城市生活垃圾焚烧炉SNCR脱硝技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类文明的进步和人口的增长,生活垃圾的产生量不断增加,对环境造成的污染日益加剧,已成为我国社会经济持续发展和生态文明建设的一大阻碍。垃圾焚烧技术由于其占地小、垃圾减量化稳定化无害化程度高、能量利用率高等优点而得到迅速发展。虽然我国采用焚烧处理生活垃圾起步较晚,但在引进、消化和吸收国外先进技术的基础上,基本完成了机械炉排焚烧炉的国产化和大型化的发展过程。同时,国家的相关政策和污染控制标准也将对垃圾焚烧的二次污染控制提出更高的要求。其中氮氧化物是城市生活垃圾焚烧烟气中主要的大气污染物之一,已成为研究垃圾焚烧二次污染的研究热点。因此,针对我国城市生活垃圾成分特点,研究符合中国国情的科学型、实用型垃圾焚烧炉脱硝方法已成为摆在从事生活垃圾焚烧处理技术研究人员面前的一项重要任务。
     从国外及国内的发展经验看,SNCR脱硝技术由于其投资及运行成本较其他脱硝技术低、改造方便、比较适用于烟气中NOX含量和所需还原率较低的燃烧设备,适宜生活垃圾焚烧炉脱硝。本文针对我国垃圾多成分和多形态、高水分和高挥发分、低热值和低固定碳的特点,对垃圾焚烧炉SNCR脱硝技术进行了理论、实验、数值模拟、生命周期和经济性研究。
     利用干燥箱模拟垃圾在固定床上的干燥过程,在100~200℃温度区间,分别对不同的单元垃圾及混合垃圾进行了干燥实验。结果表明,垃圾试样的厚度越厚,干燥速率越小,干燥时间越长。不同的干燥模型适合不同的垃圾试样:对于垃圾混样,Two term exponential和Page模型拟合效果较好;对于白菜茎,Page模型拟合效果较好;对于土豆块,Two term exponential、Page和Attenuation Index equation模型拟合效果较好;对于桔子皮,Page模型拟合效果较好。垃圾试样的扩散系数介于1.62×10~(-9) m~2/s~4.53×10~(-6) m~2/s,活化能介于12.66 kJ/mol~17.25 kJ/mol之间。垃圾不同含水率对氮氧化物生成产生一定的影响。随着含水率的增加,挥发分析出最大质量百分比增加,氮氧化物生成浓度降低,NO生成最大量与挥发分几乎同时达到最大值。
     在电加热管式流动反应器中以氨气作为还原剂,对SNCR脱硝反应的影响因素和不同气体添加剂的SNCR反应进行了实验研究。分析得出SNCR合适的温度窗口在875~1000℃范围内;最佳氨氮摩尔比为1.5;NO初始浓度和O_2浓度在实际运行中对SNCR的影响较小;加入CO、CH_4和H_2添加剂都能使最佳反应温度降低;加入CO和CH_4后对最大脱硝率没有明显的影响,而加入H_2后使最大脱硝率明显的降低;添加剂CO和H_2使温度窗口明显变窄,而CH_4使温度窗口有所增宽;加入CO、CH_4和H_2后,NH_3逃逸量降低;综合考虑各方面的影响,三种气体中CH_4为较合适的添加剂。
     运用FLIC固相模拟软件和FLENT气相模拟软件分别模拟垃圾床层焚烧特性与燃烧室燃烧特性,并和实际运行数据进行对比,验证了数学模型的可靠性,并就不同的炉排速度、富氧气氛和含水率的影响进行了计算,结果表明:随着炉排运动速度的增加,挥发分开始析出位置距燃料入口越来越远,烟气温度降低,NO_X生成量减少而CO生成量增加;富氧气氛下,与传统的运行气氛相比,炉膛出口烟气温度、NO生成量与CO生成量都有所增加;随着垃圾含水率的增加,烟气温度升高,炉膛出口CO浓度、NO_X浓度增加,而氧气含量降低。
     采用CFD技术对SNCR喷嘴布置与优化进行研究。包括SNCR脱硝方法中喷嘴布置方式、喷射口数量、位置、喷射速度等。结果显示:炉膛内适宜SNCR反应的区域位于折焰角下方;在折焰角附近烟气流动速度梯度较大,流速分布较均匀,适合SNCR喷嘴布置;在折焰角下方,前后炉墙布置4个喷口、左右炉墙布置2个喷口,并以80m/s的速度喷入还原剂,还原剂与烟气混合较均匀,能达到较高的脱硝效果。
     以某垃圾焚烧厂实施的SNCR脱硝技术为研究对象,采用LCA方法,对该技术整个生命周期的环境影响进行评价,包括SNCR脱硝技术整个生命周期的能源消耗和对环境的影响。结果表明:SNCR运行过程中污染物排放量最大;从能源的消耗过程来看,主要是原材料生产过程消耗量最大,SNCR脱硝技术的环境负荷为4686人当量,该技术减少酸化470人当量,减少富营养化874人当量。
     运用费用—效益原理,对SNCR脱硝技术进行技术经济评价,动态计算了垃圾焚烧发电厂投资的烟气脱硝装置的年费用及主要影响因素对脱硝技术经济指标的影响。可以得出以下结论:对于投资费用而言,SNCR脱硝装置的设备购置费在各项投资费用中所占比例最大,达到82.91%;对于SNCR脱硝装置的年运行费用,还原剂费用在所有成本中所占比例最大,达到SNCR脱硝年运行费用的31.8%,SNCR脱硝装置的年费用为133.93万元,脱除每吨NO_X费用为8542.95元。随着年利用小时数的增加,年费用呈线性增加,而脱硝单位费用减小;随着还原剂价格的增加,年费用和脱硝单位费用均呈线性增加;随着排污费用的增加,年费用和脱硝单位费用均呈下降趋势。
With the progress of human civilization and the growth of population, the amount of municipal solid waste has become increasing and environment pollution more seriously; it has become a major obstacle for social economy sustainable development and ecological civilization construction. For the reaseas that smaller land acquisition, higher level of reduction, stability, harmless, energy utilization efficiency, and the waste incineration technology has become rapidly development. Although municipal solid waste incineration with a late starts, our country has completed the localization and large-scale of the mechanical grate incinerator based on introduction, digestion and absorption of foreign advanced technology. Meanwhile, relevant policies and pollution control standards in our contury will also put forward higher requirements for second pollution control. Nitrogen oxides are one of the major air pollutants of municipal solid waste incineration, and have become a research hotspot of secondary pollution. Therefore, based on characteristics of municipal solid waste in our country, it has become an important task for researchers working on municipal solid waste incineration to study NO_X removal method with science and practeical based on Chinese national conditions.
