DNA修复基因XRCC1、XPD单核苷酸多态性及其单体型与胰腺癌遗传易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨人类X-射线修复交叉互补基因(XRCC1)、着色性干皮病基因D(XPD)单核苷酸多态性及其单体型与胰腺癌发病风险的相关性。方法:病例组为111例新疆汉族、维吾尔族胰腺癌患者;对照组为111例排除肿瘤性疾病的同期住院患者,对照按年龄(±5岁)、性别、民族因素与病例进行频数匹配。采用病例—对照研究方法,用SNaPshot SNP分型技术对XRCC1基因rs25487(SNP1)、rs3213403(SNP2)、rs731420(SNP3)、rs3213282(SNP4)、rs12611088(SNP5)、rs1001581(SNP6)和rs1799782(SNP7)位点多态基因型进行检测,同时进行单体型与胰腺癌的关联研究。针对临床胰腺癌发病相关因素,采用单因素及多因素Logistic回归分析,筛选影响胰腺癌发病的独立危险因素,并进行XRCC1基因与主要发病危险因素间交互作用的研究。采用同样技术对XPD基因rs13181(SNP1)、rs3916874(SNP2)、rs238415(SNP3)、rs50872(SNP4)、rs50871(SNP5)和rs238406(SNP6)位点多态基因型进行检测,同时进行单核苷酸多态性与胰腺癌遗传易感性的关联分析。结果:第一部分:采用单因素及多因素Logistic回归模型,分析影响胰腺癌发病的11项相关因素。单因素分析显示吸烟、饮酒是胰腺癌发病的可能危险因素;多因素分析显示,吸烟(P=0.022,OR=1.946,95%CI:1.099-3.445)是胰腺癌发病的独立危险因素。男性每日吸烟≥10支胰腺癌发病风险高于不吸烟患者(P=0.009,OR=1.610,95%CI:1.129~2.296);女性生育1-2胎、3-4胎、≥5胎并未增加胰腺癌发病风险(P>0.05);病例组患者1年内糖尿病发病率高于对照组,差异有统计学意义(P=0.044)。第二部分:(1)XRCC1基因SNP1位点GA、AA基因型和A等位基因频率在病例组均高于对照组,差异有统计学意义,P值分别为0.014和0.023。非条件logistic回归分析表明,在调整了年龄、性别、民族因素后,以GG基因型作为参照,携带GA基因型的个体较GG基因型,胰腺癌患病风险增加(P=0.007, adjusted OR=2.510,95%CI:1.309~4.889);携带AA基因型(P=0.021,adjusted OR=2.468,95% CI:1.110-5.511)、GA+AA基因型(P=0.005,adjustedOR=2.508,95% CI:1.334-4.732)的个体胰腺癌患病风险亦增加,差异有统计学意义。(2)SNP7位点CT、TT基因型和T等位基因频率在病例组均高于对照组,差异有统计学意义,P值分别为0.028和0.011。非条件logistic回归分析表明,在调整了年龄、性别、民族因素后,以CC基因型作为参照,携带CT基因型的个体较CC基因型,胰腺癌患病风险增加(P=0.015,adjusted OR=2.150,95% CI:1.191-3.866);携带CT+TT基因型的个体胰腺癌患病风险亦增加(P=0.010,adjustedOR=2.149,95% CI:1.220-3.791),差异均有统计学意义。携带TT基因型的个体,并未增加胰腺癌的患病风险(P=0.298,adjusted OR=2.160,95% CI:0.479~9.501)。(3)以单体型Hap1-AACCTAG作为参考基线,Hap4-AGCTTGG与胰腺癌发病风险之间呈正相关(P=0.61,OR=1.19,95% CI:0.62-2.28),与Hap1-AACCTAG比较,Hap4-AGCTTGG单体型患胰腺癌的风险增加了0.19倍,差异无统计学意义。(4)在每天吸烟10支以上的个体中,比较GG基因型,携带SNP1位点至少一个突变等位基因(GA+AA)的个体发生胰腺癌的风险增加(P=0.005,adjustedOR=5.480,95% CI:1.563~19.426),差异有统计学意义;比较CC基因型,携带SNP7位点至少一个突变等位基因(CT+TT)的个体发生胰腺癌的风险亦增加(P=0.035,adjusted OR=4.012,95%CI:1.041-15.160),差异有统计学意义。第三部分:(1)XPD/ERCC2基因SNP1位点AC、CC基因型和C等位基因频率在病例组均高于对照组,差异有统计学意义,P值分别为0.023和0.003。非条件logistic回归分析表明,在调整了年龄、性别、民族因素后,以AA基因型作为参照,携带AC基因型的个体较AA基因型,胰腺癌患病风险增加了1.035倍(P=0.030,adjusted OR=2.035,95% CI:1.121~3.885);携带AC+CC基因型的个体胰腺癌患病风险亦增加了1.029倍(P=0.007,adjusted OR=2.029,95% CI:1.255~3.712),二者差异均有统计学意义。携带CC基因型的个体胰腺癌患病风险亦增加(P=0.051,adjusted OR=2.251,95% CI.1.122~5.017),但差异无统计学意义。(2)XPD/ERCC2基因SNP1(rs13181)位点多态性与吸烟存在交互作用,在每天吸烟10支以上的个体中,比较AA基因型,携带SNP1位点至少一个突变等位基因(AC+CC)的个体发生胰腺癌的风险增加(P=0.033,OR=4.243,95% CI:1.123~16.857),差异有统计学意义。结论:吸烟是影响胰腺癌发病的独立危险因素。核苷酸切除修复基因XPD Lys751Gln、碱基切除修复基因XRCC1 Arg399Gln Arg194Trp突变均可导致DNA修复能力的下降,从而增加个体对胰腺癌的易感性,提示DNA修复基因XRCC1、XPD多态性与胰腺癌发生相关,有可能是决定胰腺癌个体遗传易感性的重要因素。
Objective:To investigate the correlation of the single nucleotide polymorphisms and haplotypes of XRCC1 and XPD related to the risk of pancreatic cancer. Methods:A hospital-based case-control design was applied in this study. In brief, a total of 111 patients diagnosed with pancreatic cancer by histopathological confirmation and imaging with long-term follow-up. Cancer-free control subjects consisted of patients from the first affiliated hospital of Xinjiang medical university at the same hospital during the same study period. All the control subjects were frequency-matched to the cases on age (±5 years), gender and nationality. The detailed information on each patient was investigated including the family history of cancer, the smoking and drinking history, demographic information and the history of digestive operation and so on. The genomic DNA was extracted from all peripheral blood samples. Based on genotype data from the international HapMap project, the tagging single nucleotide polymorphisms (tSNPs) initially were selected using haploview 4.0 software. And pairwise linkage disequilibrium values D' and r2 were calculated in the control population using the Maximation likelihood method. Haplotype frequencies were estimated using Phase 2.0 software. The locus of XRCC1 gene including rs25487 (SNP1), rs3213403 (SNP2), rs731420 (SNP3), rs3213282 (SNP4), rs12611088 (SNP5), rs1001581 (SNP6), s1799782 (SNP7) were genotyped by snapshot method and the haplotype distribution was estimated. Aimed at the factors related to pancreatic cancer, univariate and multivariate logistic regression were performed to screen the independent risk factors to pancreatic cancer and interaction between XRCC1 gene and main risk factors was studied. The same way was used in testing the locus of XPD gene including rs13181 (SNP1), rs3916874 (SNP2), rs238415 (SNP3), rs50872 (SNP4), rs50871 (SNP5), rs238406 (SNP6), while the relationship of single nucleotide polymorphisms with genetic susceptibility to pancreatic