用户名: 密码: 验证码:
生物还原耦合化学吸收处理模拟烟气中NO_x的机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物还原耦合化学吸收法处理烟气中氮氧化物具有处理效果好、经济成本低等优点,在烟气脱硝领域具有巨大的应用前景。本文研究了Fe(Ⅱ)EDTA-NO还原途径及机理,分析了氧气等因素对络合吸收剂再生的影响;论证了生物填料塔内生物还原耦合化学吸收工艺的可行性;通过分析生物还原耦合化学吸收法处理NO的过程,建立涉及气、液、固三相传质-反应动力学模型。论文取得以下一些有价值的结果:
     (1)根据化学计量数和中间产物分析,探明了络合态NO的还原途径为以N2O为中间产物,终产物为氮气。微生物还原络合态NO时能同时利用葡萄糖和Fe(Ⅱ)EDTA作为电子供体,葡萄糖作为优先电子供体能使微生物还原过程获取更快还原速率。
     (2)NO2-和NO3-作为竞争性电子受体阻碍了Fe(Ⅲ)EDTA还原时的电子传递,NO2-同Fe(Ⅱ)EDTA因化学反应生成部分Fe(Ⅱ)EDTA-NO的生成抑制了微生物的活性。氧气影响Fe(Ⅲ)EDTA的表观还原速率,由以下两方面的原因造成的:1)化学氧化过程使得Fe(Ⅲ)EDTA生成量增加;2)氧气对微生物毒害作用,降低了微生物的活性。
     (3)利用生物填料塔反应器能有效的去除烟气中的氮氧化物,在连续稳态条件下具有持续去除模拟烟气中氮氧化物的能力;分析了总铁浓度、进气NO、SO2、氧气浓度、进气流量、液体循环量、填料塔高度以及反应器停运闲置等工艺参数对反应器运行的影响;利用PCR-DGGE技术初步分析了不同填料层微生物群落结构。
     (4)以生物填料塔内NO传质-反应过程为研究对象,基于双膜理论,通过气相、液相以及固相(生物膜)的质量衡算,结合微生物降解动力学分析,在生物填料塔建立了NO传质-反应模型,利用该模型来预测NO的去除效率。根据该模型可知,吸收液中Fe(Ⅱ)EDTA浓度是维持生物填料塔高去除效率的关键参数。当络合吸收液中Fe(Ⅱ)EDTA浓度高于3.4 mM时,生物填料塔对NO的去除效率即可达到90%以上。
A chemical absorption-biological reduction integrated approach is employed to achieve the removal of nitrogen monoxide (NO) from the simulated flue gas with the advantages of low cost, completely reduction of NO and high removal efficiency. In this dissertation, the stoichiometry and mechanism of Fe(II)EDTA-NO reduction was investigated; the effect of environmental factors, such as oxygen, on the complex sorbent regeneration was discussed; the feasibility of biological packed column with the integrated process was studied; through the analysis of biological reduction of NO process, involving the gas, liquid, solid three-phase mass transfer, the kinetic model was established. The main original conclusions of this dissertation are:
     (1) According to stoichiometry and intermediate product analysis, reduction of NO to N2 was found to be biologically catalyzed with nitrous oxide (N2O) as an intermediate. The main product of complexed NO reduction was N2. Fe(II)EDTA and Glucose can be Simultaneously served as electron donor for complexed NO reduction. In addition, glucose is the preferred and primary electron donor.
     (2) NO2-, NO3- and oxygen had a certain inhibition of biological Fe(III)EDTA reduction. NO2- and NO3-, mainly as a competitive electron acceptor, prevented the electron transfer to Fe(III)EDTA. Formation of Fe(II)EDTA-NO also resulted in the inhibition of Fe(III)EDTA reduction. Oxygen affected Fe(III)EDTA reduction rate mainly due to both reasons:1) chemical oxidation process increasing the Fe(III)EDTA loading; 2) the toxic effects of oxygen on microorganisms decreasing the microbial activity.