     From foreign and domestic development experience, the SNCR de-NO_X technology is suitable for municipal solid waste, for the reaseas that lower investment and operation cost than other de-NO_X technology, easy to reconstruct, more suitable for the sombustion equipment with lower NO_X content and reduction rate. For the characteristics of multi-conponent, multi-form, high moisture, high volatile, low heating value and fixed carbon of municipal solid waste in our contury, this paper studied SNCR NO_X removal technology of municipal solid waste by theoretical analysis, experimental, numerical simulation, life cycle and economical assessment.
     Regarding drying oven as fixed bed, during 100~200℃, this paper made drying experiment for different units and mixed waste. The results showed that the thicker of waste sample resulted in the lower drying rate and the longer drying time. Different dying models for different waste samples: Two term exponential and Page models for mixed waste; Page model for cabbage stem and orange peel. Effective diffusivity of waste samples is in the range of 1.62×10~(-9)m~2/s~4.53×10~(-6)m~2/s and activation energy is 12.66kJ/mol~17.25kJ/mol. Different moisture content affects the nitrogen oxides. With the increasing of moisture content, volatile maximum mass percentage increased, the NO_X concentration reduced, and the NO and volatile almost simultaneously reached maximum.
     Taking ammonia as the reducing agent, this paper studied the effect factors and additives of SNCR technology in electric heating reactor. The results showed that the right temperature window was in the range of 875~1000℃; the normalized stoichiometric ratio was 1.5; the initial NO concentration and O_2 concentration had little effect on SNCR in the actural operation; the CO, CH_4 and H_2 reduced the best reaction temperation; CO and CH_4 had little effect on reducing maximum de-NO_X efficiency, but H_2 was the opposite. CO and H_2 made the temperature window narrower, but CH_4 widener; CO, CH_4 and H_2 reduced the amount of NH_3 slip. Considering the various factors, CH_4 was the best appropriate additives.
     Using the solide phase mathematic modeling–FLIC and gas phase modeling–FLUENT, this paper numerical simulated the characteristics of bed combustion and over-bed combustion. The results of numerical simulated were compared with actual operation data, and verified the reliability of the mathematical model. Furthermore, this paper calculated the effect of grate speed, rich- oxygen atmosphere and moisture content on combustion. The results showed that with the increasing of grate speed, the position of volatile starting emission was farther away from the fuel inlet, the gas temperature reduced, the amount of NO formation and CO formation were increased; with the increasing the moisture in waste, the gas temperature increased, the CO concentration and NO_X concentration increased but O_2 concenctration reduced.
     This paper studied nozzle arrangement and optimization of SNCR technology, including nozzle arrangement, number of jet, location and speed. The results showed that the suitable area of SNCR reaction located under the furnace arch where the gas flows gradient is larger and velocity more uniform; under the furnace arch, 4 jet were arranged in front and back furnace wall, 2 jet in left and right funace wall, jet speed was 80 m/s, the reducing agent and gas mixed well and got higher de-NO_X efficiency.