cancer were investigated. Results:Section one:Univariate and multivariate analysis were performed to examine factors affecting the incidence of pancreatic cancer by Logistic regression model. Eleven factors were included in this study. Univariate analysis showed that smoking and drinking were all significant related factors to pancreatic cancer. Multivariate analysis showed smoking (P=0.022, OR=1.946,95%CI:1.099~3.445) was independent risk factor for pancreatic cancer. Risk of pancreatic cancer was higher in male patients with more than 10 cigarettes daily than in non-smoking patients (P=0.009, OR=1.610,95%CI:1.129~2.296). Female patients with number of births of 1~2,3~4 and more than 5 did not increase the risk of pancreatic cancer (P> 0.05). Morbility of diabetes mellitus within 1 year in case group was higher than in control group (P=0.044). Section two:seven common SNPs of XRCCl genes were chosen to be tagging SNPs. All polymorphisms were in Hardy-weinberg equilibrium both in control and in case groups. The distributions of GA, AA genotypes and A allele of XRCCl SNP1 (SNP rs25487) in case patients were higher than in control subjects and P equals to 0.014,0.023. In the unconditional logistic regression analysis, after adjustment for age, gender and nationality, the SNP rs25487 was significantly associated with an increased risk of pancreatic cancer (GA versus GG:P=0.007, OR=2.510,95% CI:1.309~4.889; AA versus GG:P=0.021, OR=2.468,95% CI:1.110~5.511; GA+AA versus GG:P=0.005,OR=2.508,95% CI: 1.334~4.732). The distributions of CT, TT genotypes and T allele of SNP7 (rs1799782) in case patients were higher than in control subjects, and P equaled to 0.028,0.011 respectively. In the unconditional logistic regression analysis, after adjustment for age, gender and nationality, the SNP rs1799782 was significantly associated with an increased risk of pancreatic cancer (CT versus CC:P=0.015, OR=2.150,95% CI:1.191~3.866; CT+TT versus CC:P=0.010, OR=2.149,95% CI:1.220~3.791), the difference was statistically significant. Individuals carrying TT genotype did not increase risk of pancreatic cancer compared with the wild genotype (TT versus CC:P=0.298, OR=2.160, 95% CI:0.479~9.501).Compared with the haplotype Hapl-AACCTAG, the relationship between Hap4-AGCTTGG and the incidence of pancreatic cancer was positive (P=0.61, OR=1.19,95% CI:0.62~2.28). The haplotype analysis revealed that individuals with Hap4-AGCTTGG have a 0.19-fold excess risk of pancreatic cancer compared with individuals with the Hapl-AACCTAG haplotype, there was no statistically significant difference. Interaction between SNP1 locus and smoking over 10 cigarette per day revealed a increased risk of pancreatic cancer (GA+AA versus GG:P=0.005, adjusted OR=5.480,95% CI:1.563-19.426) as well as SNP7 locus (CT+TT versus CC:P=0.035, adjusted OR=4.012,95% CI:1.041-15.160), the difference was statistically significant. Section three:The distributions of AC, CC genotypes and C allele of XPD/ERCC2 tSNPs(SNP1 rs 13181 A35931C) in case patients were higher than in control subjects and P equals to 0.023,0.003. There were no statistically significant differences between cases and controls in genotype distribution of SNP2, SNP3, SNP4, SNP5 and SNP6 locus. In the unconditional logistic regression analysis, after adjustment for age, gender and nationality, individuals carrying AC genotype had a 1.035-fold increased risk of pancreatic cancer compared with the wild genotype (AC versus AA:P=0.030, OR=2.035, 95% CI:1.121-3.885), individuals carrying AC+CC genotype had a 1.029-fold increased risk of pancreatic cancer compared with the wild genotype (AC+CC versus AA: P=0.007, OR=2.029,95% CI:1.255-3.712), the difference was statistically significant. Those carrying CC genotype also had a increased risk (P=0.051, OR=2.251,95% CI: 1.122-5.017), there were no statistically significant differences. Interaction between SNP1 locus of XPD gene and smoking more than 10 cigarette per day revealed a increased risk of pancreatic cancer (AC+CC versus AA:P=0.033, OR=4.243,95% CI: 1.123-16.857).Conclusion:Smoking is significant independent risk factor for pancreatic cancer. Our study revealed that the polymorphisms of Arg399Gln and Arg194Trp in XRCCl and Lys751Gln in XPD might decrease the DNA repair ability and increase the susceptibility to pancreatic cancer. DNA repair gene XRCCl and XPD might be an important determinative factor for susceptibility to pancreatic cancer.
引文
[1]Kleef J, Michalski C, Friess H, et al. Pancreatic Cancer:From Bench to 5-Year Survival[J]. Pancreas,2006,3(2):111-118.