     (3) Biological packed tower could effectively remove nitrogen oxides from flue gas, steady state removal efficiency under continuous operation could be maintained for a long term operation. Effect of several key parameters such as Total iron concentration, inlet NO, SO2, oxygen concentration, gas flow rate, liquid flow rate, packed column height, and reactor shutdown idle on the NO removal have been investigated in the biological packed tower. Additionally, the microbial community structure in the biological packed tower was analyses with the PCR-DGGE technology.
     (4) Based on the analysis of biological reduction of NO process and two-film theory, involving the gas, liquid, solid three-phase mass transfer, the kinetic model was established. According to the developed model, Fe(II)EDTA is a key parameter affecting the operation of the integrated prcoss. The biological packed tower can achieve 90% of NOx removal when the Fe(II)EDTA concentration in the liquid phase was up to 3.4 mM.
引文
1. Volz, A.; Kley, D. Evaluation of the montsouris series of ozone measurements made in the nineteenth century. Nature 1988,332,240-242.
    2. Harding, A. W.; Brown, S. D.; Thomas, K. M. Release of NO from the combustion of coal chars. Combust. Flame 1996,107,336-350.
    3. Solomon, S.; Portmann, R. W.; Sanders, R. W.; Daniel, J. S.; Madsen, W.; Bartram, B.; Dutton, E. G. On the role of nitrogen dioxide in the absorption of solar radiation. J. Geophys. Res.1999,104,12047-12058.
    4. Criteria for a Recommended Standard: Occupational Exposure to Oxides of Nitrogen (Nitrogen Dioxide and Nitric Oxide). US Dept of Health and Human Services, National Institute for Occupational Safety and Health:Washington, DC, 1976.
    5. Zhao, Y.; Duan, L.; Xing, J.; Lassen, T.; Nielse, C. P.; Hao, J. M. Soil Acidification in China: Is Controlling SO2 Emissions Enough? Environ. Sci. Technol.2009,43,8021-8026.
    6.刘孜,易斌,高晓晶,井鹏,岳涛,庄德安.我国火电行业氮氧化物排放现状及减排建议.环境保护.2008,16,7-10.
    7. 孙庆贺,陆永琪,傅立新,田贺中,郝吉明.我国氮氧化物排放因子的修正和排放量计算:2000年.环境污染治理技术与设备.2004,5,90-94.
    8. Duffy, B. L. D.; Curry Hyde, H. E.; Cant, N.W.; Nelson, P. F. Isotopic Labeling Studies of the Effects of Temperature, Water, and Vanadia Loading on the Selective Catalytic Reduction of NO with NH3 over Vanadia-Titania Catalysts. J. Phys. Chem.1994,98,7153-7161.
    9. Ozkan, U.S.; Cai Y.; Kumthekarm, M.W.; Mechanistic studies of selective catalytic reduction of nitric oxide with ammonia over V2O5/TiO2 (anatase) catalysts through transient isotopic labeling at steady state. J. Phys. Chem.1995, 99,2363-2371.
    10. Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NOX by ammonia over oxide catalysts:A review. Appl. Catal. B-Environ.1998,18,1-36.
    11. Ferzatti, P. Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A-Gen.2001,222,221-236.
    12.劳善根,王凯雄.日本燃煤烟气中NOx处理技术.广州环境科学.2000,15,5-8.
    13.郝吉明,马广大.大气污染控制工程(第二版).高等教育出版社.2002.
    14. Shirahama, N.; Mochida, I.; Korai, Y.; Choi, K. H.; Enjoji, T.; Shimohara, T.; Yasutake, A. Reaction of NO with urea supported on activated carbons. Appl. Catal. B-Environ 2005,57,237-245.
    15. Mhadeshwar, A. B.; Winkler, B. H.; Eiteneer, B.; Hancu, D. Microkinetic modeling for hydrocarbon (HC)-based selective catalytic reduction (SCR) of NOx on a silver-based catalyst. Appl. Catal. B-Environ.2009,89,229-238.
