气体添加剂对选择性非催化还原脱硝反应过程影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性非催化还原(SNCR)脱硝技术具有成本适中、脱硝效率中等、在老机组采用相对容易等特点,在我国的研究和应用处于刚刚起步阶段,具有一定的应用前景。对SNCR脱硝性能的一个严重制约是其脱硝温度窗口相对狭窄,本文的研究工作围绕开发能够拓宽SNCR脱硝温度窗的廉价易得的气体添加剂展开。
     首先在电加热的管式流动反应器试验研究了气体添加剂CO、CH_4和H_2对SNCR反应中NO还原的影响以及NH_3和添加剂的转化规律。CO、CH_4和H_2都能使SNCR脱硝温度窗向低温移动。综合考虑最佳温度降低幅度、温度窗宽度和脱硝效率等因素,添加剂CH_4的性能最好,其主要缺点是会引起较高的CO排放,在最佳脱硝温度附近CO排放达到最高,此时CH_4向CO的转化率在50%以上。
     在对单一成分添加剂研究的基础上,为了给采用煤气化气等工业混合气做添加剂提供理论基础和指导,本文对由CO、CH_4和H_2构成的复合添加剂进行了研究。发现当复合添加剂中各组分浓度相差不十分悬殊时,CO和CH_4构成的复合添加剂使SNCR温度窗改变的效果与单独添加其组分CH_4的效果比较接近,CO组分所起到的作用相对较小。H_2和CH_4构成的复合添加剂的影响与其各组分单独作用有比较明显的差别,说明H_2和CH_4在复合添加剂中都起到了重要的作用。当CO和H_2构成的复合添加剂中CO的浓度不多于H_2时,H_2对复合添加剂的性能起决定性作用。当CO的浓度大于H_2的浓度时,CO组分在复合添加剂中所起的作用趋于明显和重要。对CO、CH_4和H_2构成的复合添加剂,CH_4和H_2组分起到主导作用,而CO的影响相对较小。
     为了分析添加剂影响SNCR的反应机理,并对此做出预测,综合前人的建模成果及最近的研究进展,构建了添加剂CO、CH_4和H_2参与的SNCR基元反应机理,通过与本文试验结果的对照和对反应机理的分析,参考相关文献,针对机理中某些基元反应的动力学参数进行了修正,使之能对试验结果做出更准确的预测。机理分析表明添加剂CO、CH_4和H_2主要是通过自身氧化过程中形成链分支反应,促进OH等活性基的生成来影响SNCR反应的。由于添加剂氧化形成链反应的反应途径和反应速率不同,造成了它们对SNCR反应的影响有所不同。对加入复合添加剂的SNCR脱硝反应的作用机理分析表明添加剂CO、CH_4和H_2共存时,添加剂自身的消耗及其影响SNCR脱硝的关键反应与各添加剂单独作用时是相同的。组分CO、CH_4和H_2对复合添加剂性能影响有区别的主要原因是这三者氧化竞争OH,并引发链反应促进OH生成的能力不同。
     采用本文的基元反应机理和前人提出的混合模型对添加剂参与的SNCR脱硝反应进行了计算,发现当采用H_2做添加剂时,如果还原气体(NH_3和添加剂H_2)与模拟烟气不能快速混合,最大脱硝效率会大幅度的下降,这对试验结果做出了合理的解释。
     本文采用前人提出的两步总包反应和修正反应温度来体现添加剂影响的方法,通过对基元反应模型的计算结果进行数据回归,得到了添加剂参与的SNCR脱硝总包反应模型的动力学参数。并通过与基元反应机理的计算结果和试验结果的比较验证了模型的可靠性。
     在以上研究的基础上,采用本文发展的总包反应模型,借助CFD软件Fluent对一台600MW的电站锅炉上化学动力学和流动混合等物理过程共同控制的SNCR脱硝过程进行数值模拟,考察了大型锅炉上采用气体添加剂改善SNCR脱硝性能的效果。与工业试验测量结果及其设计值的比较表明计算模型能够对大型电站锅炉上SNCR脱硝过程进行比较准确的预测。小型反应器上的研究表明添加剂能够大大加快低温下SNCR脱硝反应速率,进而显著提高脱硝效率并降低NH_3漏失。大型锅炉上的计算结果显示添加剂能显著减轻NH_3漏失。不采用添加剂时NH_3漏失最高达59μL/L,采用CO添加剂能够使NH_3漏失降低到14μL/L以下。不同负荷下SNCR脱硝效率在27 ~ 35%之间,采用CO添加剂也没能使脱硝效率有大幅度的提高,采用CO前后脱硝效率的变化幅度小于两个百分点。大型锅炉上添加剂的作用效果需要今后进一步研究。
Among the developed technologies for reducing emissions of NOx, selective non-catalytic reduction (SNCR) is characterized by considerably lower capital cost, moderate NOx removal efficiency and easy installation. A serious limitation of this process is that the temperature range over which NOx can be reduced is relatively narrow. This research focuses on developing cheaper and easily available gas additives which could widen the SNCR temperature window.