     To study the whole life cycle environment assessment of the SNCR technology in a waste combustion plant, this paper used the LCA method. The assessment included energy comsumption and environment assessment. The results showed that the emission in SNCR operation process was maximal; for energy comsumption, the material product process was the main contributer. The environment load of SNCR technology was 4686 PET_(2000), acidification and nutrient enrichment reduced 470PET_(2000) and 874PET_(2000) respectively.
     To assess of technical and economic of SNCR technology, this paper dynamic calculated annual cost of de-NO_X equipment in a waste combustion plant and main effect factors on technical and economic indicator. For investment, the results showed that the purchase cost was the main contributor in all kinds of investments, and reached 82.91%; for annual cost, the cost of reducing agent was the main contributor, and reached 31.8%; the annual cost of SNCR technology was 1.3393millon yuan, NO_X removal cost per ton was 8542.95yuan. With the increasing of number of utilize hours, the annual cost increased linearly, while the cost of removal unit NO_X reduced; with the increasing of reducing agent cost, annual cost and removal unit NO_X cost increased linearly; with the increasing of fine fee, both annual cost and removal unit NO_X cost reduced.
引文
[1].中国环境保护产业协会城市生活垃圾处理委员会.我国城市生活垃圾处理行业2009年发展综述[J].行业综述, 2009. 17
    [2].张衍国,李清海,康建斌.垃圾清洁焚烧发电技术[M]. 2004: 6-8
    [3].郑守忠,煤粉再燃技术中煤焦异相还原高温烟气中NO的实验和理论研究[D].南京:东南大学, 1999
    [4].王赞娥.采用SNCR技术炉内燃烧及脱硝反应过程的数值模拟[D].哈尔滨:哈尔滨工业大学, 2007
    [5]. S.C.Hill, L.D.S. Modeling of nitrogen oxides formation and destruction in combustion systems [J]. Progress in Energy and Combustion Science, 2000, 26(4-6): 417-458
    [6].李晓东,黄国权,李爱民.异重流化床垃圾焚烧技术的试验研究[J].动力工程, 1998,18(6): 21-25
    [7].毛玉如,武全平,夏同棠.城市生活垃圾发电的现状、分析与展望[J].新能源, 1999,21(6): 33-37
    [8]. Lyngfelt A, L.B. Combustion of wood-chips in circulating fluidized bed boilers-NO and CO emissions as function of temperature and air-staging [J]. Fuel, 1999, 78(9): 1064-1072
    [9]. Goel, Shakti, Sarofim Adel. Emissions of nitrogen oxides from circulating fluidized bed combustion: modeling results using detailed chemistry [J]. Symposium (International) on Combustion, 1996, 26 (2): 3317-3324
    [10].Dal L. The development and prospective of bioenergy technology in China [J]. Biomass & Bioenergy, 1998, 5(2): 181-186
    [11].Mukadi L, Guy C, Legros R. Prediction of gas emission in an internally circulating fluidized bed combustor for treatment of industrial solid wastes [J]. Fuel, 2000, 79(9): 1125-1136
    [12].Aho M J, Paakkinen K M. Effects of pressure, oxygen partial pressure, and temperature on the formation of N2 O, NO and NO2 from pulverized coal [J]. Combustion and Flame, 1995, 102(3): 387-400
    [13].Y.B.Yang, J.Goodfellow, D.Ward, et al. Cutting wastes from municipal solid waste incinerator plants [J]. Process Safety and Environmental Protection, 2003, 81(3):143-155
    [14].Y.B.Yang, J.Goodfellow. Modelling waste combustion in grate furnaces [J]. Process Safety and Environmental Protection, 2004, 82(3): 208-222
    [15].M.B. Chang, J.J.Lin, S.H. Chang. Characterization of dioxin emissions from two municipal solid waste incinerators in Taiwan [J]. Atmospheric Environment, 2002, 36(2): 279-286
    [16].M.B.Chang, Y.C.Cheng., K.H.Chi. Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes [J]. Science of the Total Environment, 2006, 366(2-3): 456-465
    [17].M.B.Chang, K.H.Chi., S.H.Chang, et al. Destuction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant [J]. Chemosphere, 2007, 66(6): 1114-1122
    [18].P.Glarborg, A.D.Jensen, J.E.Johnsson. Fuel nitrogen conversion in solid fuel fired system [J]. Progress in Energy and Combustion Science, 2003, 29(2): 89-113