    16. Olsson, L.; Sjovall, H.; Blint, R. J. A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Appl. Catal. B-Environ.2008,81,203-217.
    17. Huang, J. H.; Tong, Z. Q.; Huang, Y.; Zhang, J. F. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Appl. Catal. B-Environ.2008,78,309-314.
    18. Li, Y. T.; Zhong, Q. Recent Advances in mechanisms and kinetics of low-temperature selective catalytic reduction of NOx with NH3. Prog. Chem. 2009,21,1094-1100.
    19. Pan, H.; Su, Q. F.; Chen, J.; Ye, Q.; Liu, Y. T.; Shi, Y. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature Environ. Sci. Technol.2009,43,9348-9353.
    20. Hirama, A.; Yamaguchi, D.; Mizuguchi, J. Removal of NOx Using the Reductive Properties of TiOx. Mater. Trans.2009,50,2699-2701.
    21. Bradford, M.; Grover, R.; Paul, P. Controlling NOX emissions:part 2. Chem. Eng. Prog.2002,98,38-42.
    22. Wendt, J. O. L.; Linak, W. P.; Groff, P. W.; Srivastava, R. K. Hybrid SNCR-SCR technologies for NOX control:modeling and experiment. AIChE J.2001,47, 2603-2617.
    23. Muzio, L. J.; Quartucy, G. C.; Cichanowicz, J. E. Overview and status of post-combustion NOx control:SNCR, SCR and hybrid technologies. Int. J. Environ. Pollut.2002,17,4-30.
    24. Kobayashi, H.; Takezawa, N.; Niki, T.; Removal of nitrogen oxides with aqueous solutions of inorganic and organic reagents. Environ. Sci. Technol.1997,11, 190-192.
    25. Javed, M. T.; Irfan, N.; Gibbs, B. M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manage 2007,83, 251-289
    26. Lee, G. W.; Shon, B. H.; Yoo, J. G.; Jung, J. H.; Oh, K. J. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process. J. Ind. Eng. Chem.2008,14,457-467.
    27. Nguyen, T. D. B; Kang, T. H.; Lim, Y. I.; Eom, W. H.; Kim, S. J.; Yoo, K. S. Application of urea-based SNCR to a municipal incinerator: On-site test and CFD simulation. Chem. Eng. J.2009,152,36-43.
    28. Kobayashi, H.; Takezawa, N.; Niki, T.; Removal of nitrogen oxides with aqueous solutions of inorganic and organic reagents. Environ. Sci. Technol.1997,11, 190-192.
    29. Chu, H.; Chien, T. W.; Twu, B. W.; The absorption kinetics of NO in NaClO2/NaOH solutions. J. Hazard. Mater.2001,84,241-252.
    30. Chen, L.; Hsu, C. H.; Yang, C. L. Oxidation and absorption of nitric oxide in a packed tower with sodium hypochlorite aqueous solutions. Environ. Prog.2005, 24,279-288.
    31. Byun, Y.; Ko, K. B.; Cho, M.; Namkung, W.; Lee, K.; Shin, D. N.; Koh, D. J. Reaction pathways of NO oxidation by sodium chlorite powder. Environ. Sci. Technol.2009,43,5054-5059.
    32. Wei, J.; Luo Y.; Yu, P.; Cai, B.; Tan, H. Removal of NO from flue gas by wet scrubbing with NaClO2/(NH2)2C0 solutions. J. Ind. Eng. Chem.2009,15,16-22.
    33. Chien, T. W.; Chu, H.; Li, Y. C. Absorption kinetics of nitrogen oxides using sodium chlorite solutions in twin spray columns. Water Air Soil Poll.2005,166, 237-250.
    34. Jin, D.; Deshwal, B.; Park, Y.; Lee, H. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. J. Hazard. Mater.2006, 135,412-417.