     Firstly, the influences of CO, CH_4 and H_2 on NOx reduction and the transform of NH_3 and the additives in SNCR process were investigated experimentally in an electricity-heated tube reactor. All the three additives can shift the temperature window to lower temperature. Comprehensive considering the decreasing extent of the optimal temperatue for NOx removal, the width of the temperature window and NOx removal efficiency, CH_4 is the most effective additive of the three, and its disadvantage is to causes CO emission due to its incomplete oxidation, the maximum conversion rate of CH_4 to CO could be more than 50% near the optimum temperature for NOx reduction.
     Based on the study of single component additive, the composite additives composed of CO, CH_4 and H_2 were investigated experimentally in order to providing a solid background for the application of coal gas and other industrial gas mixtures as additives in SNCR process. The results show that while the mole ratio of the components is comparative, the effects of composite additive composed of CO and CH_4 on SNCR temperature window is closed to that of its component CH_4. The contribution of CO component is relatively minor. The temperature window with composite additive composed of H_2 and CH_4 is distinct from that with its each component, so both H_2 and CH_4 component make important contributions. While the fraction of CO is no more than that of H_2 in composite additives composed of them, the performance of composite additives is dominated by H_2 component; while the fraction of CO becomes larger, the influence of CO component becomes notable. The performance of composite additive composed of CO, CH_4 and H_2 depends mainly on CH_4 and H_2 component. The function of CO component is relatively minor.
     To analysis the reaction mechanism and predict the influence of the additives, a primary elementary reaction mechanism for promoted SNCR process by CO, CH_4 and H_2 was developed. By reaction mechanism analysis, the kinetic data of several elementary reactions was revised referring the related literatures, so as to make more exact predictions of the experimental results. By mechanism analysis, the effects of these additives on NOx reduction are achieved principally by promoting the production of OH and other radicals through chain reaction in their own oxidation process. The difference of the additives in changing the temperature window may be attributed to the distinction of their reaction path and reaction rates. While these additives are coexisted, their consumptions and their influences on SNCR are achieved by the same way as they are added individually. The distinct contribution of CO, CH_4 or H_2 component on the property of composite additive are mainly caused by their different competence with respect to reacting with OH and producing OH radical by chain reaction.
     A simple approach for mixing previously proposed together with the elementary reaction mechanism were used to calculation the SNCR process promoted by the additives. The results show while H_2 additive is used, if the mix of reducing gas(NH_3 together with H_2) and the simulated flue gas is not fast enough, the maximum NOx removal efficiency will decrease remarkably, which give a reasonable interpretation on the experimental results.
     Two steps overall reactions for SNCR process previously proposed and the method for considering the effects of additives by adjusting the reaction temperature were adopted. The kinetic data of the overall reactions model for SNCR process promoted by additives was obtained by data regression based on the calculation results of the elementary reaction model. The overall reactions model is validated by experimental results and the predicted results of the elementary reaction model.
     Numerical simulation of SNCR process controlled by fluid-dynamic and chemical kinetics of reactants in a 600MW utility boiler is performed using CFD code Fluent together with the overall reactions model developed in this work. The numerical model was validated by industry experimental results and the design value. The researches in laboratory scale reactor indicate that the rate of SNCR reaction can be enhanced by the investigated additives greatly, so higher NOx removal efficiency and lower NH_3-slip can be obtained under low temperature. The calculation results in 600MW utility boiler show that NH_3-slip can be abated significantly by injecting some additives to furnace. The maximum predicted NH_3-slip is 59μL/L while no additive is used, and it decreases to less than 14μL/L while CO additive is injected. The predicted NOx removal efficiency is between 27 and 35% under different boiler load. The NOx removal efficiency is not raised largly by injecting CO and its variation caused by CO addition is less than 2%. However the effects of additives on SNCR process in large scale boilers need further researches in future.