    [19].Jenkins BM, Baxer LL, Miles Jr. TR. Combustion of biomass [J]. Fuel Process Technology, 1998, 54(2): 17-46
    [20].Werther J, Saenger M, Hartge E-U. Combustion of agricultural residues [J]. Progress in Energy and Combustion Science, 2000, 26(1): 1-27
    [21].R.P. Van der Lans, L.T.Pedersen, A.Jensen. Modelling and experiments of straw combustion in a grate furnace. Biomass & Bioenergy, 2000, 19(3): 199-208
    [22].Hans-Heinz Frey, Bemhard Peters. Characterization of municipal solid waste combustion in a grate furnace [J]. Waste management, 2003, 23(8): 689-701
    [23].Zakaria, R., Goh, Y.R., et al. Reduction of NOX emission from the burning bed in a municipal solid waste incinerator [C]. In: The Fifth European Conference on Industrial Furnaces and Boilers, 2000, Espinho-Porto-Portugal:11-14
    [24].Johannes Suhlmann, Gerd Rotzoll. Experimental characterization of the influence of CO on the high-temperature reduction of NO by NH3 [J]. Fuel, 1993, 72(2): 175-179
    [25].R.Hemberger, S.Muris, K.U.Pleban, et al. An experimental and modeling study of the selective noncatalytic reduction of NO by ammonia in the presence of hydrocarbons [J]. Combustion and Flame, 1994, 99(4): 660-668
    [26]. Alzueta. M.U., R?jel H., Kristensen P.G. Laboratory study of the CO/NH 3 /NO/O2 system: implications for hybrid Reburn/SNCR strategies [J]. Energy & Fuels, 1997, 11(3): 716-723
    [27].Sang Wook Bae, Seon Ah Roh, Sang Done Kim. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process [J]. Chemosphere, 2006, 65(1): 170-175
    [28].M.Tayyeb Javed, W.Nimmo, B.M.Gibbs. Experimental and modeling study of the effect of CO and H2 on the urea DeNOX process in a 150kW laboratory reactor [J]. Chemosphere, 2008, 70(6): 1059-1067
    [29]. R.Rota, E.F.Zanoelo. Influence of oxygenated additives on the NOXOUT process efficiency [J]. Fuel, 2003, 82(7): 765-770
    [30].高攀,路春美,韩奎华.添加剂协同选择性非催化还原NO的过程研究[J].燃烧科学与技术, 2008, 14(4): 333-337
    [31].张彦文,蔡宁生.加入甲烷促进选择择非催化还原反应的实验研究[J].中国电机工程学报, 2007, 27(35): 7-11
    [32].梁秀进,仲兆平,金保升,等. CH4作添加剂对SNCR脱硝工艺的影响[J].东南大学学报, 2009, 39(3): 629-634
    [33].吕洪坤,杨卫娟,周俊虎,等. CO含量对烟气选择性非催化还原反应的影响[J].化工学报, 2009, 60(7): 1774-1780
    [34].马晓茜.垃圾焚烧炉设计新思路[J].工业加热, 2000(4): 29-31
    [35].汤庆合,丁振华,江家骅,等.大型垃圾焚烧厂周边环境汞影响的初步调查[J].环境科学, 2005, 26(1): 196-199
    [36].聂永丰.国内生活垃圾焚烧的现状及发展趋势[M].城市管理与科技, 2009, 3: 18-21
    [37].汪玉林.垃圾发电技术及工程实例[M].北京:化学工业出版社, 2003: 151-160
    [38].杨国清.固体废物处理工程[M].北京:科学出版社, 2000: 191-216
    [39].卢苇,马一太.垃圾焚烧的发展趋势分析[J].太阳能学报, 2002, 6(23): 799-804
    [40].张于峰,邓娜,李新禹,等.城市生活垃圾的处理方法及效益评价[J].自然科学进展, 2004, 8(14): 863-869
    [41].张力,冉景煜,屈超蜀.城市固态生活垃圾的工业分析与热解特性[J].环境保护科学, 2000, 26(6): 17-20
    [42].陈梅倩,陈允轩,贾力,等.高水分城市生活垃圾干燥过程的动力学分析[J].华北电力大学学报, 2008, 35(3): 75-78
    [43]. Jaruk Srikiatden, John S.Roberts. Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity [J]. Journal of Food Engineering, 2008, 84(4): 516-525
    [44].Hatamipour M.S, D. Mowla. Shrinkage of carrots during drying in an inert medium fluidized bed. Journal of Food Engineering, 2002, 55(3): 247-252
    [45]. Ruiz-Lopez, I.I., A.V. Córdova, et al. Moisture and temperature evolution during food drying: effect of variable properties [J]. Journal of Food Engineering, 2004, 63(1): 117-124
    [46].Sfredo, M.A., J.R.D. Finzer, et al. Heat and mass transfer in coffee fruits drying [J]. Journal of Food Engineering, 2005, 70(1): 15-25
    [47].Sharaf-Eldeen, Y.l., & Hamdy, M.Y. Falling rate drying of fully exposed biological materials: A review of mathematical models[A]. ASAE Paper No. 79-6622. 1979, Winter Meeting of ASAE
    [48].Crank, J. Mathematics of diffusion (2nd ed.) [M]. London: Oxford University Press, 1975
    [49]. Babalis, S.J., Elias Papanicolaou, et al. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica) [J]. Journal of Food Engineering, 2006, 75(2): 205-214
    [50].Lewis, W.K. The rate of drying of solid materials [J]. Industrial Engineering Chemistry, 1921, 13: 427-432