    [2]李兆申.胰腺疾病研究现状及面临的问题[J].世界华人消化杂志,2004,12(11):2525-2526.
    [3]Lowenfels AB, M aisonneuve P. Epidemiology and prevention of pancreatic cancer[J]. Jpn J Clin Oncol,2004,34(5):238-244.
    [4]Sawai H, Okada Y, Funahashi H, et al. Interleukin-I alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6betal-integrin and urokinase plasminogen activator receptor expression[J]. BMC Cell Biol,2006,7:8 (free full article in PubMed Central).
    [5]Sugiyma M, Abe N, Tokuhara M, et al. Magnetic resonance cholangiopancreat-ography for postoperative follow-up of intraductal papillary mucinous tumors of the pancreas[J]. Am J Surg,2003,185(3):251-255.
    [6]Tsuchiya R, Tajima Y, Matsuzaki S, et al. Early pancreatic cancer[J]. Pancreatology, 2001,1(6):597-603.
    [7]朱兆华.胰腺癌早期诊断的现状和展望[J].胃肠病学和肝病学杂志,2008,17(9):699-701.
    [8]Sarries C, Haura EB, Roig B, et al. Pharmacogenomic strategies for developing cust-omized chemotherapy in non-small cell long cancer[J]. Pharmocogenonics,2002, 3(6):763-780.
    [9]Carr A M. Checking that replication break down is not termina[J]. Science,2002, 297(5581):557-558.
    [10]Deans B, Griffin C S, O'regan P, et al. Homologous recombination deficiency leads to profound genetic instability in cells derived from XRCC2-knockout mice[J]. Cancer Res,2003,63(23):8181-8187.
    [11]Wei Q, Cheng L, Hong WK, et al. Reduced DNA repair capacity in lung cancer patients[J]. Cancer,1996,56(18):4103-4107.
    [12]De Boer JG. Polymorphisms in DNA repair and environmental interactions[J]. Mutat Res,2002,509(1-2):201-210.
    [13]Bonn D. How DNA-repair Pathways may affect cancer risk[J]. Lancet,1998, 351(9095):42-42.
    [14]魏嘉,刘宝瑞,王亚平,等.DNA修复基因单核苷酸多态性与铂类药物抵抗研 究进展[J].中华肿瘤杂志,2006,28(3):161-163.
    [15]林东听,孙瞳.单体型在肿瘤研究中的应用和展望[J].中华肿瘤杂志,2005,27(5):257-259.
    [16]Johnson GC, Esposito L, Barratt BJ, et al. Haplotype tagging for the identification of common disease genes[J].Nat Genet,2001,29(2):233-237.
    [17]Longmate JA. Complexity and power in case-control association studies[J]. Am J Hum Genet,2001,68(5):1229-1237.
    [18]Carlson CS, Eberle MA, Rieder MJ, et al. Additional SNPs and linkage diseq-uilibrium analyses are necessary for whole-genome association studies in humans[J]. Nat Genet,2003,33(4):518-521.
    [19]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008[J]. CA Cancer J Clin,2008, 58(2):71-96.
    [20]Li D, Xie K, Wolff R, et al. Pancreatic cancer[J]. Lancet,2004,363(9427): 1049-1057.
    [21]Lowenfels AB, Maisonneuve P. Risk factors for pancreatic cancer[J]. J Cell Biochem, 2005,95(4):649-656.
    [22]Michaud DS. Epidemiology of pancreatic cancer[J]. Mineva Chir,2004,59(2): 99-111.
    [23]Dong M, Nio Y, Sato Y, et al. Comparative study of p53 expression in primary invasive ductal carcinoma of the pancreas between Chinese and Japanese[J]. Pan-creas,1998,17(3):229-237.
    [24]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CA Cancer J Clin,2005,55(2):74-108.
    [25]李兆申,许国铭主编.现代胰腺病学[M].第1版,北京:人民军医出版社,2006,796-812.
    [26]Hassan MM, Bondy ML, Wolf RA, et al. Risk factors for pancreatic cancer:case-control study[J]. Am J Gastroenterol,2007,102(12):2696-2707.
    [27]王俊,高玉堂,王学励,等.上海市区男性吸烟与恶性肿瘤死亡的前瞻性研究[J].中华流行病学杂志,2004,25(10):837-840.
    [28]Wang XL, Wang J. Smoking-gene interaction and disease development:relevance to pancreatic cancer and atherosclerosis[J]. World J Surg,2005,29(3):344-353.
    [29]高玉堂.胰腺癌流行病学研究进展[J].实用肿瘤杂志,2003,18(5):347-349.
    [30]Silverman DT, Hoover RN, Brown LM, et al. Why do Black Americans have a higher risk of pancreatic cancer than White Americans[J]. Epidemiology,2003, 14(1):45-54.
    [31]Fisher WE. Diabetes:risk factor for the development of pancreatic of manifestation of the disease[J]. World J Surg,2001,25(4):503-508.
    [32]Verhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer:a meta-analysis[J]. JAMA,1995,273(20):1605-1609.
    [33]周国中,李兆申,余志良,等.生育史与胰腺癌相关性研究[J].解放军医学杂志,2002,27(4):294-295.
    [34]施健,吴诚,刘苏,等.我国胰腺癌部分发病危险因素的Meta分析[J].胰腺病学,2004,4(3):154-158.
    [35]Silverman DT, Schiffman M, Everhart J, et al. Diabetes mellitus, other medical conditions and familial history of cancer as risk factors for pancreatic cancer[J]. Br J Cancer,1999,80(11):1830-1837.
    [36]Cappelli E, Taylor R, Cevasco M, et al. Involvement of XRCC1 and DNA ligase Ⅲ gene products in DNA base excision repair[J]. J Biol Chem,1997,272(38):239 70-23975.
    [37]Olshan AF, Watson MA, Weissler MC, et al. XRCC1 polymorphisms and head and neck cancer[J]. Cancer Lett,2002,78(2):181-186.
    [38]Sturgis EM, Castillo EJ, Li L, et al. Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck[J]. Carcinogenesis,1999,20(11): 2125-2129.