引文
1徐旭常,陈昌和.燃煤污染防治与生态优化.中国工程院第四次院士大会学术报告论文集.北京. 1998: 303-313
    2周维,王雪松,张远航,等.我国NOx污染状况与环境效应及综合控制策略.北京大学学报(自然科学版). 2008, 44(2): 323-330
    3王金南,曹东,杨金田,等.能源与环境中国2020.北京:中国环境科学出版社, 2004 : 71-72
    4田贺忠,郝吉明,陆永琪,等.中国氮氧化物排放清单及分布特征.中国环境科学. 2001, 21(6): 493-497
    5孙锦余.利用氮氧化物控制技术治理大气污染.节能. 2004,(5): 41-44
    6王钟,王颖.火电厂烟气脱硝技术探讨.吉林电力. 2005,(6): 1-5
    7刘峻峰,李金龙,白郁华.大气光化学烟雾反应机理比较(Ⅱ)HOx和光化学氧化产物的比较.环境化学. 2001, 20(4): 313-318
    8杨菁.光化学烟雾的形成机理及防治措施.安阳师范学院学报. 2007,(5): 101-103
    9单志强,陈建华.光化学烟雾的形成、危害及防治.地质灾害与环境保护. 2003, 14(3): 36-38
    10张稳婵.光化学烟雾及防治对策的探讨.太原师范学院学报(自然科学版). 2003, 2(3): 69-71
    11阿斯娅·克里木,帕丽旦·克里木.光化学烟雾大气污染的形成机理.新疆师范大学学报(自然科学版). 2002, 21(3): 26-30
    12靳卫齐,杨萌.城市光化学烟雾的形成机理与防治.化学工业与工程技术. 2007, 28(3): 22-24
    13卢芳.大气中氮氧化物对生态环境的影响.青海师范大学学报(自然科学版). 2006,(3): 87-89
    14肖晓存,王雪纳.大气中氮化物的污染与防治.煤炭技术. 2005, 24(8): 1-2
    15葛雨今.锅炉降低NOx排放改造.华北电力技术. 2008(1): 32-34
    16王广盛,赵显坤,桂永亮.工业锅炉的NOX污染及防治.石油化工环境保护. 2003, 26(2): 52-53
    17 J. F. Amal, J. B. Michel, D. G.Harrison. Nitric Oxide in the Pathogenesis of Hypertension. Current Opinion in Nephrology & Hypertension. 1995, 4(2):182-188
    18 S. Bachmann, P. Mundel. Nitric Oxide in the Kidney: Synthesis, Localization, and Function. American Journal of Kidney Diseases, 1994, 24(11): 112-129
    19 P. J. Barnes. Nitric Oxide and Airway Disease. Annals of Medicine, 1995, 27(3): 389-393
    20 P. J. Barnes. NO or No NO in Asthma?. Thoran, 1996, 51(2): 218-220
    21 L. Thorjφrn, M. S. Hans, S.Arne, et al. Acid Deposition and its Effects in China: an Overview. Environmental Science Policy, 1999, (2): 9-24
    22张继娟,魏世强.我国城市大气污染现状与特点.四川环境. 2006, 25(3): 105-108
    23赵志龙.我国酸雨状况及综合防治对策研究.矿冶. 2007, 16(3): 63-68
    24曾汉才,姚斌,程俊峰,等.大型锅炉NOx排放评价及其标准修订的建议.华中电力. 2001, 14(6): 20-23
    25国家环境保护局. GB3095-1982.大气环境质量标准.国家技术监督局, 1982
    26国家环境保护局. GB3095-1996.环境空气质量标准.国家技术监督局, 1996
    27国家环境保护局. GB13223-1991.燃煤电厂大气污染物排放标准.国家技术监督局, 1991
    28国家环境保护局. GB13223-1996.火电厂大气污染物排放标准.国家技术监督局, 1996
    29国家环境保护局. GB13223-2003.火电厂大气污染物排放标准.国家技术监督局, 2003
    30吴少华,刘辉,姜秀民,等.用超细粉再燃技术降低氮氧化物排放.中国电力. 2003, 36(2): 1-4
    31 S. C. Hill, L. D. Smoot, P. J. Smith. Prediction of Nitrogen Oxide Formation in Turbulent Coal Flames. 20th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1985: 1391-1400
    32 Y. H. Song, J. H. Pohl, J. M. Beer, et al. Nitric Oxide Formation during Pulverized Coal Combustion. Combustion Science and Technology 1982, 28(1-2): 31-40
    33 S. C. Hill, L. D. Smoot. Modeling of Nitrogen Oxides Formation and Destruction in Combustion System. Progress in Energy and Combustion Science. 2000, 26(4-6): 417-458
    34周涛,刘少光,吴进明,等.火电厂氮氧化物排放控制技术.环境工程. 2008, 26(6): 82-85
    35 Zeldovich著,袁钧卢,张佩芳译.煤的燃烧理论与技术.华东化工学院出版社, 1990
    36 W. Pershing, J. O. L. Wendt. Pulverized Coal Combustion: the Influence of Flame Temperature and Coal Composition on Thermal and Fuel NOx. 16th Symposium ( International ) on Combustion. Pittsburgh, PA, The Combustion Institute, 1976: 389-399
    37 C. T. Bowman. Chemistry of Gaseous Pollutant Formation and Destruction. Fossil Fuel Combustion. 1991: 215-260