    [51]. Azzouz, S., Guizani, A., Lomaa, et al. Moisture diffusivity and drying kinetic equation of convective drying of grapes [J]. Journal of Food Engineering, 2002, 55(4): 323-330
    [52]. Pahlavanzadeh, H., A. Basiri, et al. Determination of parameters and pretreatment solution for grape drying [J]. Drying Technology, 2001, 19(1): 217-226
    [53].Sawhney, R.L., D.R, et al. Drying kinetics of single layer Thompson seedless grapes under heated ambient air conditions [J]. Drying Technology, 1999, 17(1-2): 215-236
    [54]. Sawhney, R.L., Sarsavadia, et al. Determination of drying constants and their dependence on drying air parameters for thin layer onion drying [J]. Drying Technology, 1999, 17(1-2): 299-315
    [55]. Henderson, S.M., Pabis, et al. Grain drying theory.I.Temperature effect on drying coefficient [J]. Journal of Agricultural Engineering Research, 1961, 6: 169-174
    [56].Togrul, I.T. D. Pehlivan. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process [J]. Journal of Food Engineering, 2004, 65(3): 413-425
    [57]. Sharaf-Eldeen, Y.I., Blaisdell, et al. A model for ear corn drying [J]. Transactions of the ASAE, 1980, 23: 1261-1265
    [58].Page, G.E. Factors influencing the maximum rates of air drying shelled corn in thin layers [J]. M.Sc.Thesis, Purdue University, 1949
    [59].Chhinnan, M.S. Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans [J]. Transactions of the ASAE, 1984, 27(2): 610-615
    [60].Overhults, D.G., White, et al. Drying soybean with heated air [J]. Transactions of the ASAE, 1973, 16: 112-113
    [61].Pathak, P.K., Agrawal. Thin-layer drying model for rapeseed [J]. Transactions of the ASAE, 1991, 34(6): 2505-2508
    [62].Wang, C.N., Singh, et al. A single layer drying equation for rough rice [J]. ASAE Paper, 1978
    [63].Chen mei Qian, C.Y.X., Jia Li. Experimental study on the drying of the high moisture MSW [J]. Journal of Environmental Sciences-China, 2008, 28(5): 951-955
    [64].Thompson, T.L., Peart, et al. Mathematical simulation of corn drying-a new model [J]. Transactions of the ASAE, 1968, 11: 582-586
    [65]. Senadeera W, Bhesh R. Bhandari, Gordon Young, et al. Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying [J]. Journal of Food Engineering, 2003, 58(3): 277-283
    [66].S.Simal, A.F., M.C.Garau. Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit [J]. Journal of Food Engineering, 2005, 66: 323-328
    [67].Wenli D, Dam-Johansen K, Ostergaard K. The influence of additives on selective non catalytic reduction of nitric oxide with NH3 [A]. ACHEMASIA [C], 1989, Beijing
    [68].卢志民. SNCR反应机理及混合特性研究[D].浙江:浙江大学, 2006
    [69].吕洪坤,杨卫娟,周俊虎,等.水蒸汽对选择性非催化还原反应影响的实验研究[J].中国电机工程学报, 2010, 30(14): 50-55
    [70].James A.Miller, Craig T.Bowman. Mechanism and modeling of nitrogen chemistry in combustion [J]. Progress in Energy and Combustion Science, 1989, 15(4): 287-338
    [71].K.Suksankraisorn, S.P., B.Fungtammasan. Combustion studies of high moisture content waste in a fluidized bed [J]. Waste Management, 2003, 23(5): 433-439
    [72].Ligang Liang, Rui Sun, Jun Fei. Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed [J]. Bioresource Technology, 2008, 99: 7238-7246
    [73]. Donald Lucas, Nancy J. Brown. Characterization of the selective reduction of NO by NH3 [J]. Combustion and Flame, 1982, 47: 219-234
    [74]. J.A.Caton, J.K.Narney, H.C.Cariappa, et al. The selective non-catalytic reduction of nitric oxide using ammonia at up to 15% oxygen [J]. The Canadian Journal of Chemical Engineering, 1995, 73(3): 345-350
    [75]. Mark A. Kimball-Linne, Ronald K. Hanson. Combustion-driven flow reactor studies of thermal DeNOX reaction kinetics [J]. Combustion and Flame, 1986, 64(3): 337-351
    [76]. L.J.Muzio, J.K.Arand, D.P.Teixeira. Gas phase decomposition of nitric oxide in combustion products [J]. Symposium (International) on Combustion, 1977, 16(1): 199-208