    35. Sada, E.; Kumazawa H.; Takada, Y.; Chemical reactions accompanying absorption of NO into aqueous mixed solutions of Fe(II)-EDTA and sodium sulfite. Ind. Eng. Chem. Fund.1984,23,60-64.
    36. Pham, E. K.; Chang, S. G. Removal of NO from flue gases by absorption to an iron(II) thiochelate complex and subsequent reduction to ammonia. Nature 1994, 369,139-141.
    37. Schneppensieper, T.; Finkler, S.; Czap, A.; van Eldik, R.; Heus, M.; Nieuwenhuizen, P.; Wreesmann, C.; Abma, W. Tuning the reversible binding of NO to iron(II) aminocarboxylate and related complexes in aqueous solution. Eur. J.Inorg. Chem.2001,491-501.
    38. Chien, T. W.; Hsueh, H. T.; Chu B. Y.; Chu, H. Absorption kinetics of NO from simulated flue gas using Fe(II)EDTA solutions. Process Saf. Environ.2009,87, 300-306.
    39. Teramoto, M.; Hiramine, S. I.; Shimada, Y.; Sugimoto, Y.; Teranishi, H. Absorption of dilute nitric monoxide in aqueous solutions of Fe(II)EDTA and mixed solutions of Fe(II)EDTA and Na2SO3. J. Chem. Eng. Japan 1978,11, 450-457.
    40. Sada, E.; Kumazawa, H.; Kudo, I.; Kondo, T. Individual and simultaneous absorption of dilute NO and SO2 in aqueous slurries of MgSO3 with FeⅡEDTA chelate. Ind. Eng. Chem. Process Des. Dev.1980,19,377-382.
    41. Sada, E.; Kumazawa, H.; Kudo, I.; Kondo, T. Absorption of NO in aqueous solutions of FeⅢ-EDTA chelate and aqueousslurries of MgSO3 with FeⅢEDTA chelate. Ind. Eng. Chem. Process Des. Dev.1981,20,46-49.
    42. Littlejohn, D.; Chang, S. G. Kinetic study of ferrous nitrosyl complexes. J. Phys. Chem.1982,86,537-540.
    43. Yih, S. M.; Lii, C. W. Absorption of NO and SO2 in Fe(II)EDTA solutions.1. Absorption in a double stirred vessel. Chem. Eng. Commun.1988,73,43-53.
    44. Brown, E. R.; Mazzarella, J. D. Mechanism of oxidation of ferrous polydentate complexes by dioxygen. J. Electroanal. Chem.1987,222,173-192.
    45. Bull, C.; Mcclune, G. J.; Fee, J. A. The mechanism of Fe-EDTA catalyzed superoxide dismutation. J. Am. Chem. Soc.1983,105,5290-5300.
    46. Travin, S.O.; Skurlatov, Y. I. Kinetics and mechanism of the reaction of iron(II) ethylenediaminete- traacetate (Fe2+EDTA) with molecular oxygen in the presence of ligands. Russ. J. Phys. Chem.1981,55,815-818.
    47. Chang, S. G.; Littlejohn, D.; Liu, D. K. Use of chelate of SH-containing amino acids and peptides for the removal of NOX and SO2 from flue gas. Ind. Eng. Chem. Res.1988,27,2156-2161.
    48. Liu, D. K.; Frick, L. P.; Chang, S. G A ferrous cysteine based recyclable process for the combined removal of NOX and SO2 from flue gas. Environ. Sci. Technol. 1988,22(2):219-223.
    49. Chang, S. G.; Littlejohn, D.; Shi, Y. Metal regeneration of iron chalets in nitric oxide scrubbing. US Patent 5658545,1997.