    38李莉.燃煤电厂烟气NOx减排控制技术综述.太原城市职业技术学院学报. 2008(5): 156-157
    39 N. A. Burdett. Effects of Air Staging on NOx Emissions from a 500MW Down-fired. Journal of the Institute of Energy. 1987, 60(444): 103-107
    40 S. L. Chen. NOx Formation from Different Coal Types in a Bench Scale Reactor under Excess Air and Staged Combustion Conditions. Energy and Environmental Research Corporation. 1981
    41 H. Spliethoff. Low-NOx Combustion for Pulverized Coal a Comparison of Air Staging and Reburning. Inst. Energy’s Int. Conf. Combust. Emiss. Control Proc. Inst. Energy Conf. 2nd. 1995: 61-70
    42 T. Kolb, P. Jansohn and W. Leuckel. Reduction of NOx Emission in Turbulent Combustion by Fuel-Staging/Effects of Mixing and Stoichiometry in the Reduction Zone. 22nd Symposium ( International ) on Combustion. Pittsburgh, PA, The Combustion Institute, 1988: 1193-1203
    43 M. Ostberg, P. Glarborg, A. Jensen, et al. A Model of the Coal Reburning Process. 27th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1998: 3027-3035
    44韩才元,徐明厚,周怀春,等.煤粉燃烧.科学出版社, 2001
    45宣小平,姚强,岳长涛,等.选择性催化还原法脱硝研究进展.煤炭转化. 2002, 25(3): 26-31
    46刘今.发电厂烟气脱硝技术—SCR法.江苏电机工程. 1996, 15(1): 51-55
    47叶代启.烟气中氮氧化物的治理.环境保护科学. 1999, 24(4): 1-4
    48 H. Bosch, F. J. Janssen. Catalytic Reduction of Nitrogen Oxides: A Review onthe Fundamentals and Technology. Catalysis Today. 1998: 369-378
    49朱江涛,王晓晖,田正斌. SNCR脱硝技术在大型煤粉炉中应用探讨.能源研究与信息. 2006, 22(1): 18-21
    50管一明,张伯溪,关越.选择性非催化还原法烟气脱氮氧化物工艺.电力环境保护. 2006, 22(4): 15-19
    51 R. K. Lyon. Method for the Reduction of the Concentration of NO in Combustion Effluents using Ammonia. U.S. Patent 3900554, 1975
    52钟秦.选择性非催化还原法脱除NOx的实验研究.南京理工大学学报. 2000, 24(1): 68-71
    53王智化,周俊虎,周昊,等.炉内高温喷射氨水脱除NOx机理及其影响因素的研究.浙江大学学报(工学版). 2004, 38(4): 495-500
    54 Q. Nguyen, W. Zhou, D. Moyeda, et al. A Successful SNCR Design with CFD Applications in a Gas Fired Co Boiler, AIChE Annual Meeting, Conference Proceedings, 2005, 11: 9337-9342
    55 M. T. Javed, Naseem Irfan and B. M. Gibbs. Control of Combustion-Generated Nitrogen Oxides by Selective Non-Catalytic Reduction. Journal of Environmental Management. 2007, 83(3): 251-289
    56吕洪坤,杨卫娟,周俊虎,等.化学计量比、雾化压力对电站锅炉SNCR脱硝的影响.化工学报. 2008, 59(11): 2888-2903
    57李可夫,陶玲,吴少华,等.选择性非催化脱硝还原中NH3漏失因素的试验研究.中国电机工程学报. 2008, 28(5): 51-56
    58王智化,周昊,周俊虎,等.不同温度下炉内喷射氨水脱除NOx的模拟与试验研究.燃料化学报. 2004, 32(1): 48-53
    59卢志民,周俊虎,王智化,等.碳酸氢铵选择性非催化还原烟气中的氮氧化物.燃烧科学与技术. 2005, 11(6): 511-514
    60李可夫,吴少华,高冠帅,等.选择性非催化脱硝不同还原剂的比较试验研究.热能动力工程, 2008, 23(4): 417-420
    61 F. Kasuya, P. Glarborg, J. E. Johnsson, et al. The Thermal DeNOx Process: Influence of Partial Pressures and Temperature. Chemical Engineering Science. 1995, 50(9): 1455-66
    62 J. A. Caton, Z. Xia. The Selective Non-Catalytic Removal (SNCR) of Nitric Oxides From Engine Exhaust Streams: Comparison of Three Processes. Transactions of the ASME, 2004, 126(2): 234-240
    63 L. J. Muzio, J. K.Arand, D. P. Teixeira. Gas Phase Decomposition of Nitric Oxide in Combustion Products. 16th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1976: 199-208