    [77]. L.J.Muzio, K.L.Maloney, J.K.Arand. Reactions of NH3 with NO in coal-derived combustion products [J]. Symposium (International) on Combustion, 1979, 17(1): 89-96
    [78]. Donald Lucas, Nancy J.Brown. Characterization of the selective reduction of NO by NH3 [J]. Combustion and Flame, 1982, 47: 219-234
    [79]. P. Lodder, J.B.Lefers. Effect of natural gas,C2 H6 and CO on the homogenous gas phase reduction of NOX by NH 3 [J]. The Chemical Engineering Journal, 1985, 30(3): 161-167
    [80]. M.Tayyeb Javed, Naseem Irfan, B.M.Gibbs. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction [J]. Journal of Environmental Management, 2007, 83(3): 251-589
    [81].Robin, M.A.I., Price, et al. Tailoring NH3 based SNCR for installation on power plants boilers [R]. Joint EPA/EPRI Symposium on Stationary Combustion NOX Control, Springfield, VA, Section 5A, 1991
    [82].S.L.Chen, J.A.Cole., M.P.Heap, et al. Advanced NOX reduction processes using NH andCN compounds in conjunction with staged air addition [J]. Symposium (International) on Combustion, 1989, 22(1): 1135-1145
    [83]. Richard K.Lyon. The NH3 -NO-O2 reation [J]. International Journal of Chemical Kinetics, 1976, 8(2): 315-318
    [84]. Fumihiko Kasuya, Peter Glarborg, Jan E, et al. The thermal de-NOX process: influence of partial pressures and temperature [J]. Chemical Engineering Science, 1995, 50(9): 1455-1466
    [85]. Richard K.Lyon. Method for the reduction of the concentration of NO in combustion effluents using NH3 [P]. US: 3900554, 1975
    [86].Weili, D., Dam-Johansen, K., et al. The influence of additives on selective non-catalytic reduction of nitric oxide with NH 3 [M]. ACHEMASIA, Beijing, 1989
    [87]. S.Muris, R.Hemberger, K.U.Pleban. An experimental and modeling study of selective non-catalytic reduction of NO by ammonia in presence of hydrocarbon [J]. Combustion and Flame, 1994, 99(3-4): 660-668
    [88]. J.A.Caton, D.L.Siebers. Reduction of nitrogen oxides in engine exhaust gases by the addition of cyanuric acid [J]. Journal of Engineering for Gas Turbines and Power, 1989, 111(3): 387-394
    [89]. Suhlmann, J and Rotzoll, G. Experimental characterization of the influence of carbon monoxide on the high-temperature reduction of nitric oxide (NO) by ammonia [J]. Fuel, 1993, 72(2): 175-179
    [90].Lyon, R.K., Longwell, et al. Selective non-catalytic reduction of NOX by NH3 [R]. San Francisco: The Proceedings of NOX Control Technology Seminar, 1976
    [91].Teixeira, D.P., Muzio, et al. Effect of trace combustion species on SNCR performance [R]. Hawaii: AFRC/JFRC International Conference on Environmental Control of Combustion Process, 1991
    [92]. Duo Wenli, Kim Dam-Johansen, Knud ?stergaard. Widening the temperature range of the thermal DeNOX process, and experimental investigation [J]. Symposium (International) on Combustion, 1991, 23(1): 297-303
    [93].Lyon, R.K. Thermal DeNOX controlling NOX emission by non-catalytic process [J]. Environmental Science and Technology, 1987, 21(3): 231-236
    [94].Lyon, R.K., Benn, et al. Kinetics of the NO-NH 3 -O2 Reaction [J]. Symposium (International) on Combustion, 1979, 17(1): 601-610
    [95].Lyon, R.K., Longwell, et al. Discovery and development of thermal DeNOX process [J]. Industrial & Engineering Chemistry Fundamentals, 1986, 25(1): 19-24
    [96]. James A.Miller, M.C.Branch, Robert J.Kee. Chemical model for the selective reduction of nitric oxide by ammonia [J]. Combustion and Flame, 1981, 43: 81-98
    [97].Kee, R.J., Rumpley, et al. The CHEMKIN thermodynamic database [R]. Sandia National laboratories, Sandia report, SAND 87-9215B
    [98].Kee, R.J., Rumpley, et al. Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics [R]. Sandia report, SAND 89-9009B