    50. Maigut, J.; Meier, R.; van Eldik, R. Influence of fluoride on the reversible binding of NO by [FeⅡ(EDTA)(H2O)]2" Inhibition of autoxidation of [FeⅡ(EDTA)(H2O)]2". Inorg. Chem.2008,47,6314-6321
    51. Ergas, S. J.; Kinney, K.; Fuller, M. E.; Scow, K. M.; Characterization of a compost biofiltration system degrading dichloromethane. Biotechnol. Bioeng. 1994,44,1048-1054.
    52. Kennes, C.; Thalasso, F. Waste gas biotreatment technology. J. Chem. Technol. Biotechnol.1998,72,303-319.
    53. Jin, Y.; Guo, L.; Veiga, M. C. Kennes, C. Optimization of the treatment of carbon monoxide-polluted air in biofilters. Chemosphere 2009,74,332-337.
    54. van Groenestijn, J. W.; Hesselink, P. G M. Biotechniques for air pollution control. Biodegradation 1993,4,283-301.
    55. Deshusses, M. A. Biological waste air treatment in biofilters. Curt. Opin. Biotechnol.1997,8,335-339.
    56. Jin, Y.; Veiga, M. C.; Kennes, C. Autotrophic deodorization of hydrogen sulphide in abiotrickling filter. J. Chem. Technol. Biotechnol.2005,80,998-1004.
    57. Kennes, C.; Rene, E. R.; Veiga, M. C. Bioprocesses for air pollution control. J. Chem. Technol. Biotechnol.2009,84,1419-1436.
    58. Flanagan, W. P.; Apel, W. A.; Barnes, J. M.; Lee, B. D. Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams. Fuel 81,1953-1961,2002.
    59. Devinny, J. S.; Deshusses, M. A.; Webster, T. S. Biofiltration for air pollution control. Lewis Publishers, NY,1999.
    60. Yang, W. F.; Hsing, H. J.; Yang, Y. C.; Shyng, J. Y. The effects of selected parameters on the nitric oxide removal by biofilter. J. Hazard. Mater.2007,148, 653-659.
    61. Chen, J. M.; Ma, J. F. Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters. J Air Waste Manage Assoc.2006,56,32-36.
    62. Davidova, Y. B.; Schroeder, E. D.; Chang, D. P. Y. Biofiltration of nitric oxide. Proceedings,90th Annual Meeting, Air and Waste Management Association, Pittsburgh, PA, June 18-22,1997.
    63. Nascimento, D. M.; Hudepohl, N. J.; Schroeder, E. D.; Chang, D. P. Y. Bio-oxidation of nitric oxide in a nitrifying aerobic filter. Proceedings,93rd Annual Meeting, Air and Waste Management Association, Salt Lake City, Utah, June 18-22,2000.
    64.陈建孟,陈俊.自养型生物过滤器硝化氧化一氧化氮.环境科学.2003,24,1-6.
    65. Mateju, V. Biological water denitrification-A review. Enzyme Microb. Technol. 1994,14,170-183.
    66. Potter, W. T.; Cho, J.; Sublette, K. L. Reduction of nitric oxide to nitrous oxide by cobalt porphyrins and corrins. Fuel Process Technol.1994,40,355-360.
    67. Potter, W. T.; Le, U.; Ronda, S.; Cho, J. G.; Shanmugasundram, R.; Chirkis, A. Sublette, K. L. Biomimetic and microbial reduction of nitric oxide. Appl. Biochem. Biotechnol.1995,51-52,771-784.
    68. Arvidsson, P.; Nilsson, K.; Hakanson, H.; Mattiasson, B. Monitoring nitric oxide from immobilised denitrifying bacteria, Pseudomonas stutzeri, by the use of chemiluminescence. Appl. Microbiol. Biotechnol.1998,49,677-681.
    69. Lee, B. D.; Apel, W. A.; Smith, W. A. Oxygen effects on thermophilic microbial populations in biofilters treating nitric oxide containing off-gas streams. Environ. Prog.2001,20,157-166.
    70. Klasson, K.; Tand Davison, B. H. Effect of temperature on biofiltration of nitric oxide. Appl. Biochem. Biotechnol.2001,91-93,205-211.