    [39]Xing D, Qi J, Miao X, et al. Polymorphisms of DNA repair genes XRCC1 and XPD and their associations with risk of esophageal, squamous cell carcinoma in a Chinese population[J]. Int J Cancer,2002,100(5):600-605.
    [40]Shen H, Xu Y, Qian Y, et al. Polymorphisms of the DNA repair gene XRCC1 and risk of gastric cancer in a Chinese population[J]. Int J Cancer,2000,88(4):601-606.
    [41]Abdel Rahman SZ, Soliman AS, Bondy ML, et al. Inheritance of the 194Trp and the 399GIn variant alleles of the DNA repair gene XRCC1 are associated with increased risk of carly-onset colorectal carcinoma in Egypt[J]. Cancer Lett,2000,159(1): 79-86.
    [42]Duell EJ, Millikan RC, Pittman GS, et al. Polymorphisms in the DNA repair gene XRCC1 and breast cancer[J]. Cancer Epidemiol Biomarkers Prev,2001,10(3): 217-222.
    [43]Kim SU, Park SK, Yoo KY, et al. XRCC1 genetic polymorphism and breast cancer risk[J]. Pharmacogenetics,2002,12(4):335-338.
    [44]Ratnasinghe D, Yao SX, Tangrea JA, et al. Polymorphisms of the DNA repair gene XRCCl and lung cancer risk[J]. Cancer Epidemiol Biomarkers Prev,2001,10(2): 119-123.
    [45]Akey J, Jin L, Xiong M. Haplotypes vs single marker linkage disequilibrium tests: what do we gain[J]? Eur J Hum Genet,2001,9(4):291-300.
    [46]Zaykin DV, Westfall PH, Young SS, et al. Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals[J]. Hum Hered,2002,53(2):79-91.
    [47]Barrett JC, Fry B, Maller J, et al. Haploview:analysis and visualization of LD and haplotype maps[J]. Bioinformatics,2004,21(2):263-265.
    [48]Cargill M, Altshuler D, Ireland J, et al. Characterization of single nucleotide poly-merphisms in coding regions of human genes[J]. Nature Genet,1999,22(3): 231-238.
    [49]Divne AM, Allen M. A DNA micro-array system for forensic SNP analysis[J]. Forensic Sci Int.2005,154(2-3):111-121.
    [50]Fernet M, Hall J. Genetic biomarkers of therapeutic radiation sensitivity [J]. DNA Repair,2004,3(8-9):1237-1243.
    [51]Thompson LH, Bachinski LL, Stallings RL, et al. Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO:a third repair gene on human chromosome 19[J]. Genomics,1989,5(4):670-679.
    [52]Kubota Y, Nash RA, Klungland A, et al. Reconstitution of DNA base excision-repair with purfied human proteins:interaction between DNA polymerase beta and the XRCC1 protein[J]. EMBO J,1996,15(23):6662-6670.
    [53]Vidal AE, Boiteux S, Hickson ID, et al. XRCCl coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions[J]. EMBO J, 2001,20(22):6530-6539.
    [54]Shen M, Purdue MP, Kricker A, et al. Polymorphisms in DNA repair genes and risk of non-Hodgkin's lymphoma in New South Wales, Australia[J]. Haematologica, 2007,92(9):1180-1185.
    [55]Ratnasinghe LD, Abnet C, Qiao YL, et al. Polymorphisms of XRCC1 and risk of esophageal and gastric cardia cancer[J]. Cancer Lett,2004,216(2):157-164.
    [56]Tang Ho, Guojun Li, Jiachun Lu, et al. X-ray Repair Cross-complementing Group 1 (XRCC1, Single-nucleotide Polymorphisms and the Risk of Salivary Gland Carcinomas[J]. Cancer,2007,110(2):318-325.
    [57]Yeh CC, Hsieh LL, Tang R, et al. MS-920:DNA repair gene polymorphisms, diet and colorectal cancer risk in Taiwan[J]. Cancer Lett,2005,224(2):279-288.
    [58]Chacko P, Rajan B, Joseph T, et al. Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to breast cancer[J]. Breast Cancer Res Treat,2005, 89(1):15-21.
    [59]Pachkowski BF, Winkel S, Kubota Y, et al. XRCC1 genotype and breast cancer: functional studies and epidemiologic data show interactions between XRCCl codon 280 His and smoking[J]. Cancer Res,2006,66(5):2860-2868.
    [60]Niwa Y, Matsuo K, Ito H, et al. Association of XRCC1 Arg399Gln and OGG1 Ser 326Cys polymorphisms with the risk of cervical cancer in Japanese subjects[J]. Gynecol Oncol,2005,99(1):43-49.
    [61]Shen MR, Jones IM, Mohrenweiserh. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans[J]. Cancer Res,1998,58(4):604-608.
    [62]Crnogorac-Jurcevic T, Efthimiou E, Nielsen T, et al. Expression profiling of micro-dissected pancreatic adenocarcinomas[J]. Oncogene,2002,21(29):4587-4594.
    [63]Duell EJ, Holly EA, Bracci PM, et al. A population-based study of the Arg399Gln polymorphisms in X-ray repair cross complementing group1 (XRCC1) and risk of pancreatic adenocarcinoma[J]. Cancer Res,2002,62(16):4630-4636.
    [64]Li Jiao, Melissa L. Bondy, Manal M. Hassan, et al. Selected polymorphisms of DNA repair genes and risk of pancreatic cancer[J]. Cancer Detect Prev,2006,30(3): 284-291.
    [65]王丽,陆星华,缪小平,等.DNA修复基因XRCCl和XPC多态性与胰腺癌风险关联研究[J].卫生研究,2006,35(5):534-536.
    [66]Mc Williams RR, Bamlet WR, Cunningham JM, et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk[J]. Cancer Res,2008,68(12): 4928-4935.
    [67]Collins FS, Guyer MS, Charkravarti A. Variations on a theme:Cataloging human DNA sequence variation[J]. Science,1997,278(5343):1580-1581.
    [68]Gottgens B, Barton LM, Gilbert JG, et al. Analysis of vertebrate SCL loci identifies conserved enhancers[J]. Nat Biotechnol,2000,18(2):181-186.
    [69]Loots GG, Locksley RM, Blankespoor CM, et al. Identification of a coordinate regulator of interleukins 4,13, and 5 by cross-species sequence comparisons[J]. Science,2000,288(5463):136-140.
