快速凝固Ni-Sn合金的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用单辊实验装置研究了Ni-28%Sn,Ni-30%Sn,Ni-32.5%Sn和Ni-33%Sn合金的快速凝固及组织特征,通过将金属熔体热传导方程与Navier-Stokes方程相耦合,理论计算了液态合金的冷却速率,并借助XRD和SEM分析技术,深入研究了急冷快速凝固条件下Ni-Sn共晶合金的相选择和组织演变规律,定量分析了快速凝固合金的电阻率、抗拉强度、伸长率和耐腐蚀性能,探索了冷却速率和组织形态与合金性能的相关性。
     研究结果表明:在快速凝固条件下,Ni-Sn合金不形成亚稳新相,凝固组织由a-Ni和β-Ni_3Sn相组成。Ni-32.5%Sn共晶合金的组织形态以不规则共晶为特征。随着冷却速率的增大,层片状规则共晶组织逐渐减少至完全消失,共晶组织明显细化,沿条带厚度方向的均匀性显著提高,晶体形态由粗大的柱状晶向细小的等轴晶转变。快速凝固合金条带存在明显的边缘效应,条带边缘凝固组织异于中部。Ni-28%Sn亚共晶合金的凝固组织沿垂直辊面方向大致分为三个晶区:急冷面细晶区、中部柱状晶区和自由面粗大等轴晶区。随着冷速的增大,柱状晶区厚度减小,晶体形态由柱状晶向等轴晶转变。Ni-30%Sn和Ni-33%Sn近共晶合金处在共生区内接近共生区边界的成分点上,在冷速较低时,熔体凝固时有先析相析出;但是,当冷却速率较高时,先析相析出被抑制,a-Ni和β-Ni_3Sn相竞相形核,交互生长,生长方式由枝晶生长向共晶生长转变,形成细小、均匀的不规则共晶组织。
     随着冷速的增大,一方面,合金组织细化、晶界增多,对自由电子的散射作用增强,有效电荷数降低,Ni-Sn共晶合金的电阻率显著增大,急冷面电阻率高于自由面电阻率。另一方面,细晶强化作用增强,合金的抗拉强度呈增大趋势,伸长率相应减小。另外,组织细化和均匀性提高使合金内部电位更趋均匀,快速凝固合金的抗腐蚀性能明显提高。
In this paper,the rapid solidification and microstructural characteristic of Ni-28%Sn, Ni-30%Sn hypoeutectic,Ni-32.5%Sn eutectic and Ni-33%Sn hypereutectic alloys are investigated by using a single roller experimental apparatus,the cooling rate is calculated theoretically by coupling the melt heat conduct equation and Navier-Stokes equation,the phase selection and microstructural evolution of the alloys are studied by XRD and SEM techniques, meanwhile,the electrical resistivity,tensile strengthe,longation and corrosion resistance of alloys are measured experimentally,and the relationships between cooling rate and alloy properties are further analyzed theoretically.
     The results show that:under rapid solidification conditions,Ni-Sn alloy is formed with the a-Ni phase andβ-Ni_3Sn phase,which is same with under equilibrium condition.For Ni-32.5%Sn eutectic alloy,with the rise of cooling rate,the amount of regular lamellar eutectic decreases,the growth form of eutectic microstructure transforms from columnar to fine equiaxed morphology,and the directivity of crystal growth becomes weakening and eutectic microstructure is refined markedly;the rapid solidification ribbon presents edge effect,so the edge morphology is different from that of middle portion.The micrstructural morphology of Ni-28%Sn hypoeutectic alloy along the direction vertical to wheel surface can be roughly divided into three crystal zones:fine equiaxed zone near roller side,columnar zone in the middle part of ribbon and coarse equiaxed zone at free surface respectively.With the rise of cooling rate,the thickness of columnar zone decreases and the complete fine equiaxed grain is formed.For Ni-30%Sn and Ni-33%Sn near-eutectic alloys,the primary phase will precipitate from undercooled melt at low cooling rate.It will be surpressed at high cooling rate,the a-Ni andβ-Ni_3Sn phase will nucleate competitively and grow cooperatively,the microstructure will be markedly refined,the homogeneous irregular eutectic microstructure will be formed.
     On one hand,with the increase of cooling rate,the microstructure is refined and the amount of grain boundary increases,which intensifies the scattering of free electrons and cut down the amount of effective electric charge,resulting in the rise of alloy electrical resistivity. The alloy resistivity near roller side is usually larger than that at free surface because cooling rate near roller side is larger than that at free surface.On the other hand,with the increase of cooling rate,the tensile strength of alloy foils increases,while the elongation of alloys decreases.Due to the uniformity of internal potential in rapidly solidified alloys,the corrosive resistance of the alloys increases obviously with the rise of cooling rate.