    71. Chen, J.; Jiang, Y. F.; Chen, J. M.; Sha, H. L.; Zhang, W. Dynamic model for nitric oxide removal by a rotating drum biofilter. J. Hazard. Mater.2009,168, 1047-1052.
    72. Chen, J.; Wang, Z. Y.; Jiang, Y F.; Qian, H. F.; Zhang, W.; Chen, J. M. Assessment of the bacterial community for denitrifying removal of nitric oxide in a rotating drum biofilter by denaturing gradient gel electrophoresis. Environ. Eng. Sci.2009,26,1189-1196.
    73. Ka, J.-O.; Urbance, J.; Ye, R. W.; Ahn, T.-Y.; Tiedje, J. M. Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria. FEMS Microbiol. Lett.1997,156,55-60.
    74. Lee, B. D.; Apel, W. A.; Smith, W. A. Oxygen effects on thermophilic microbial populations in biofilters treating nitric oxide containing off gas streams, Environ. Prog.2001,20,157-167.
    75. Jiang, R.; Huang, S.; Chow, A. T.; Yang, J. Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. J. Hazard. Mater.2009,164, 432-441.
    76. Ma, B. Y.; Li, W.; Jin, G. H.; Shi, Y. Dissimilatory Reduction of FeⅢ (EDTA) with Microorganisms in the System of Nitric Oxide Removal from the Flue Gas by Metal Chelate Absorption. J. Environ. Sci. (China).2004,16,428-430.
    77.荆国华,李伟,施耀,周作明.络合吸收脱除NO体系中FeⅢ(EDTA)的生物还原.环境科学.2005,26,19-23.
    78.吴成志.化学吸收-生物还原处理烟气中氮氧化物——Fe(II)EDTA-NO和Fe(III)EDTA的微生物还原特性.硕士学位论文,2006.
    79.李伟,吴成志,马碧瑶,施耀.半胱氨酸亚铁溶液吸收一氧化氮的研究.中国环境科学.2005,25,306-309.
    80. Li, W.; Wu, C.-Z.; Zhang, S.-H.; Shao, K.; Shi, Y. Evaluation of microbial reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system. Environ. Sci. Technol.2007,41,639-644.
    81. Kumaraswamy, R.; van Dongen, U.; Kuenen, J. G.; Abma, W.; van Loosdrecht, M. C. M.; Muyzer, G. Characterization of Microbial Communities Removing Nitrogen Oxides from Flue Gas:the BioDeNOx Process. Appl. Environ. Microbiol.2005,71,6345-6352.
    82. Kumaraswamy, R.; Sjollema, K.; Kuenen, J. G.; van Loosdrecht, M. C. M.; Muyzer, G Nitrate-dependent [Fe(II)EDTA]2- oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Syst. Appl. Microbiol.2006,29,276-286.
    83. van der Maas, P.; van de Sandt, T.; Klapwijk, B.; Lens, P. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions. Biotechnol. Prog.2003,19, 1323-1328.
    84. Straub, K. L.; Benz, M.; Schink, B.; Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol.1996,62, 1458-1460.
    85. Straub, K. L.; Schohuber, W. A.; Buchholz-Cleven, B. E. E.; Schink, B. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol. J.2004,21,371-378.
    86. Lovley, D. R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbial. Rev.1991, 55,259-287.
    87. Haas, J. R.; Dichristina, T. J. Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens. Environ. Sci. Technol. 2002,36,373-380.
    88. van der Maas, P.; Harmsen, L.; Weelink, S.; Klapwijk, B.; Lens, P. Denitrification in aqueous FeEDTA solutions. J. Chem. Technol. Biotechnol.2004,79,835-841.
    89. van der Maas, P.; Peng, S.; Klapwijk, B.; Lens, P. Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(III) in BioDeNOx Reactors. Environ. Sci. Technol.2005,39,2616-2623.