    [70]Tao H, Cox DR, Frazer KA. Allele-specific KRT1 expression is a complex trait[J]. Plos Genet,2006,2(6):848-858.
    [71]Saito Y, Motegi K, Bag SS, et al. Anthracene based base-discriminating fluorescent oligonucleotide probes for SNPs typing:Synthesis and photophysical properties[J]. Bioorg Med Chem,2008,16(1):107-113.
    [72]Salisbury BA, Pungliya M, Choi JY, et al. SNP and haplotype variation in the human genome[J]. Mutat Res,2003,526(1-2):53-61.
    [73]Lehrnbecher T, Chanock SJ. Detection of common cytokine and colony stimulating factor gene polymorphisms[J]. Methods Mol Biol,2003,215:71-93.
    [74]唐红生,洪剑明,邱泽生.内含子与基因表达[J].细胞生物学杂志,1997,19(1):1-4.
    [75]Comeron JM, Kreitman M. The correlation between intron length and recombination in drosophila:Dynamic equilibrium between mutational and selective forces[J]. Gene-tics,2000,156(3):1175-1190.
    [76]Wood RD, Mitchell M, Sgouros J, et al. Human DNA repair genes[J]. Science,2001, 291(5507):1284-1289.
    [77]Smith AV, Thomas DJ, Munro HM, et al. Sequence features in regions of weak and strong linkage disequilibrium[J]. Genome Res,2005,15(11):1519-1534.
    [78]Wall JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome[J]. Nat Rev Genet,2003,4(8):587-597.
    [79]Clark AG. Inference of haplotypes from PCR-amplified samples of diploid population[J]. Mol Biol Evol,1990,7(2):111-112.
    [80]Adams AM, Hudson RR. Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymor-phisms[J]. Genetics,2004,168(3):1699-1712.
    [81]Meligkotsidou L, Feamhead P. Maximum-likelihood estimation of coalescence times in genealogical trees[J]. Genetics,2005,171(4):2073-2084.
    [82]Tregouet DA, Escolano S, Tiret L, et al. A new algorithm for haplotype-markers[J]. Genetics,2003,164(2):1161-1173.
    [83]Niu T, Qin ZS, Xu X, et al. Bayesian haplotype inference for multiple linked single nucleotide polymorphisms[J]. Am J Hum Genet,2002,70(1):157-169.
    [84]Beaumont MA, Rannals B. The Bayesian reolution in genetics[J]. Nat Rev Genet, 2004,5(4):251-261.
    [85]Lee S, Kim B, Choi J, et al. Genetic polymorphisms of XRCC 1 and risk of gastric cancer[J]. Cancer Lett,2002,187(1-2):53-60.
    [86]Sak SC, Barrett JH, Paul AB, et al. DNA repair gene XRCC1 polymorphisms and bladder cancer risk[J]. BMC Genetics,2007,8(13):2156-2163.
    [87]Thompson D, Strm D, Goldgar D, et al. Haplotype tagging single nucleotide polym-orphisms and association studies[J]. Hum Hered,2003,56(1-3):49-55.
    [88]Chapman JM, Cppper JD, Todd JA, et al. Detecting disease associations due to linkage disequilibrium using haplotype tags:a class of tests and the determinations of statistical power[J]. Hum Hered,2003,56(1-3):18-31.
    [89]Lowenfels AB, Maisonneuve P, Whitcomb DC, et al. Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis[J]. JAMA,2001, 286(2):169-170.
    [90]Rulyak SJ, Lowenfels AB, Maisonneuve P, et al. Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds[J]. Gastroenterology,2003, 124(5):1292-1299.
    [91]Wang L, Miao XP, Tan W, et al. Genetic polymorphisms in methylene-tetrahy-drofolate reductase and thymidylate synthase and risk of pancreatic cancer[J]. Clin Gastroenterol Hepatol,2005,3(8):743-751.
    [92]Lowenfels AB, Maisonneuve P. Epidemiology and etiologic factors of pancreatic cancer[J]. Hematol Oncol Clin North Am,2002,16(1):1-16.
    [93]Simon B, Printz H. Epidemiological trends in pancreatic neoplasias[J]. Dig Dis,2001, 19(1):6-14.
    [94]Chow WH, Gridley G, Nyren O, et al. Risk of pancreatic cancer following diabetes mellitus:a nationwide cohort study in Sweden[J]. J Natl Cancer Inst,1995,87(12): 930-931.
    [95]Callee E, Murphy TK, Rodriguez C, et al. Diabetes mellitus and pancreatic cancer mortality in a prospective cohort of United states adults[J]. Cancer Causes Control, 1998,9(4):403-410.
    [96]Chow WH, Johansen C, Gridley G, et al. Gallstones, cholecystectomy and risk of cancers of the liver, biliary tract and pancreas[J]. Br J Cancer,1999,79(3-4): 640-644.
    [97]Silverman DT. Risk factors for pancreatic cancer:a case-control study based on direct interviews[J]. Teratog Carcinog Mutagen,2001,21(1):7-25.
    [98]Garte S, Gaspari L, Alexandrie AK, et al. Metabolic gene polymorphism frequencies in control populations[J]. Cancer Epidemiol Biomarkers Prev,2001,10(12): 1239-1248.
    [99]Cardon LR, Palmer LJ. Population stratification and spurious allelic association[J]. Lancet,2003,15,361(9357):598-604.
    [100]Lunn RM, Hellzlsourer KJ, Parshad R, et al. XPD polymorphisms:effect on DNA repair proficiency[J]. Carcinogenesis,2000,21(4):551-555.
    [101]Hou SM, Ryk C, Kannio A, et al. Influence of common XPD and XRCCl variant alleles on p53 mutations in lung tumors[J]. Environ Mol Mutagen,2003,41(1): 37-42.
    [102]Yin J, Li J, Ma Y, et al. The DNA repair gene ERCC2/XPD polymorphism Arg156 Arg (A22541C) and risk of lung cancer in a Chinese population[J]. Cancer Lett, 2005,223(2):219-226.