引文
[1]Flinn J E.Rapid Solididication Technology for Reduced Consumption of Strategic Elements[M].NJ:Noyes Publication,1985.
    [2]张荣生,刘海洪,快速凝固技术[M].北京:冶金工业出版社,1991.
    [3]李月珠,快速凝固技术与材料[M].北京:国防工业出版社,1993.
    [4]陈光,傅恒志.非平衡凝固金属材料[M].北京:科学出版社,2004.
    [5]Schroers J,Volkmann T,Herlach D M.Phase selection processesin undercooled Ni-V melts[J],Int J Rapid Solidification,1996,9:267-288.
    [6]周尧和,胡壮麟,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [7]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [8]孙占波,宋晓平,胡柱东.深过冷条件下Cu-Co合金的液相分解[J].中国有色金属学报,2001,11(1):68-72.
    [9]杨春,魏炳波,陈民.液态Cu-Ni合金的超过冷与热力学性质[J].清华大学学报(自然科学版),2001,41(8):57-59.
    [10]Wei B,Herlach D M.Dendrite growth during rapidsolidification of Co-Sb alloys[J].Materials Science and Engineering A,1997,(226-228):799-803.
    [11]韩秀君,王楠,魏炳波.Pb-Bi亚共晶和包晶合金的快速凝固[J].金属学报,2000,36(6):215-220.
    [12]Bernard Vonnegut.Variation with temperature of the nucleation rate of supercooled liquid tinand water drops[J].Journal of Colloid Science,1948,3(6):563-569.
    [13]Cao C D,Xie W J and Wei B.Microstructural characterization of cobalt-antimony eutectic alloy droplets solidified in drop tube[j].Materials Science and Engineering A,2000,283(15):86-93.
    [14]Okress E C,Wroughton D M.Electromagnetic Levitation of Solid and Molten Metals[J].J.Appl.Phys.1952,23(10):545-553.
    [15]Nagashio K,Kuribayashi K and Takamura Y.Phase selection of peritectic phase in undercooled Nd-based superconducting oxides.Acta Materialia,2000,48(17):3049-3057.
    [16]Ohsaka K,Chung S K and Rhim W K.Specific volumes and viscosities of the Ni-Zr alloys and their correlation with the glass formability of the alloys.Acta Materialia,1998,46(13):4535-4542.
    [17]Kear B H.Rapidly solidified amorphous and crystalline alloys[M].Elsevier North-Holland,1982.
    [18]魏炳波,杨根仓,周尧和.深过冷液态金属的凝固特点.航空学报[J],1991,5:23-27.
    [19]姚文静,韩秀君,魏炳波.落管中Cu-Sb合金的深过冷与快速枝晶生长[J].科学通报,2002,47(11):824-828.
    [20]姚文静,韩秀君,魏炳波.自由落体条件下的快速共晶生长[J].科学通报,2002,47(2):99-102.
    [21]阮莹.Ag—Cu—Sb三元共晶合金的快速凝固研究[D].西安:西北工业大学硕士学位论文,2003.
    [22]关绍康,郭进毅,胡汉起.深过冷对Nd-Fe-B-Si合金凝固组织的影响.北京科技大学学报[J],1992,4(5):509-514.
    [23]Leonhardt M,Loser W and.Lindenkreuz H G.Metastable phase formation in undercooled eutectic Ni_(78.6)Si_(21.4)melts[J].Materials Science and Engineering A,1999,271(1):31-37.
    [24]Leonhardt M,Loser W and Lindenkreuz H G.Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts[J].Acta Materialia,1999,47(10):2961-2968.
    [25]El-Daly AA,Abdel-Daiem A M and Yousf M.Transient creep characteristics in two Pb-Sn-Zn ternary alloys[J].Materials Chemistry and Physics,2001,74(2):111-119.
    [26]El-Daly A A,Abdel-Daiem A M and Yousf M.Creep deformation of Pb-Sn-Zn ternary alloys[J].Materials Chemistry and Physics,2002,74(1):43-51.
    [27]El-Daly A A,Abdel-Daiem A M and Yousf M.Effect of isothermal ageing on the electrical resistivity and microstructure of Pb-Sn-Zn ternary alloys[J].Materials Chemistry and Physics,2003,78(1):73-80.
    [28]徐锦锋,魏炳波.快速凝固Co-Cu包晶合金的电学性能[J].物理学报,2005,54(7):3444-3450.