    90. Manconi, I.; van der Maas, P.; Lens, P. N. L. Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA2" solutions. Nitric Oxide-Biol. Ch.2006,15,40-49.
    91.李伟,吴成志,马碧瑶,施耀.双搅拌釜中半胱氨酸亚铁溶液吸收NO的传质-反应动力学.化工学报.2005,56,1843-1848.
    92.荆国华,李伟,施耀,马碧瑶,谭天恩.假单胞菌DN-1再生NO络合吸收液的特性.环境科学,2004,25,163-166.
    93. Okuno, K.; Hirai, M.; Sugiyama, M. Microbial removal of nitrogen monoxide (NO) under aerobic conditions. Biotechnol. Letters 2000,22,77-79.
    94. Chou, M. S.; Lin, J. H. Biotrickling filtration of nitric oxide. J. Air Waste Manage Assoc.2000,50,502-508.
    95. Li, W.; Wu, C. Z.; Shi, Y. Metal chelate absorption coupled with microbial reduction for the removal of NOX from flue gas. J. Chem. Technol. Biotechnol. 2006.81,306-311.
    96.荆国华.FeⅡ(EDTA)络合吸收结合生物转化脱除NO研究.博士学位论文,2004.
    97. Zhang, S. H.; Li, W.; Wu, C. Z.; Chen, H.; Shi, Y. Reduction of Fe(II)EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution. Appl. Microbiol. Biotechnol.2007,76,1181-1187.
    98. Shetlar, M. R. Use of anthrone reaction for determination of carbohydrates in the presence of serum protein. Anal. Chem.1952,24,1844-1846.
    99. Kolthoff, I. M.; Auerbach, C. Studies on the system iron-ethylenediamine tetraacetate. J. Am. Chem. Soc.1952,74,1452-1456.
    100.王凯雄,朱优峰编著.水化学(第二版),化学工业出版社,2010.
    101.Tavares, P.; Pereira, A. S.; Moura, J.J.G.; Moura, I. Metalloenzymes of the denitrification pathway. J. Inorg. Biochem.2006,100,2087-2100.
    102.郑平,徐向阳,胡宝兰编著.新型生物脱氮理论与技术.科学出版社,2004.
    103.Thauer, R. K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev.1977,41,100-180.
    104.Sφrensen, J.; Rasmussen, L. K.; Koike, I.; Micromolar sulfide concentrations alleviate acetylene blockage of nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Can. J. Microbiol.1987,33,1001-1005.
    105.Schulthess, vR.; Kuhni, M.; Gujer, W. Release of nitric and nitrous oxides from denitrifying activated sludge. Wat. Res.1995,29,215-226.
    106.Gambardella, F.; Alberts, M. S.; Winkelman, J. G. M.; Heeres, E. J. Experimental and modeling studies on the absorption of NO in aqueous ferrous EDTA solutions. Ind. Eng. Chem. Res.2005,44 (12),4234-4242.
    107.DiChristina, T. J. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J. Bacteriol.1992,174,1891-1896.
    108.Cooper, D. C.; Picardal, F. W.; Schimmelmann, A.; Coby, A. J. Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Appl Environ Microbiol 2003,69,3517-3525.
    109.Zang, V.; van Eldik, R. Influence of the polyamino carboxylate chelating ligand (L) on the kinetics and mechanism of the formation of FeⅡ(L)NO in the system FeⅡ(L)/NO/HONO/NO2- in aqueous solution. Inorg. Chem.1990,29,4462-4468.
    110.Arnold, R. G.; Hoffmann, M. R.; DiChristina, T. J.; Picardal, F. W. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens. Appl. Environ. Microbiol.1990,56,2811-2817.
    111.Kusel, K.; Dorsch, T.; Acker, G.; Stackebrandt, E. Microbial reduction of Fe(III) in acidic sediments:Isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol. 1999,65,3633-3640.
    112.Kusel, K.; Roth, U.; Drake, H. L. Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. Environ. Microbiol.2002,4(7),414-421.
