应用SMA细胞模型探讨SMN蛋白对神经元的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓性肌萎缩症是一种常染色体隐性遗传性神经变性疾病,其特征是脊髓前角的α运动神经元变性,临床表现为肢体近端肌无力和肌萎。SMN基因是SMA的致病基因,该基因有两个结构基本相同的拷贝,分别称SMN1和SMN2,SMN1编码全长SMN(fl-SMN)蛋白,SMN2编码△7-SMN蛋白。研究表明,SMN1基因的功能缺陷是大多数SMA患者的发病原因,且SMA临床表型的严重程度与全长SMN蛋白的含量密切相关。我们设想,fl-SMN蛋白与脊髓前角的α运动神经元的凋亡调控相关,fl-SMN蛋白含量下降可能诱导α运动神经元凋亡,进而出现细胞的变性。本研究拟利用RNAi技术抑制非SMA患者的骨髓问质干细胞SMN1基因的表达,将其诱导分化为神经元样细胞建立SMA细胞模型,并通过一系列分子生物学方法观测其凋亡情况,以探讨SMN蛋白对神经元的保护作用及其机制。
     第一章RNA干扰对人骨髓间充质干细胞SMN1,基因表达抑制的实验研究
     目的:构建能在哺乳动物细胞中表达SMN1 shRNA的质粒,并初步探讨其对人骨髓间充质干细胞SMN1 mRNA及蛋白的抑制作用。
     方法:取非SMA病人(且无血液疾病及骨肿瘤)骨髓,分离、纯化得到骨髓间充质干细胞(MSCs)。根据Genbank中SMNl eDNA序列设计5条SMN1靶向的shRNA并克隆得到相应的DNA序列;将此DNA序列克隆至pRNAT-U6.1/Neo载体中U6启动子的下游,形成能在细胞内表达SMN1特异性的短发夹状RNA的重组质粒pshRNA-SMN1;在脂质体介导下将重组质粒pshRNA-SMN1转染人骨髓间充质干细胞,通过RT-PCR、Western-Blot、流式细胞分析技术检测转染后MSCs的fl-SMNmRNA及SMN全长蛋白的表达。
     结果:琼脂糖凝胶电泳及测序证实了重组质粒pshRNA-SMN1构建成功,转染后不同程度地抑制人骨髓间充质干细胞的fl-SMNmRNA及其蛋白的表达,其中以pshRNA-SMN1-1组和pshRNA-SMN1-4组最明显,mRNA水平上干扰效率分别为64.87%、61.45%,蛋白水平上干扰效率分别为60.25%和54.05%,流式细胞分析显示干扰效率分别为96.00%、94.29%,三项与对照组相比,差异均有统计学意义(P<0.05)。
     结论:构建的pshRNA-SMN1-1和pshRNA-SMN1-4重组质粒能有效地抑制人骨髓间充质干细胞f1-SMN mRNA及其蛋白的表达。
     第二章SMA细胞模型的建立
     目的:应用RNAi沉默SMN1基因的MSCs建立SMA细胞模型。
     方法:根据实验一的RT-PCR、Western-Blot分析结果,选择能在最大程度上抑制SMN1基因表达的重组质粒pshRNA-SMN1-1,将此重组质粒转染人骨髓问充质干细胞,经G418筛选得到能稳定表达目的shRNA的单克隆细胞系后并诱导其分化为神经元样细胞。后者通过细胞形态学观察及免疫细胞化学染色分析神经元样细胞NSE、NF蛋白表达进行鉴定。再次用RT-PCR,Western-Blot方法检测神经元样细胞SMN mRNA及其蛋白的表达,并与诱导前进行比较。
     结果:诱导后的细胞呈典型的神经元样细胞形态,免疫细胞化学染色显示细胞膜NSE、NF蛋白表达阳性;其fl-SMNmRNA、△7-SMNmRNA及fl-SMN蛋白表达均较诱导前增加(P<0.05),但PshRNA-SMN-1组的fl-SMN mRNA及蛋白表达仍明显低于对照组,差异有统计学意义(P<0.05);而诱导后△7-SMN mRNA的表达在各组间差异无统计学意义(P>0.05)。
     结论:SMNI mRNA及其蛋白被抑制的MSCs诱导分化为神经元样细胞后可以作为SMA的细胞模型。
     第三章SMA模型细胞自发性凋亡与SMN蛋白的保护作用及其机制的研究
     目的:初步研究SMA模型细胞的自发性凋亡和丙戊酸对其凋亡的影响及其机制,以探讨SMN蛋白对神经元的保护作用及其机制。
     方法:实验以SMA模型细胞、正常神经元样细胞为研究对象,以1μmol/ml丙戊酸干预,共分为无干预正常神经元样细胞组、无干预SMA模型细胞组、丙戊酸干预正常神经元样细胞组、丙戊酸干预SMA模型细胞组等4个实验组,①绘制细胞生长曲线,观察各组细胞增殖趋势及速度;②采用噻唑兰比色实验(MTT)检测各实验组细胞的细胞活力变化;③Tunel荧光染色比较各实验组凋亡细胞比率;④流式细胞分析Annexin V法检测各实验组细胞凋亡及坏死情况;⑤RT-PCR检测各实验组细胞Caspase-3 mRNA的表达;⑥以不同剂量的丙戊酸分别对SMA模型细胞进行干预,RT-PCR检测各实验组细胞fl-SMNmRNA及Caspase-3 mRNA的表达;⑦Western-Blot检测各实验组细胞fl-SMN蛋白及Caspase-3蛋白的表达;⑧共聚焦显微镜共定位fl-SMN蛋白和Caspase-3蛋白。