    [29]Michael MA,Baker H.Magnesium and magnesium alloys[M].Ohio:Metal Park,1999.
    [30]Okamoto H.Phase diagrams for binary alloys[M].Ohio:ASM International Metal Park,2000.
    [31]王新林,王立军.非晶微晶合金从研究到产业化[J].金属功能材,1994,(3):1-5.
    [32]陈志浩,刘兰俊,张博.Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质[J].物理学报,2004,53(11):3839-3844.
    [33]Inoue A,Zhang T and Masumoto T.Reductilization of embrittled La-Al-Ni amorphous alloys by viscous flow deformation in a supercooled liquid region.Journal of Non-Crystalline Solids[J].1993,156(2):598-602.
    [34]Chisholm D S.Dow Chemical Co.Atomozing magnesium and its alloy:US,2676359[P].1954.
    [35]Polmear I J.Magnesium alloys and applications[J].Mater Sci Technol,1994,10:1-16.
    [36]Kawamara Y,Hayashi K,Inoue A.Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J].Mater Trans JIM,2001,42(7):1172-1176.
    [37]Bottinger W J,Corriell S and Sekerka R F.Mechanisms of microsegregafion-free solidification[J].Materials Science and Engineering,1984,65(1):27-36.
    [38]Aziz M J.Model for solute redistribution during rapid solidification[J].Journal of Applied Physics,1982,53(2):1158-1168.
    [39]Reitano R,Smith P M andAziz M J.Solute trapping of groupⅢ,ⅣandⅤ elements in siliconby an aperiodic stepweise growth mechanism[J].Journal of Applied Physics,1994,76(3):1518-1530.
    [40]Chalmers B.Principles of solidification[M].New York:Wiley,1964.
    [41]冯端.金属物理学[M].北京:科学出版社,1998.
    [42]Mullins W W,Sekerka R F.Stability of a Planar Interface During Solidification of a Dilute Binary Alloy[J].Journal of Applied Physics,1964,35(2):444-451.
    [43]Li D L,Volkmann T and Herlach D M.Crystal growth in undercooled germaninm.Journal of Crystal Growth[J].1995,152(1):101-104.
    [44]Langer J S,Krumbhaar H M.Theory of dendritic growth-1 elements of a stability analysis[J].Acta Metallurgical,1978,26(11):1681-1687.
    [45]Lipton J,Glicksman M E,Kurz W.Dendritic growth into undercooled alloy metals[J].Materials Science and Engineering,1984,65(1):57-63.
    [46]Lipton J,Kurz W,Trivedi R.Rapid dendrite growth in undercooled alloys[J].Acta Metallurgical,1987,35:957-964.
    [47]Trivedi R,Kurz W.Morphological stability of a planar interface under rapid solidification conditions[J]..Acta Motallurgical,1986,34(8):1663-1670.
    [48]Trivedi R,Lipton J,Kurz W.Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts[J].Acta Metallurgical,1987,35(4):965-970.
    [49]Boettinger W J,Coriell S R,Trivedi R.In Rapid Solidificiation Processing:Principles and Technologies Ⅳ[C].edited by Mehrabian R and Parrish PA.Claitor Publishing Division,Baton Rouge LA,1988:13-18.
    [50]Kattamis T Z,Flemings M C.Structure of undercooled Ni-Sn eutectic[J].Metall Truns1970,1(5):1449-1455.
    [51]Wei B B,Yang G C,Zhou Y H.High undercooling and rapid solidification of Ni-32.5 Sn eutectic alloy[J].Acta Metall Mater,1991,39(6):1249-1254.
    [52]Wei B,Herlach D M,Sommer F.Rapid eutectic growth of undercooled metallic alloys[J].Mater Sci Lett,1993,12:1774-1779.
    [53]Xing L Q,Zhao D Q,Chen X C.Solidification of undercooled Ni-32.Swt%Sn eutectic alloy[J].Mater Sci,1993,28:2733-2739.
    [54]Tewari S N.Effect of undercooling on the microstructure of Ni-35at pct Mo(eutectic)and Ni-38at pct Mo(hypereutectic)alloy[J].Metall Trans,1987,18A(3):525-529.
    [55]Chu M G,Shiohara Y,F'lemings M G.Solidification of highly underoooled Sn-Pb alloy droplets[J].Metall Trans,1984,5A:1303-1310.
    [56]Jones B L.Growth mechanisms in undercooled eutectics[].Metall Trans,1971,2:2950-2956.
    [57]Wei B,Herlach D M,Sommer F.Rapid dendritic and eutectic solidification of undercooled Co-Mo alloys[j].Mater Sci Eng,1994 A181/182:1150-1156.