    113.Straub, K. L.; Benz, B.; Schink, B. Iron metabolism in anoxic sediments at near neutral pH. FEMS Microbiol. Ecol.2001,34,181-186.
    114.Arnold, R. G.; DiChristina, T. J.; Hoffmann, M. R. Inhibitor studies of dissimilative Fe (Ⅲ) reduction by Pseudomonas sp. strain 200 ('Pseudomonas ferrireductans'). Appl. Environ. Microbiol.1986,52:281-289.
    115.Buisman, C. J. N.; Dijkman, H.; Verbraak, P. L.; Hartog, A. J. den Process for purifying flue gas containing nitrogen oxides. US Patent US5891408 (1999).
    116.van der Maas, P.; van den Bosch, P.; Klapwijk, B.; Lens, P. NOx removal from flue gas by an integrated physicochemical absorption and biological denitrification process. Biotechnol. Bioeng.2005,90,433-441.
    117.Zwart, G.; Huismans, R.; van Agterveld, M. P.; van de Peer, Y.; De Rijk, P.; Eenhoorm, H.; Muyzer, G.; van Hannen, E. J.; Gons, H. J.; Laanbroek, H. J. Divergent members of the bacterial division verrucomicrobiales in a temperate freshwater lake. FEMS Microbiol. Ecol.1998,25,159-169.
    118.Lee, K. H.; Sublette, K. L. Simultaneous combined microbial removal of sulfur dioxide and nitric oxide from a gas stream. Appl. Biochem. Biotech.1991,28/29, 623-634.
    119.Sφrensen, J.; Tiedje, J. M.; Firestone, R. B. Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Appl. Environ. Microbiol.1980,39,105-108.
    120.Martin, F. J. Effect of periods of non-use on biofilter performance. J. Air waste Manage. Assoc.1996,46(6),539-546.
    121.Zarook, S. M.; Shaikh, A. A.; Ansar, Z.; Baltzis, B. C. Biofiltration of volatile organic compound (VOC) mixtures under transient conditions. Chem. Eng. Sci. 1997,52,4135-4142.
    122.Zilli, M.; Converti, A.; Lodi, A.; Delborghi, M.; Ferraiolo, G. Phenol removal from waste gases with a biological filter by pseudomonas putida. Biotechnol. Bioeng.1993,41,693-702.
    123.付必谦,张蜂,高瑞如.生态学实验原理与方法.科学出版社,2006.
    124.Heiss, B.; Frunzke, K.; Zumft, W. G. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome be complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J. Bacteriol.1989,71,3288-3297.
    125.Kumita, H.; Matsuura, K.; Hino, T.; Takahashi, S.; Hori, H.; Fukumori, Y.; Morishima, I.; Shiro, Y. NO reduction by nitric-oxide reductase from denitrifying bacterium Pseudomonas aeruginosa characterization of reaction intermediates that appear in the single turnover cycle. J. Biol. Chem.2004,279,55247-55254.
    126.Shi, Y.; Littlejohn, D.; Chang, S. G. Kinetics of NO Absorption in aqueous iron(II) bis(2,3-dimercapto-1-propanesulfonate) solutions using a stirred reactor. Ind. Eng. Chem. Res.1996,35,1668-1672.
    127.Harriott, P.; Smith, K.; Benson, L. B. Simultaneous removal of NO and SO2 in packed scrubbers or spray towers. Environ. Prog.1993,12,110-113
    128.Gambardella, F.; Winkelman, J. G. M.; Heeres, H. J. Experimental and modelling studies on the simultaneous absorption of NO and O2 in aqueous iron chelate solutions. Chem. Eng. Sci.2006,6880-6891.
    129.Winkelman, J. G. M.; Gambardella, F.; Heeres, H. J. A rate based reactor model for BiodeNOx absorber units. Chem. Eng. J.2007,133,165-172.
    130.沙庆云等.传递原理.大连理工出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700