     结果:①细胞生长曲线结果显示,各组细胞数均出现2次负增殖趋势:在第2次细胞负增殖期内(在诱导结束后第4、5、6天时),不同时间点的细胞数目有统计学差异(时间主效应:P<0.05);且SMA模型细胞负增殖较正常神经元样细胞明显,两者之间差异有统计学意义(RNA干扰主效应:P<0.05);而丙戊酸干预后负增殖减小,与无干预组相比差异有统计学意义(丙戊酸主效应:P<0.05);②MTT结果显示,各组MTT曲线均出现2次细胞活力下降趋势;在第二次细胞活力下降期,各组细胞在诱导结束后第3、4、5、6、7天时的MTT值比较差异均有统计学差异(时间主效应:P<0.05),且SMA模型细胞的活力明显低于正常神经元样细胞(RNA干扰主效应:P<0.05),但丙戊酸干预与否差异无统计学意义(丙戊酸主效应:P>0.05);③Tunel荧光染色显示,SMA模型细胞组的凋亡细胞率为(40.823.66)%,明显高于正常神经元样细胞(22.92.04)(P<0.05):在丙戊酸干预后细胞凋亡率降低(31.69±2.53)%,而正常对照组却有增加(26.62±2.62)%:各实验组之间比较差异均有统计学意义(P<0.05);④流式细胞分析Annexin V结果亦显示,SMA模型细胞组的细胞凋亡率(41.39%)较正常神经元样细胞组(32.93%)高,丙戊酸干预后细胞凋亡率减少(36.88%),但正常对照组有增加(34.67%):⑤RT-PCR凝胶电泳半定量结果表明,SMA模型组细胞Caspase-3 mRNA的表达量(0.85583±0.05241)明显高于正常对照组(0.14975±0.03093)(P<0.05),丙戊酸干预后表达量降低(0.61311±0.05093)(P<0.05),但正常神经元样细胞的Caspase-3 mRNA表达量升高(0.21796±0.03354)(P<0.05);⑥随着VPA的干预浓度增加,SMA模型细胞的fl-SMN mRNA及蛋白的表达增加,两者呈S形量一效相关(R=0.9424,P=2.047e-31;R-0.9424,P=5.682e-30):而Caspase-3mRNA及蛋白的表达在VPA的干预浓度由1μmol/ml加至5μmol/ml时,是逐渐降低,两者呈S形量-效相关(R=0.959,P=4.510e-21;R=0.942,P=8.651e-19),继续加大VPA的干预浓度,Caspase-3 mRNA的表达又逐渐回升,曲线成钩状;⑦共聚焦显微镜结果显示,fl-SMN蛋白和Caspase-3蛋白并无直接的相互作用。
     结论:①SMA细胞模型易发生凋亡,其可能与细胞内fl-SMN蛋白表达减少和Caspase-3蛋白表达增多有关。②一定剂量范围内的丙戊酸增加fl-SMN蛋白和减少Caspase-3蛋白表达后能减少SMA细胞模型的凋亡,提示SMN蛋白有神经元保护作用,但其与Caspase-3蛋白者间可能不是直接作用的结果。
Spinal muscular atrophy (SMA) is an autosomal recessive disease which affects motor neurons of spinal cord, and SMN gene is the virulence gene of SMA. SMN gene has two copies called SMN1 andSMN2, of which products are fl-SMN protein and△7-SMN protein. The dysfunction of SMN1 gene is the cause of SMA, and the quantity of fl-SMN protein determinate its clinical phenotype. We assumed that fl-SMN protein is related with the apoptosis process of motor neurons, that is to say, the reduction of fl-SMN protein may induce the apoptosis of motor neurons.
     In this research, the expression of SMN1 gene was inhibited in MSCs by RNAi, and then MSCs were differentiated to neuron like cells which were called SMA cell model. To explore the effect of fl-SMN protein toαmotor neuron, the apoptosis of SMA cell model were investigated by a series of molecular biological methods.
     Chapter 1 The Effect Of shRNA to the Expression of SMN1 Gene in Human Mesenchymal Stem Cells
     objective: To construct the plasmid containing short hairpin RNA (shRNA) of SMN1 expression vector and to investigate the effect of shRNA to the expression of SMN1 gene in human mesenchymal stem cells (hMSCs).