    [58]Jackson K A,Hunt J D.Iamellar and rod eutectic growth[J].Metall Trans,1966,236(8):1129-1142.
    [59]Trivedi R,Magnin P and Kurz W.Theory of eutectic growth under rapid solidification conditions[J].Acta Metallurgica,1987,35(4):971-980.
    [60]刘俊明.层状共晶定向凝固[J].物理学报,1992,5:861-868.
    [61]Kattammis T Z,Flemings M C.Structure of undercooled Ni-Sn eutectic[J].Metall.Trans,1970,1(5):1449-1451.
    [62]Jones B L.Growth mechanisms in undercooled eutectic[J].Metall.Trans,1971,2(10):2950-2951.
    [63]Wei B,Herlach D M and Kurzr W.Rapid dendritic and eutectic solidification of undercooled Co-Mo alloys[J].Materials Science and Engineering 1994,182(15):1150-1155.
    [64]Xing L Q,Zhao D Q and Chen X C.Effects of purification on the glass forming ability and thermostability of Ni-B-Si metallic glass[J].Materials Science and Engineering,1992,157(2):211-215.
    [65]孙玉峰,沈宁福,熊柏清.TiC对喷射沉积Al-8Fe-1.3V-1.7Si合金显微组织和性能的影响[J].中国有色金属学报,2001,11(52):54-59.
    [66]胡敦芫,黄赞军,杨滨.TiC颗粒增强喷射沉积Al-Fe-V-Si合金的组织及力学性能[J].矿冶,2002,11(4):59-62.
    [67]TAN Dun-qiang,L I Wen-xian,XIAO Yu-de.Phase transition of Al-Fe-V-Si heat-resistant alloy by spray deposition[J].Trans Nonferrous Met Soc China,2003,13(3):568-573.
    [68]李庆勇,王日初.快速凝固粉末冶金TiB2颗粒增强AlFeVSi耐热铝合金[J].中国有色金属学报,2005,15(4):637-645.
    [69]翟秋亚,杨扬,徐锦锋.快速凝固Cu-Sn亚包晶合金的电阻率及力学性能[J].物理学报,2007,56(10):6118-6123.
    [70]G J van Gurp.Resistivity,Grain size,and structure of vacuum-deposited Co films[J].Journal Applied Physics,1975,46(5):1922-1927.
    [71]范平.超薄金属膜的电导特性[J].金属学报,1999,35(3):261-264.
    [72]王晓平,赵特秀,季航.晶粒尺寸对薄膜电阻率温度系数的影响p].物理学报,1994,43(2):297-302.
    [73]唐兆麟,黄荣芳,闻立时.超薄铝膜电导特性的原位测量研究[J].金属学报,1996,32(3):308-311.
    [74]Mayadas A F,Shatzkes M.Electrical-Resistivity model for polycrystalline films:the case of arbitrary reflection at external surfaces[J].Physical Review B,1970,1(4-15):1382-1389.
    [75]懂正超,喻美竹.金属薄膜中的杂质散射[J].河南师范大学学报,1997,25(4):40-43.
    [76]范平.连续金属薄膜的电阻率研究[J].真空科学与技术,1999,19(6):445-451.
    [77]董正超,盛利,邢定玉,董锦明.金属双层膜中量子输运的表面和界面散射效应[J].物理学报,1996,45(2):249-257.
    [78]懂正超,盛利,邢定钰.金属薄膜的量子输运理论[J].物理学报,1997,46(3):568-578.
    [79]懂正超.多层金属圆柱线中量子输运的表面和界面散射效应[J].物理学报,1999,48(1):127-133.
    [80]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-234.
    [81]Xing S D,Yu R H.The valence-electron structures and the mechanical properties of an intermetallic compound Ti_3Al[J].Acta Scientiarum Naturalium Universitatis Jilinensis,1985,(1):62-69.
    [82]郑伟涛,柴卫平,胡广安.TiN的价电子结构及其力学性能的研究[J].科学通报,1992,37(7): 657-662.
    [83]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.
    [84]张建民.Fe_2Al二元合金系的电子理论研究[D].长春:吉林大学博士学位论文,1994.
    [85]刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社,1990.
    [86]刘志林.固相合金中的C-Me偏聚理论[J].科学通报,1989,34(14):1055-1057.
    [87]Backoken WA,Turner I R,Avery D H.Superplasticity in an Al-Zn alloy[J].Trans.ASM.Quart,1964,57(6):980-990.