    [103]Vogel U, Hedayati M, Dybdahl M, et al. Polymorphisms in DNA repair gene XPD: correlation with risk of basal cell carcinoma revisited[J]. Carcinogenesis,2001, 22(6):899-904.
    [104]Caggaana M, Kilgallen J, Conroy JM, et al. Associations between ERCC2 polymo-rphisms and gliomas[J]. Cancer Epidem Biomar,2001,10(4):355-360.
    [105]Tomescu D, Kavanagh G, Ha T, et al. Nucleotide excision repair gene XPD polym-orphisms and genetic predisposition to melanoma[J]. Carcinogenesis,2001,22(3): 403-408.
    [106]Buch S, Zhu B, Davis AG, et al. Association of polymorphisms in the cyclin Dl and XPD genes and susceptibility to cancers of the upper aero-digestive tract[J]. Mol Carcinog,2005,42(4):222-228.
    [107]娄毅,宋清斌,何向民.东北地区汉族人群DNA修复基因XPD单核苷酸多态性与胃癌的相关性[J].世界华人消化杂志,2006,14(32):3143-3146.
    [108]邢德印,齐军,谭文,等.北京地区汉族人群DNA修复基因XPD单核昔酸多态性与肺癌及食管癌风险的研究[J].中华医学遗传学杂志,2003,20(1):35-38.
    [109]Liang G, Xing D, Miao X, et al. Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population[J]. Int J Cancer,2003,105(5): 669-673.
    [110]Benhamuo S, Sarasin A. ERCC2/XPD polymorphisms and cancer risk[J]. Mutagenesis,2002,17(6):463-469.
    [111]Coin F, Marinoni JC, Rodolfo C, et al. Mutations in XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFⅡH[J].Nat Genet 1998,20(2):184-188.
    [112]Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair gene and associations with cancer risk[J]. Cancer Epidemiol Biomarkers Prev,2002,11(12): 1513-1530.
    [113]Qiao Y, Spitz MR, Shen H, et al. Modulation of repair ofultraviolet damage in the host-cell reactivation as say bypolymorphic XPC and XPD/ERCC2 genotypes[J]. Carcinogenesis,2002,23(2):295-299.
    [114]Sturgis EM, Zheng R, Li L, et al. XPD/ERCC2 polymorphisms and risk of head and neck cancer:a case-control analysis[J]. Carcinogenesis,2000,21(12):2219-2223.
    [115]Chen S, Tang D, Xue K, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population[J]. Carcinogenesis,2002,23(8): 1321-1325.
    [116]Popanda O, Schattenberg T, Phong CT, et al. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer[J]. Carcinogenesis, 2004,25(12):2433-2441.
    [117]Yu HP, Zhang XY, Wang XL, et al. DNA repair gene XRCC1 polymorphisms, smoking, and esophageal cancer risk[J]. Cancer Detect Prev,2004,28(3):194-199.
    [118]Li Jiao, Manal M. Hassan, Melissa L. Bondy, et al. The XPD Asp312Asn and Lys751 Gln Polymorphisms, corresponding haplotype and pancreatic cancer risk[J]. Cancer Lett,2007,245(2):61-68.
    [119]黄慧隆,许建宁,王全凯,等.XPD基因多态性与慢性苯中毒遗传易感性的相关性[J].中华劳动卫生职业病杂志,2006,24(7):390-393.
    [120]Spitz MR, Wu X, Wang Y, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients[J]. Cancer Res,2001,61(4): 1354-1357.
    [121]Au WW, Salama SA, Sierra-Torres CH, et al. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays[J]. Environ Health Perspect,2003,111(15):1843-1850.
    [122]Hemminki K, Xu C, Angelini S, et al. XPD exon 10 and 23 polymorphisms and DNA repair in human skin in situ[J]. Carcinogenesis,2001,22(8):1185-1188.
    [1]吴一迁,崔恒宓,万曙光,等.乙肝病毒对DNA修复基因和肝癌发生的作用[J].肿癌,2002,22(5):379.
    [2]Cappelli E, Taylor R, Cevasco M, et al. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair[J]. J Biol Chem,1997,272(38): 23970-23975.
    [3]Shen MR, Jones IM, Mohrenweiserh. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans[J]. Cancer Res,1998,58(4):604-608.
    [4]Crnogorac-Jurcevic T, Efthimiou E, Nielsen T, et al. Expression profiling of microdissected pancreatic adenocarcinomas[J]. Oncogene,2002,21(29):4587-4594.
    [5]Duell EJ, Holly EA, Bracci PM, et al. A population-based study of the Arg399GIn polymorphisms in X-ray repair cross complementing group1 (XRCC1) and risk of pancreatic adenocarcinoma[J]. Cancer Res,2002,62(16):4630-4636.
    [6]王丽,陆星华,缪小平,等.DNA修复基因XRCC1和XPC多态性与胰腺癌风险关联研究[J].卫生研究,2006,35(5):534-536.
    [7]Mc Williams RR, Bamlet WR, Cunningham JM, et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk[J]. Cancer Res,2008,68(12): 4928-4935.
    [8]Li Jiao, Melissa L. Bondy, Manal M. Hassan, et al. Selected polymorphisms of DNA repair genes and risk of pancreatic cancer[J]. Cancer Detect Prev,2006,30(3): 284-291.
    [9]Wang YC, Lu YP, Tseng RC, et al. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples[J]. J Clin Invest,2003,111(6):887-895.
    [10]Deng DJ, Zhou J, Zhu BD, et al. Silencing-specific methylation and single nucleotide polymorphism of hMLH1 promoter in gastric carcinomas[J]. World J Gastroe-nterol,2003,9(1):26-29.
    [11]卜献民,赵成海,张宁,等.胰腺癌组织和细胞系中DNA错配修复基因的甲基化和异常表达[J].世界华人消化杂志,2008,16(10):1074-1077.
    [12]Auranen A, Song H, Waterfall C, et al. Polymorphisms in DNA repair genes and epithelial ovarian cancer risk[J]. Int J Cancer,2005,117(4):611-618.
    [13]Li Jiao, Manal M. Hassan, Melissa L. Bondy, et al. XRCC2 and XRCC3 gene polymorphism and risk of pancreatic cancer[J]. Am J Gastroenterol,2008,103(2): 360-367.