    64卢志民,周俊虎,岑可法,等.不同O2浓度下NH3选择非催化还原NO的实验和模型研究.中国电机工程学报. 2008, 28(29): 78-82
    65 M. A. I. Robin, H. J. Price, R. T. Squires. Tailoring NH3 Based SNCR for Installation on Power Plants Boilers. Joint EPA/EPRI Symposium on Stationary Combustion NOx Control, Springfield, VA, Section 5A, 1991, 99-118
    66沈伯雄,韩永富,刘亭.氨选择性非催化还原烟气脱硝研究进展.化工进展. 2008, 27(9): 1323-1327
    67 J. Suhlmann, G.. Rotzoll. Experimental Characterization of the Influence of CO on the High-Temperature Reduction of NO by NH3. Fuel. 1993, 72(2): 175-179
    68 M. U. Alzueta, H. Rojel, P. G. Kristensen, et al. Laboratory Study of the CO/NH3/NO/O2 System: Implications for Hydrid Reburn/SNCR Strategies. Energy and Fuels. 1997, 11(3): 716-723
    69高亮,王智化,凌忠钱,等.炉内高温喷射尿素溶液脱硝机理及其影响因素.锅炉技术. 2005, 36(2): 72-75
    70 Z. H. Wang, J. H. Zhou, Y. W. Zhang, et al. Experiment and Mechanism Investigation on Advanced Reburning for NOx Reduction: Influence of CO and Temperature. Journal of Zhejiang University Science(Life Science), 2005, 6B(3): 187-194
    71 S. W. Bae, S. A. Roh, S. D. Kim. NO Removal by Reducing Agents and Additives in the Selective Non-Catalytic Reduction ( SNCR ) Process. Chemosphere, 2006, 65(1): 170-175
    72 M. T. Javed, W. Nimmo, B. M. Gibbs. Experimental and Modeling Study of the Effect of CO and H2 on the Urea DeNOx Process in a 150 kW Laboratory Reactor. Chemospher. 2008, 70(6): 1059-1067
    73 W. Duo, K. Dam-Johansen, K. Ostergaard. Widening the Temperature Range of the Thermal DeNOx. Process An Experimental Investigation. 23rd Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1990: 297-303
    74 R. Hemberger, S. Muris, K. U. Pleban, et al. Experimental and Modeling Studyof the Selective Noncatalytic Reduction of NO by Ammonia in the Presence of Hydrocarbons. Combustion and Flame. 1994, 99(3-4): 660-668
    75张彦文,蔡宁生.加入甲烷促进选择性非催化还原反应的实验研究.中国电机工程学报. 2007, 27(35): 7-11
    76高攀,路春美,韩奎华,等.添加剂协同选择性非催化还原NO的过程研究.燃烧科学与技术. 2008, 14(4): 333-337
    77 R. K. Lyon, J. E. Hardy. Discovery and Development of Thermal DeNOx Process. Industrial and Engineering Chemistry Research Fundamentals. 1986, 25(1): 19-24
    78 L. J. Muzio, K. L. Maloney, J. K. Arand. Reactions of NH3 with NO in Coal-Derived Combustion Products. 17th Symposium ( International ) on Combustion. Pittsburgh, PA, The Combustion Institute, 1978: 89-96
    79 S. Takahashi, I. Yamashita, K. Korematsu. Influence of Initial Concentration on DeNOx Process by Ammonia Addition. JSME International Journal Series II .1990, 33(2): 377-383
    80 S. Azuhata, H. Akimoto, Y. Hishinuma. Effect of H2O2 on Homogenous Gas Phase NO Reduction Reaction with NH3. AlChE Journal. 1982, 28(1): 7-11
    81沈伯雄,刘亭,韩永富.选择性非催化还原脱除氮氧化物的影响因素分析.中国电机工程学报. 2008, 28(23): 53-59
    82韩奎华,路春美,王永征,等.选择性非催化还原脱硝特性试验研究.中国电机工程学报. 2008, 28(14): 80-85
    83 V. M. Zamansky, M. S. Sheldon, and P. M. Maly. Enhanced NOx Reduction by Interaction of Nitrogen and Sodium Compounds in the Reburning Zone. 28th Symposium ( International ) on Combustion. Pittsburgh, PA, The Combustion Institute, 1998: 3001-3008