    [99].Brouwer, J., Heap, et al. A model for prediction of selective non-catalytic reduction of nitrogen oxides by ammonia, urea, and cyanuric acid with mixing limitations in the presence of CO [J]. Symposium (International) on Combustion, 1996, 26(2): 2117-2124
    [100].M.A.Cremer, C.J. Montgomery. Development and implementation of reduced chemistry for computational fluid dynamics modeling of selective non-catalytic reduction [J]. Proceedings of the Combustion Institute, 2000, 28(2): 2427-2434
    [101].K.Baek, A.Gentemann, J.A.Caton. Selective Non-Catalytic Removal of NO2 by Ammonia: Experimental and Numerical Results [R]. Proceedings of the 2002 Technical Meeting of the Central State Section of the Combustion Institute, 2003
    [102].石锦妹. 300MW四角喷燃锅炉燃烧及NOX排放特性的数值模拟[D].北京:华北电力大学, 2004
    [103].吕钰,王智化,杨卫娟,等.大型燃煤锅炉SNCR过程数值研究[J].浙江大学学报, 2010, 44(4): 750-754
    [104].秦岭. 410t/h锅炉煤粉再燃低NOX控制的数值模拟研究[D].浙江:浙江大学, 2006
    [105].Y. B. Yang, Y.R.Goh, R.Zakaria. Mathematical modelling of MSW incineration on a travelling bed [J]. Waste Management, 2002, 22(4): 369-380
    [106]. Y.R.GOH, C.N.LIM, R.ZAKARIA. Mixing, modeling and measurements of incinerator bed combustion [J]. Icheme, 2000, 78: 21-32
    [107].Yao Bin Yang, Robert Newman, Vida Sharifi. Mathematical modelling of straw combustion in a 38 MWe power plant furnace and effect of operating conditions [J].Fuel, 2007, 86: 129-142
    [108]. Vafai K, Sozen M. Analysis of energy and momentum transport for fluid flow through a porous bed [J]. J Heat Transfer, 1990, 112: 690-699
    [109].FLUENT, 6.2. Manual: Fluent Inc USA
    [110].Mi-Soo Shin, Hey-Suk Kim, Dong- Soon Jang. Numerical study on the SNCR application of space-limited industrial boiler [J]. Applied Thermal Engineering, 2007, 27: 2850-2857
    [111].Hey-Suk. Kim, Mi-Soo Shin, Dong-Soon Jang, et al. Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex [J]. Applied Thermal Engineering, 2004, 24: 2117-2129
    [112]. Gang-Woo Lee, Byung-Hyun Shon, Jeong-Gun Yoo, et al. The influence of mixing between NH3 and NO for a De-NOX reaction in the SNCR process [J]. Journal of Industrial and Engineering Chemistry, 2008, 14: 457-467
    [113]. In-Hee Hwang, Hiroshi Minoya, Toshihiko Matsuto, et al. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators [J]. Chemosphere, 2009, 74: 1379-1384
    [114]. J.M.Jones, P.M.Patterson, M.Pourkashanian, et al. Modelling NOX formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors [J]. Fuel, 1999, 78(10): 1171-1179
    [115]. Vafai K, Sozen M. Analysis of energy and momentum transport for fluid flow through a porous bed [J]. J Heat Transfer, 1990, 112: 690-699
    [116].Guo Hui Liu, Xiao Qian Ma, Zhaosheng yu. Experimental and kinetic modeling of oxygen-enriched air combustion of municipal solid waste [J]. Waste Management, 2008, 29: 792-796
    [117].Yu Zhaosheng, Ma Xiaoqian, Liu Ao. Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres [J]. Energy Conversion and Management, 2009, 50: 561-566
    [118].白良成.生活垃圾焚烧处理工程技术[M], 2009: 260-414
    [119]. M.Oliva, M.U.Alzueta, A.Millera, et al. Theoretical study of the influence of mixing in the SNCR process [J]. Comparison with pilot scale data, 2000, 55: 5321-5332
    [120].路涛,贾双燕,李晓云.四角切圆燃烧锅炉中SNCR过程的数值模拟[D].保定:华北电力在大学, 2004
    [121].梁秀进,仲兆平,金保升,等. SNCR脱硝工艺的混合试验研究及热态验证[J].锅炉技术, 2009, 40(6): 68-73
    [122].高亮,王智化,凌忠钱,等.炉内高温喷射尿素溶液脱硝机理及其影响因素[J].锅炉技术, 2005, 36(2): 72-75
    [123].M.A.Cremer, E.G.E. CFD modeling of SNCR performance in Georgia Power Company’s Hammond unit 4 and wansley unit 1[D]. 1998
    [124].周俊虎,周林华,杨卫娟,等.新型扇形雾化喷嘴的实验研究[J].过程工程学报, 2007,7(4): 652-655
    [125]. R.A.Smith, L.J.M. Integrated Dry NOX/SO2 Emissions Control System: Low-NOX combustion system SNCR test report [M]. 1994
    [126]. Richard Himes, P.E. Demonstration of SNCR Trim on a 185 MW Tangential Design Coal-Fired Utility Boiler [A]. In 2002 Conference on SCR and SNCR for NOX Control, 2002
    [127].Wojichowski, D. SNCR systems to minimize emissions [M]. 2004, Brunswick