    [14]Han S, Zhang HT, Wang Z. et al. DNA repair gene XRCC3 polymorphisms and cancer risk:a meta-analysis of 48 case-control studies[J]. Eur J Hum Genet,2006, 14(10):1136-1144.
    [15]Cho JH, Bang S, Park SW, et al. BRCA2 mutations as a universal risk factor for pancreatic cancer has a limited role in Korean ethnic group[J]. Pancreas,2008,36(4): 337-340.
    [16]Wang X, Szabo C, Qian C, et al. Mutation analysis of thirty-two double-strand DNA break repair genes in breast and pancreatic cancers[J]. Cancer Res,2008,68(4): 971-975.
    [17]Vodicka P, Kumar R, Stetina R, et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and Single strand breaks in DNA[J]. Carcinogenesis,2004,25(5):757-763.
    [18]Li Jiao, Manal M. Hassan, Melissa L. Bondy, et al. The XPD Asp312Asn and Lys751 Gln polymorphisms, corresponding haplotype, and pancreatic cancer risk[J]. Cancer Lett,2007,245(2):61-68.
    [1]李元春.中国人群中肺癌与CAK基因多态的相关性研究以及ERCC1基因多态与肿瘤相关性研究的Meta分析[D].复旦大学博士学位论文,2007.
    [2]王亮.食管癌遗传易感性分子基础的探讨[D].中国协和医科大学中国医学科学院博士学位论文,1995.
    [3]NIEHS SNPs. http://egp.gs.washington.edu/data/ercc2/[DB/OL].2005-10-08.
    [4]Lunn RM, Hellzlsourer KJ, Parshad R, et al. XPD polymorphisms:effect on DNA repair proficiency[J]. Carcinogenesis,2000,21 (4):551-555.
    [5]许玲,孙大志,余志红.肿瘤基因单核苷酸多态性研究及个体化医疗的思考[J].世界华人消化杂志,2005,13(5):592-595.
    [6]Taylor EM, Broughton BC, Botta E, et al. Xeroderma pigmentosum and tricho-thiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene[J]. Proc Natl Acad Sci USA,1997,94(16):8658-8663.
    [7]Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans[J]. Cancer Res,1998,58 (4):604-608.
    [8]Hou SM, Ryk C, Kannio A, et al. Influence of common XPD and XRCC1 variant alleles on p53 mutations in lung tumors[J]. Environ Mol Mutagen,2003,41(1): 37-42.
    [9]Sreeja L, Syamala VS, Syamala V, et al. Prognostic importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India[J]. J Cancer Res Clin Oncol,2008,134 (6):645-652.
    [10]Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer[J]. Carcinogenesis,2006,27 (3):560-567.
    [11]Lopez-Cima MF, Gonzalez-Arriaga P, Garcla-Castro L, et al. Polymorphisms in XPC, XPD, XRCC1 and XRCC3 DNA repair genes and lung cancer risk in population of northern Spain[J]. BMC Cancer,2007,7:162 (free full article in PubMed Central).
    [12]邢德印,齐军,谭文,等.北京地区汉族人群DNA修复基因XPD单核昔酸多态性与肺癌及食管癌风险的研究[J].中华医学遗传学杂志,2003,20(1):35-38.
    [13]Yin J, Li J, Ma Y, et al. The DNA repair gene ERCC2/XPD polymorphism Arg156Arg (A22541C) and risk of lung cancer in a Chinese population[J]. Cancer Lett,2005,223(2):219-226.
    [14]Hu Z, Wei Q, Wang X, et al. DNA repair gene XPD polymorphism and lung cancer risk:a meta-analysis[J]. Lung Cancer,2004,46 (1):1-10.
    [15]Butkiewicz D, Rusin M, Enewold L, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer[J]. Carcinogenesis,2001,22(4):593-597.
    [16]Yu HP, Wang XL, Sun X, et al. Polymorphisms in the DNA repair gene XPD and susceptibility to esophageal squamous cell carcinoma[J]. Cancer Genet Cytogenet, 2004,154(1):10-15.
    [17]陈梦如,王建明,郭国平,等.DNA损伤修复基因XPD Lys751Gln、XRCC1Arg399Gln单核苷酸多态与食管癌遗传易感性[J].复旦学报,2008,35(2):273-277,281.
    [18]Ye W, Kumar R, Bacova G, et al. The XPD 751 Gln allele is associated with an increased risk for esophageal adenocarcinoma:a population-based case--control study in Sweden[J]. Carcinogenesis,2006,27 (9):1835-1841.
    [19]Tse D, Zhai R, Zhou W, et al. Polymorphisms of the NER pathway genes. ERCC1 and XPD are associated with esophageal adenocarcinoma risk[J]. Cancer Causes Control,2008,19(10):1077-1083.
    [20]邢德印.DNA损伤和DNA修复基因多态与食管癌风险[D].中国协和医科大学中国医学科学院博士学位论文,2002.
    [21]张文翠.遗传与环境危险因素在淮安人群食管癌发生中的作用[D].东南大学硕士学位论文,2006.
    [22]周荣秒,李琰,王娜,等.XPD基因单核苷酸多态性与食管鳞状细胞癌、贲门腺癌发病风险的关联研究[J].肿瘤,2007,27(2):118-122,133.
    [23]Sobti RC, Singh J, Kaur P, et al. XRCC1 codon 399 and ERCC2 codon 751 polymo-rphism, smoking, and drinking and risk of esophageal squamous cell carcinoma in a North Indian population[J]. Cancer Genet Cytogenet,2007,175 (2):91-97.
    [24]Ferguson HR, Wild CP, Anderson LA, et al. No Association between hOGG1, XRCC1 and XPD polymorphisms and risk of reflux esophagitis, Barrett's esophagus, or esophageal adenocarcinoma:results from the factors influencing the Barrett's adenocarcinoma relationship case-control study[J]. Cancer Epidemiol Biomarkers Prevent,2008,17 (3):736-739.
    [25]Doecke J, Zhen ZZ, Pandeya N, et al. Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma[J]. Int J Cancer,2008,123 (1): 174-180.
    [26]Casson AG, Zheng Z, Evans SC, et al. Polymorphisms in DNA repair genes in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma[J]. Carcinogenesis, 2005,26(9):1536-1541.