    84 V. M. Zamansky, P. M. Maly, L. Ho, et al. Promotion of Selective Non-Catalytic Reduction of NO by Sodium Carbonate. 27th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1998: 1443-1449
    85 V. M. Zamansky, V. V. Lissianski, P. M. Maly, et al. Reactions of Sodium Species in the Promoted SNCR Process. Combustion and Flame. 1999, 117(4): 821-831
    86 S. Lee, K. Park, J. Park, et al. Characteristics of Reducing NO using Ureaand Alkaline Additives. Combustion and Flame. 2005, 141(3): 200-203
    87张薇,杨卫娟,周俊虎,等.钠盐对选择性非催化还原反应促进作用的实验研究.中国电机工程学报. 2008, 28(3): 33-38
    88 Y. Y. Lee, A. Sekthira and C. M. Wong. The Effects of Calcined Limestones on the NH3-NO-O2 Reactions. Proceedinos of 8th International Conference on FBC, Houston, METC, Vol. 2, 1985, 1208-1218
    89 Y. Y. Lee, S. M. S. Soares and A. Sekthira. The Effects of Sulphated Limestones on the NH3-NO-O2 Reactions. Proceedinos of the 9th International Conference on FBC, Boston, ASME (Edited by J. P. Mustonen), Vol. 2, 1987, 1184-1187
    90 B. Leckner, M. Karlsson, K. Dam-Johansen, et al. Influence of Additives on Selective Noncatalytic Reduction of NO with NH3 in Circulating Fluidized Bed Boilers. Industrial & Engineering Chemistry Research. 1991, 30(11): 2396-2404
    91 Y. W. Zhang, N. S. Cai, J. B. Yang, et al. Experimental and Modeling Study of the Effect of CH4 and Pulverized Coal on Selective Non-Catalytic Reduction Process. Chemosphere. 2008, 73(5): 650-656
    92 J. A. Miller, M. C. Branch and R. J. Kee. A Chemical Kinetic-Model for the Selective Reduction of Nitric-Oxide by Ammonia. Combust. Flame, 1981, 43(2): 81-98
    93 J. A. Miller, C. T. Bowman. Mechanism and Modeling of Nitrogen Chemistry in Combustion. Progress in Energy and Combustion Science, 1989, 15(4): 287-338
    94 P. Glarborg, K. Damjohansen, J. A. Miller, et al. Modeling the Thermal DeNOx Process in Flow Reactors-Surface Effects and Nitrous-Oxide Formation. International Journal of Chemical Kinetics. 1994, 26(4): 421-436
    95 F. Kasuya, P. Glarborg, J. E. Johnsson, et al. Thermal DeNOx Process: Influence of Partial Pressures and Temperature. Chemical Engineering Science, 1995, 50(9):1455-1466
    96 P. Glarborg, K. Damjohansen, J. A. Miller. The Reaction of Ammonia with Nitrogen-Dioxide in a Flow Reactor-Implications for the NH2+NO2 Reation. International Journal of Chemical Kinetics. 1995, 27(12): 1207-1220
    97 J. A. Miller, P. Glarborg. Modeling the Formation of N2O and NO2 in the Thermal De-NOx Process.in Gas Phase Chemical Reaction Systems: Experiments and Models 100 Years After Max Bodenstein. Eds. J.Wolfrum, H.-R.Volpp, R. Rannacher, J.Warnatz. Springer Series in Chemical Physics, 1996, Vol 61, 318-333
    98 J. A. Miller. Theory and Modeling in Combustion Chemistry. 26th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1996: 461-480
    99 J. A. Miller, P. Glarborg. Modeling the Thermal De-NOx Process: Closing in on a Final Solution. International Journal of Chemical Kinetics. 1999, 31(11): 757-765