    [88]Muniyandi N,Vasudevan S and Pitchumani S.Performance characteristics of chloro-substituted dinitrobenzene for magnesium reserve batteries[J].Power Sources,1993,45:119-130.
    [89]Udhayan R,Muniyandi N and Mathur P B.Studies on magnesium and its alloys in battery electrolytes[J].British Corrosion Journal,1992,27(1):68-71.
    [90]Kawamura Y,Inoue A.Development of high strength magnesium alloys by rapid solidification[J].Materials Science Forum,2003,35(7):709-714.
    [91]霍宏伟,李瑛.镁合金的腐蚀与防护[J].材料导报,2001,15(7):25-27.
    [92]Hehmann F,Sommer F,Jones H.Corrosion inhibition in magnesium-aluminum-based alloys induced by rapid solidification processing[J].Journal of Materials Science,1989,24(7):2369-2379.
    [93]Daloz D,Steinmetz P,Michot G.Corrosion behavior of rapidly solidified magnesium-aluminumzinc alloys[J].Corrosion Science Section,1997,53(12):944-954.
    [94]Krishnamurthy S,Khobalb M,Roberston E,et al.Corrosion behavior of rapidly solidified Mg-Nd and Mg-Y alloys[J].Materials and Engineering,1988,(99):507-511.
    [95]Yu H.A fluid mechanics model of the planar flow melt spinning process under low reynolds number conditions[J].Metall Trans B,1987,18B:557-563.
    [96]Sun Z,Davies HA.Computer modeling of ribbon formation in the melt spinning of crystalline metals[J].Material Science and Engineering,1988,98:71-74.
    [97]Takeshita K,Shingu P H.Analysis of the melt puddle formation in the single roller chill block casing[J].Transaction of the Japan Institute of Metals,1986,27(2):141-148.
    [98]Takeshita K,Shingu P H.Thermal contact during the cooling by the single roller chill block casting[J].Transaction of the Japan Institute of Metals,1986,27(6):454-562.
    [99]Gutierrez E M,Szekely J.A mathematical model of the planar flow melt spinning process[J].Metall Trans,1986,17B:695-703.
    [100]Wang G X,Matthys E F.Modeling of rapid solidification by melt spinning:effect of heat transfer in the cooling substrate[J].Material Science and Engineering A,1991,136:85-97.[101]惠希东,杨院生,陈晓明,胡壮麟.单辊法制备非晶合金中的传热与熔体流动数值模拟[J].金属学报,1999,35(11):1206—1210.[102]徐锦锋,魏炳波.急冷快速凝固过程中液相流动与组织形成的相关规律[J].物理学报,2004, 53(6):160-166.
    [103]Gill S C,Zimmermann M and Kurz W.Laser resolidification of the Al-Al_2Cu eutectic:The coupled zone[J].Acta Metallurglea et Materialia,1992,40(11):2895-2906.
    [104]田莳.材料物理与性能[M].北京:北京航空航天大学出版社,2001.
    [105]姚启均.金属机械性能试验常用数据手册[M].北京:机械工业出版社,1985.
    [106]赵麦群,雷阿利.金属的腐蚀与防护[M].北京:国防工业出版社,2002.
    [107]Duhl D N,Cerel A D.Advanced high strength single crystal superalloy compositions[P].United States Patent,4,719,1080.
    [108]Morinaga M,Yuhawa N,Ezaki H.Solid solubilities in transition metal-teased f.c.c.alloys[J].Phi!Mag A,1985,51(2):223-246.
    [109]Brandes EA.Smithells Metals Reference Book[M].London:Butterworth&Co(Publishers)Ltd,London,1983.
    [110]钟喜春,曾德长,刘正义.[Co_(80)Fe_(10)Ni_(10)]_(20)Cu_(80-x)Cr_x块体合金的巨磁电阻效应研究[J].功能材料2004年,35(1):42-45.
    [111]刘力虎,唐贵德,聂向富.La_(0.9)Sr_(0.1)MnO_3/Fe_2O_3复合体系的异常磁电阻效应[J].功能材料2006年,37(3):370-371.
    [112]机械工程材料性能数据手册编委会.机械工程材料性能数据手册[M].北京:机械工业出版社,1995.
    [113]Yao H B,Li Y,WeeAT S,et al.The alloying effect of Ni on the corrosion behavior of melt-spun Mg-Ni ribbons[J].Electrechimica Acta,2001,(46):2649-2657.
    [114]Nishida M,Kawamura Y,Yamsmuro T.Formation process of unique microstructure in rapidly solidified Mg_(97)ZnY_2 alloy[J].Materials Science and Engineering,2004,A375-377:1217-1223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700