿、许建胜.基于地面雷达目标一维距离像的离段检测方法[J].弹箭与制导学报.2005,25(4):95-98.
    [4] 左峥嵘、张天序.基于兴趣区检测的地面目标识别方法研究术[J].2004,26(3):33-36.
    [5] Baron J E. Numerical simulation of diffuse radiowave scattering from planetary surfaces [D]. Stanford: Stanford University, 2001.
    [6] Chang H S, Mei K K. Scattering of electromagnetic waves by buried and partly buried bodies of revolution [J]. IEEE Trans Geosci Remote Sensing, 1985, 23(4): 596-605.
    [7] David H A. Electromagnetic scattering by buried objects of low contrast [J]. IEEE Trans Geosci Remote Sens, 1988, 26(2): 195-203.
    [8] 张晓燕、盛新庆.地下目标散射的FDTD计算[J].电子与信息学报(已录用).
    [9] 张晓燕、盛新庆.地下目标散射的并行FDTD计算[J].电波科学学报(已录用).
    [1] Ji F, Yung E K N, Chen R S, Sheng X Q. Full-wave analysis of planar Y-junction circulators with magnetic ferrite disks [J]. Journal of Electromagn Waves and Appl. 2002, 16(7): 1009:1019.
    [2] 耿友林、吴信宝、官伯然.导体球涂覆各向异性铁氧体介质电磁散射的解析解[J].电子与信息学报.2006,280):1740-1741.
    [3] Roberto D G, Piergiorgio L E U, Rodolfo S Z. Moment method with isoparametric elements for three-dimensional anisotropic scatterers [J]. Proceedings of IEEE. 1989, 77(5): 750-759.
    [4] Li B H, Gong T, Xu R J. Computation and simulation of EM wave propagating in anisotropic medium by FDTD method [J]. Asia Pacific Microwave Conference. 1997, 298-292.
    [5] John S J, Scott H. The finite-difference time-domain method applied to anisotropic material [J]. IEEE Trans Antennas Propag. 1993, 41 (7): 994-999.
    [6] Zhao A P, Jaakko J, Antti V R. An efficient FDTD algorithm for the analysis of microstrip patch antennas printed on a general anisotropic dielectric substrate [J]. IEEE Trans Microwave Theory Tech, 1999, 47(7): 1142-1146.
    [7] Moss C D, Teixeira F L, Kong J A. Analysis and compensation of numerical dispersion in the FDTD method for layered, anisotropic media [J]. IEEE Trans Antennas Propag. 2002, 50(9): 1174-1184.
    [8] Lee H O, Teixeira F L. Cylindrical FDTD analysis of LWD tools through anisotropic dipping-layered earth media [J]. IEEE Trans Geosci Remote Sens. 1991, 29(5): 795-798.
    [9] 杨利霞、葛德彪、郑奎松、魏兵.电各向异性介质FDTD并行算法的研究[J].电波科学学报.2006,21(1):43-48.
    [10] 杨利霞、葛德彪、郑奎松等.FDTD并行算法研究:电和磁本构参数均为各向异性情[J].电子学报.2006,34(9):1703-1707.
    [11] 魏兵、葛德彪.各向异性介质板横向介质参数的反演[J].微波学报.2003,19(2):648-651.
    [12] 龚主前、朱国强、郑立志.各向异性材料散射的FDTD分析[J].电波科学学报.2002,17(5):455-461
    [13] Oguz U, Gurel L. Frequency responses of ground-penetrating radars operating over highly lossy grounds [J]. IEEE Trans Geosci Remote Sens, 2002, 40(6): 1385-1394.
    [14] Tsang L, Lou S H, Chan C H. Application of the extended boundary condition method to Monte Carlo simulations of scattering of waves by two-dimensional random rough surfaces [J]. Microwave Opt Technol Lett. 1991, 4(3): 527-531.
    [15] Dogaru T, Carin L. Time-domain sensing of targets buried under a rough air-ground interface [J]. IEEE Trans Antennas Propag. 1998, 46(3): 360-372.
    [16] Frank D H, John B S, Shim L B. A mote-carlo FDTD technique for rough surface scattering [J]. IEEE Trans Antennas Propag. 1995, 43 (11): 1183-1191.
    [17] Moss C D, Teixeira F L, Yang Y E, Kong J A. Finite-difference time-domain simulation of scattering from objects in continuous random media [J]. IEEE Trans Geosci Remote Sens. 2002, 40(1): 178-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700