    100 E. C. Zabetta, P. Kilpinen, M. Hupa, et al. Kinetic Modeling Study on the Potential of Staged Combustion in Gas Turbines for the Reduction of Nitrogen Oxide Emissions from Biomass IGCC Plants. Energy and Fuels. 2000, 14(4): 751-761
    101 O. Skreiberg, P. Kilpinen and P. Glarborg. Ammonia Chemistry Below 1400 K Under Fuel-Rich Conditions in a Flow Reactor. Combustion and Flame. 2004, 136(4): 501-518
    102 T. Hasegawa, M. Sato. Study of Ammonia Removal from Coal-Gasified Fuel. Combustion and Flame. 1998, 114 (1-2): 246-258
    103张彦文,蔡宁生,李振山.加入CH4促进SNCR过程的计算与机理分析.热力发电.清华大学,2005(12): 9-12
    104张彦文,蔡宁生.对用烃类和氨为还原剂的脱硝技术的计算分析.热能动力工程. 2006,21(6): 623-627
    105 M. T. Javed, N. Irfan. Computational modelling of NOx Removal by Selective Non-Catalytic Reduction. International Journal of Environment and Pollution. 2007, 29(4): 495-504
    106 J. A. Miller, C. T. Bowman. Kinetic Modeling of the Reduction of Nitric Oxide in Combustion Products by Isocyanic Acid. International Journal of Chemical Kinetics. 1991, 23(4): 289-313
    107 G. Stahl, J. Warnatz. Numerical Investigation of Time-Dependent Properties and Extinction of Strained Methane and Propane-Air Flamelets. Combustion and Flame. 1991, 85(3-4): 285-299
    108张彦文,蔡宁生.加入甲烷促进选择性非催化还原反应的机理验证和分析.中国电机工程学报,2008,28(2): 49-54
    109 K. H. Han, C. M. Lu. Kinetic Model and Simulation of Promoted SelectiveNon-Catalytic Reduction by Sodium Carbonate. Chinese Journal of Chemical Engineering. 2007, 15(4): 512-519
    110 J. Brouwer, M. P. Heap, D. W. Pershing, et al. Model for Prediction of Selective Noncatalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Mixing Limitations in the Presence of CO. 26th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1996: 2117-2124
    111 K. Duo, K. Dam-Johansen, and M. Ostergaard. Kinetics of the Gas-Phase Reaction between Nitric Oxide, Ammonia and Oxygen. Canadian Journal of Chemical Engineering. 1992, 70(5): 1014-1020
    112 M. Ostberg and K. Dam-Johansen. Empirical Modeling of the Selective Non-Catalytic Reduction of NO: Comparison with Large-Scale Experiments and Detailed Kinetic Modeling. Chem. Engineering Science. 1994, 49(12): 1897-1904
    113 Hongjie Xu. Modeling of Nitrogen Oxides Control Through Advanced Reburning. Brigham Young University. Phd. Thesis. 1999
    114 M. A. Cremer, C. J. Montgomery, D. H. Wang, et al. Development and Implementation of Reduced Chemistry for Computional Fluid Dynamics Modeling of Selective Non-Catalytic Reduction. 28th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 2000: 2427-2434
    115 X. H. Han, X. L. Wei, U. Schnell, et al. Detailed Modeling of Hybrid Reburn/SNCR Processes for NOx Reduction in Coal-Fired Furnaces. Combustion and Flame. 2003, 132(3): 374-386
    116 E. F. Zanoelo, L. A. C. Meleiro. Adynamic Optimization Procedure for Non-Catalytic Nitric Oxide Reduction in Waste Incineration Plants. Chemical Engineering Science. 2007, 62 (23): 6851-6864