    [128].Schick, R.J. Characterization of two fluid nozzles for NOX control applications [A]. In 2003 Conference on Selective Catalytic Reduction and Non-Catalytic Reduction for NOX Control, 2003
    [129]. James Valentine, M.C., Kevin Davis, et al. CFD simulations for the analysis of NO reduction strategies in coal-fired boilers [A]. In 2003 Power-Gen Conference, 2003. Las Vegas, NV USA
    [130]. R.Hardman, J.C. Evaluation of SNCR performance on large-scale coal-fired boilers [A]. In institute of Clean Air Companies (ICAC) Forum on Cutting NOX Emissions, 1998, Durham, NC, USA
    [131].B.Ljungdahl, J.L. Optimized NH3 injection in CFB boilers [J]. Powder Technology, 2001, 120: 55-62
    [132]. Ruth, L.A. Energy from municipal solid waste: a comparison with coal combustion technology [J]. Progress in Energy and Combustion Science, 1998, 24(6): 545-564
    [133].仲兆平,金保升,黄亚继,等.管道喷射吸附法净化垃圾焚烧尾气试验研究[J].东南大学学报, 2005, 35(1): 116-121
    [134].金保升,董长青,仲兆平,等.流化床掺烧生活垃圾及尾气净化实验研究[J].污染防治技术, 2002, 15(1): 1-6
    [135].林爽.垃圾焚烧炉烟气净化和处理技术[J].安徽电力, 2005, 22(2):64-65
    [136]. Clive Brereton. Municipal solid waste-incineration, air pollution control and ash management [J]. Resources, Conservation and Recycling, 1996, 16(1-4): 227-264
    [137]. T.Rogaume, M. Auzanneau, F.Jabouille, et al. The effects of different airflows on the formation of pollutants during waste incineration [J]. Fuel, 2002, 81(17): 2277-2288
    [138]. Margarida J. Quina, Jo?o C. Bordado, et al. Treatment and use of air pollution control residues from MSW incineration: an overview [J]. Waste Management, 2008, 28(11): 2097-2121
    [139]. Ally J,Pryor T. Life-cycle assessment of diesel,natural gas and hydrogen fuel cell bus transportation systems [J]. Journal of Power Sources, 2007, 170(2): 401-411
    [140]. Enrico Benetto, Patrick Rousseaux, Jacques Blondin. Life cycle assessment of coal by-products based electric power production scenarios [J]. Fuel, 2004, 83(7-8): 957-970
    [141]. Caspersen N I, S?rensen A. Improvements of products by means of life cycle assessment:high pressure cleaners [J]. Journal of Cleaner Production, 1998, 6(3-4): 371-380
    [142]. Yang Jianxin,Nielsen P H. Chinese life cycle impact assessment factors [J]. Journal of Environmental Sciences-China, 2001, 13(2): 205-209
    [143].蒋金良,马晓茜.基于生命周期评价的不同电源对环境影响的比较[J].电站系统工程, 2004, 20(3): 26-28
    [144]. UdodeHaes H A,Heijungs R.Life-cycle assessment for energy analysis and management [J]. Applied Energy, 2007, 84(7-8): 817-827
    [145].吴中如.大坝安全综合评价专家系统[M].北京:科学技术出版社, 1997: 17-21
    [146]. Aditi Singh,Lou H H,Yaws C,et al. Environmental impact assessment of different design schemes of an industrial ecosystem [J]. Resources Conservation and Recycling, 2007, 51(2): 294-313
    [147]. Alvarado S,Maldonado P,Jaques I. Energy and environmental implications of copper production [J]. Energy, 1999, 24(4): 307-316
    [148]. Adisa Azapagic. Life cycle assessment and its application to process selection, design and optimization [J]. Chemical Engineering Journal, 1999, 73(1): 1-21
    [149]. ISO 14040. ISO 14040 Environment Management-Life Cycle Assessment-Principles and Framework [M]. International Organization for Standardization, 1997
    [150]. Walter Kl?pffer. The role of SETAC in the development of LCA [J]. The International Journal of Life Cycle Assessment, 2006, 11: 116-122
    [151].ISO. Environmental Management. Life Cycle Assessment. Principle and Framework. ISO 14040:2006 [M]. International Organization for Standardization, Geneva, CH., 2006
    [152].ISO. Environmental Management. Life Cycle Assessment. Requirements and Guidelines. ISO 14044:2006 [M]. International Organization for Standardization, Geneva, CH., 2006
    [153].宋文.烟气脱硫装置技术经济分析的研究[D].武汉:武汉理工大学, 2002
    [154].吴阿峰. 700MW电厂烟气脱硝技术的技术经济分析及NOX生成模拟[D].重庆市:重庆大学, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700