    [27]吴晓冰,代丽萍,王彦平,等.DNA切除修复基因XPD751位点多态性与食管癌发病风险的Meta分析[J].中华流行病学杂志,2009,30(3):281-285.
    [28]Ma WJ, Lv GD, Zheng ST, et al. DNA polymorphism and risk of esophageal squamous cell carcinoma in a population of North Xinjiang, China[J]. World J Gastro-enterol,2010,16 (5):641-647.
    [29]Wang F, Chang D, Hu FL, et al. DNA repair gene XPD polymorphisms and cancer risk:a meta-analysis based on 56 case-control studies[J]. Cancer Epidemiol Biomarkers Prev,2008,17 (3):507-517.
    [30]Itin PH, Sarasin A, Pittelkow MR, et al. Trichothiodystrophy:update on the sulfur-deficient brittle hair syndromes[J]. J AM Acad Dermatol,2001,44(6):891-920.
    [31]Dybdahl M, Frentz G, Vogel U, et al. Low DNA repair is a risk factor in skin carcinogenesis:a study of basal cell carcinoma in psoriasis patients[J]. Mutat Res, 1999,433(1):15-22.
    [32]Vogel U, Olsen A, Wallin H, et al. Effect of polymorphisms in XPD, RAI, ASE-1 and ERCC1 on the risk of basal cell carcinoma among Caucasians after age 50[J]. Cancer Detect Prev,2005,29 (3):209-214.
    [33]Tomescu D, Kavanagh G, Ha T, et al. Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma[J]. Carcinogenesis,2001, 22 (3):403-408.
    [34]Baccarelli A, Calista D, Minghetti P, et al. XPD gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk[J]. Br J Cancer,2004,90 (2):497-502.
    [35]Mocellin S, Verdi D, Nitti D, et al. DNA repair gene polymorphisms and risk of cutaneous melanoma:a systematic review and meta-analysis[J]. Carcinogenesis, 2009,30 (10):1735-1743.
    [36]Cheng L, Eicher SA, Guo Z, et al. Reduced DNA repair capacity in head and neck cancer patients[J]. Cancer Epidemiol Biomarkers Prev,1998,7 (6):465-468.
    [37]Sturgis EM, Zheng R, Li L, et al. XPD/ERCC2 polymorphisms and risk of head and neck cancer:a case-control analysis[J]. Carcinogenesis,2000,21 (12):2219-2223.
    [38]Sturgis EM, Dahlstrom KR, Spitz MR, et al. DNA repair gene ERCC1 and ERCC2/XPD polymorphisms and risk of squamous cell carcinoma of the head and neck[J]. Arch Otolaryngol Head Neck Surg,2002,128 (9):1084-1088.
    [39]Goode EL, Ulrich CM, Potter JD, et al. Polymorphisms in DNA repair genes and associations with cancer risk[J]. Cancer Epidemiol Biomarkers Prev,2002,11 (12): 1513-1530.
    [40]Stern MC, Johnson LR, Bell DA, et al. XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk[J]. Cancer Epidemiol Biomarkers Prev, 2002,11(10 Pt1):1004-1011.
    [41]Shen M, Hung RJ, Brennan P, et al. Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy[J]. Cancer Epidemiol Biomarkers Prev,2003,12 (11 Pt 1):1234-1240.
    [42]Sanyal S, Festa F, Sakano S, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer[J]. Carcinogenesis,2004,25 (5):729-734.
    [43]Li C, Jiang Z, Liu X, et al. XPD Lys (751) Gln and Asp (312) Asn polymorphisms and bladder cancer risk:a meta-analysis[J]. Mol Biol Rep,2010,37(1):301-309.
    [44]Rybicki BA, Conti DV, Moreira A, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer[J]. Cancer Epidemiol Biomarkers Prev, 2004,13(1):23-29.
    [45]娄毅,宋清斌,何向民,等.东北地区汉族人群DNA修复基因XPD单核苷酸多态性与胃癌的相关性[J].世界华人消化杂志,2006,14(32):3143-3146.
    [46]曾小云,仇小强,纪龙,等.DNA修复基因XPD单核苷酸多态性和环境因素的交互作用与肝细胞癌的关联研究[J].中华流行病学杂志,2009,30(7):702-705.
    [47]许丽,吴一迁,金晏,等.DNA修复基因XPD多态性和肝细胞肝癌危险性的病例-对照研究[J].肿瘤,2004,24(6):526-529.
    [48]McWilliams RR, Bamlet WR, Cunningham JM, et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk[J]. Cancer Res,2008,68 (12): 4928-4935.
    [49]Li Jiao, Manal M. Hassan, Melissa L. Bondy, et al. The XPD Asp312Asn and Lys751Gln Polymorphisms, corresponding haplotype and pancreatic cancer risk[J]. Cancer Lett,2007,245 (2):61-68.
    [50]Mort R, Mo L, McEwan C, et al. Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer[J]. Br J Cancer,2003,89 (2):333-337.
    [51]Yeh CC, Sung FC, Tang R, et al. Polymorphisms of the XRCC1, XRCC3, & XPD genes, and colorectal cancer risk:a case-control study inTaiwan[J]. BMC Cancer, 2005,5:12 (free full article in PubMed Central).
    [52]Moreno V, Gemignani F, Landi S, et al. Polymorphisms in genes of nucleotide and base excision repair:risk and Prognosis of colorectal cancer[J]. Clin Cancer Res, 2006,12(7 Pt 1):2101-2108.
    [53]Wang J, Zhao Y, Jiang J, et al. Polymorphisms in DNA repair genes XRCCl, XRCC3 and XPD, and colorectal cancer risk:a case-control study in an Indian population[J]. J Cancer Res Clin Oncol,2010,136(10):1517-1525.
    [54]Jiang Z, Li C, Xu Y, et al. Associations between XPD polymorphisms and risk of breast cancer:a meta-analysis[J]. Breast Cancer Res Treat,2010,123(1):203-212.
    [55]宋宝,祝敬燕,刘杰,等.核苷酸剪切修复酶XPD基因多态性与非霍奇金淋巴瘤发病风险的研究[J].中国实验血液学杂志,2008,16(1):97-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700