    117韩昭沧.燃料及燃烧.第二版.冶金工业出版社. 1994: 21-22
    118 T. Hasegawa, M. Sato. Study of Ammonia Removal from Coal-Gasified Fuel. Combustion and Flame. 1998, 114(1): 246–258.
    119宿凤明.生物质旋风空气气化的试验研究.哈尔滨工业大学博士学位论文. 2007: 13-14
    120 P. Glarborg, M. U. Alzueta, K. Dam-Johansen, et al. Kinetic Modeling ofHydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion and Flame. 1998, 115(1-2): 1-27
    121 D. L. Baulch, C. J. Cobos, R. A. Cox, et al. Evaluated Kinetic Data for Combustion Modeling. Journal of Physical and Chemical Reference Data. 1992, 21(3): 411-429
    122 D. K. Maity, W. T. Duncan, T. N. Truong. Direct ab Initio Dynamics Studies of the Hydrogen Abstraction Reactions of Hydrogen Atom with Fluoromethanes. Journal of Physical Chemistry A. 1999, 103(13): 2152-2159
    123 S. M. Hwang, M. J. Rabinowitz, W. C. Gardiner. Recombination of Methyl Radicals at High Temperatures. Chemical Physics Letters. 1993, 205(2-3): 157-162
    124 A. Lifshitz, C. Tambuiru, P. Frank, et al. The Reaction CH3 + NO→HCN + H2O. Experimental and Modeling Study. Journal of Physical Chemistry. 1993, 97(16): 4085-4090
    125 T. N. Zwietering. The Degree of Mixing in Continuous Flow Systems. Chemical Engineering Science. 1959,11(1): 1-15
    126 M. Oliva, M. U. Alzueta, A. Millera, et al. Theoretical Study of the Influence of Mixing in the SNCR Process Comparison with Pilot Scale Data. Chemical Engineering Science. 2000, 55(22): 5321-5332
    127 H. Rojel, A. Jensen, P. Glarborg, et al. Mixing Effects in the Selective Noncatalytic Reduction of NO. Industrial and Engineering Chemistry Research. 2000, 39(9): 3221-3232
    128 J. F. Grcara, P. Glarborg, J. B. Bell, et al. Effects of Mixing on Ammonia Oxidation in Combustion Environments at Intermediate Temperatures. Proceedings of the Combustion Institute. 2005, 30(1): 1193-1200
    129乔瑜,徐明厚, W.H.Green.基于敏感性分析的H2/O2反应机理最优简化.中国电机工程学报. 2006, 26(4): 16-20
    130 T. H. Shih, W. W. Liou, A. Shabbir, et al. A New k-εEddy-Viscosity Model for High Reynolds Number Turbulent Flows-model Development and Validation. Computers Fluids. 1995, 24(3): 227-238
    131陶文铨.数值传热学.第2版.西安交通大学出版社,2001:374-376
    132 B. F. Magnussen. On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow. 19th AIAAMeeting, St. Louis, 1981
    133 A. D. Gosman, E. Ioannides. Aspects of Computer Simulation of Liquid-fuelled Combustion. J. Energy. 1983, 7(6): 482-490
    134 H. Kobayashi, J. B. Howard, A. F. Saarofim. Coal Devolatilization at High Temperature. 16th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1976: 411-425
    135 Y. R. Sivathanu, G. M. Faeth. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames. Combustion and Flame. 82(2): 211-230
    136 M. M. Baum, P. J. Street. Predicting the Combustion Behavior of Coal Particles. Combust. Sci. Tech. 1971, 3(5): 231-243
    137 P. Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method. AIAA Journal. 1964, 2(9): 1662-1664
    138 R. K. Hanson, S. Salimian. Survey of Rate Constants in H/N/O Systems. In W. C. Gardiner, Combustion Chemistry, 1984: 361-366
    139 G. G. De Soete. Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen. 15th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1974: 1093-1102
    140 J. M. Levy, L. K. Chen, A. F. Sarofim et al. NO/Char Reactions at Pulverized Coal Flame Conditions. 18th Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1981
    141 R. Rota, D. Antos, E. F. Zanoelo, et al. Experimental and Modeling Analysis of the NOxOUT Process. Chemical Engineering Science. 2002, 57(1): 27-38
    142 E. F. Zanoelo. A Lumped Model for Thermal Decomposition of Urea. Uncertainties Analysis and Selective Non-Catalytic Reduction of NO. Chemical Engineering Science. 2009, 64(5): 1075-1084
    143 H. Zhou, A. D. Jensen, P. Glarborg, et al. Numerical Modeling of Straw Combustion in a Fixed Bed. Fuel, 2005, 84(4): 389–403
    144刘向军,徐旭常.采用不同网格比较伪扩散对四角切圆型炉膛流场计算的影响.燃烧科学与技术. 1997,3(2): 114-117
    145卢志民. SNCR反应机理及混合特性研究.浙江大学博士学位论文. 2006, 149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700