     Methods: The hMSCs come from the patients without SMA. Short chain oligonucleotide was designed according to the SMN1 mRNA sequence provided by Genebank, and then DNA segment was gained through annealing after chemosynthesis, and then was cloned to pRNAT-U6.1/Neo vector. The recombinant SMN1 shRNA expression vector was evaluated by using enzyme cutting. At last, the constructed SMN1 expression vector was transfected into MSCs by Lipofectomine TM 2000, and its effect on SMN1 expression was observed by RT-PCR, Western-Blot, and flow cytometry.
     Results: Successful construction was identified by enzyme cutting and the constructed plasmid was called pshRNA-SMN1. Expression of SMN1 mRNA and protein can be effectively inhibited by pshRNA-SMN1-1 and pshRNA-SMN1-4, of which the ratio of interference was 64.87%,61.45% on the level of mRNA, 60.25%,54.05% on the level of protein and 96.00%,94.29% indicated by flow cytometry analysis. Compared with control groups, the differences showed the statistical significance (P<0.05).
     Conclusion: The vector constructed by SMN1 shRNA can block the expression of SMN1 mRNA and their protein in mesenchymal stem cells.
     Chapter 2The Establishment of SMA Experiment Cell Model by RNAi
     Objective: To establish SMA experiment cell model by blocking the expression of SMN1 gene with shRNA.
     Methods: The pshRNA-SMN-1 vector which could inhibit the expression of SMN1 furtherest was choosed according to the experiment, and it was transfected into mesenchymal stem cells by Lipofectomine TM 2000. The clones of transfected cells were selected in G418 medium, and they were differentiated to neuron like cells. Immunocytochemical analysis was used to check the expression of NSE, NF on the neuron like cells, and the expression of fl-SMN gene and protein were observed by RT-PCR and Western-Blot analysis.
     Results: After differentiation, NSE, NF protein was detected on neuron like cells. After induction, the expression of fl-SMN,△7-SMN mRNA and protein of SMA model group was upregulated (P<0.05), but the expression in PshRNA-SMN-1 group is less than that in control group (P<0.05), and the differences have the statistical significations. The expression of△7-SMN mRNA between the groups have no statistical difference (P>0.05).
     Conclusion: The neuron like cells, which recombinant SMN1 shRNA expression vector was transfected into, can be regarded as SMA experiment cell model.
     Chapter 3
     The Spontaneous Apoptosis in SMA Experiment Model Cell and the Effect of SMN Protein
     Objective: To investigate the spontaneous apoptosis in SMA experiment model cell and the effect of SMN protein.
     Methods: By using SMA experiment model cell and normal neuron like cell as research target, and cells were divided into SMA model group, normal control group and VPA intervention group.①Cell proliferation was observed by drawing cellular growth curve;②The activity of cells was detected using the method of MTT spectrography;③The ratio of apoptosis cells was investigated by Tunel fluorescent staining;④Using PE-Annexin V and 7-AAD double staining, apoptosis or necrosis was detected by flow cytometry;⑤The expression of Caspase-3 mRNA was detected by RT-PCR;⑥After intervention by different dose of VPA, the expression of Caspase-3 mRNA and fl-SMN mRNA was detected by RT-PCR;⑦The expression of Caspase-3 protein and fl-SMN protein was detected by Western-Blot.⑧The position of fl-SMN protein and Caspsase-3 protein was detected by confocal microscopy.
     Results:①Cellular growth curve: Two negative proliferations were showed in all groups. During the phase of the second negative proliferations (at the 4~(th), 5~(th) and 6~(th) day), the difference of cells numbers was showed between different time point (principle effect of time: P<0.05); the negative proliferation of cells in SMA model cell group was more obvious than normal NLC group (principle effect of RNAi: P<0.05), and the negative proliferation of cells was decreased after the intervention by VPA (principle effect of VPA: P<0.05).②MTT spectrography: Two downtrends of cellular activity was observed in all groups, and the difference of their MTT value had statistic significance (P<0.05) at the 3~(rd), 4~(th), 5~(th), 6~(th) and 7~(th) day in the second downtrend. In addition, the cellular activity of SMA model cell group was lower than normal NLC (P<0.05), but no difference after the intervention by VPA (P>0.05).③Tunel fluorescent staining: The ratio of apoptosis cells was (40.82±3.66)% in SMA experiment model groups, (31.69±2.53)% after VPA intervention, (22.92.04)% in normal control groups, (26.62±2.62)% after VPA intervention, and the difference in all groups had statistic significance (P<0.05).④Flow cytometry: The ratio of apoptosis was 41.39% in SMA experiment model group, 36.88% after VPA intervention group, 32.93% in normal control group, 34.67% after VPA intervention group and the difference in all groups had statistic significance (P<0.05).⑤RT-PCR: The expression of Caspase-3 mRNA in SMA model cell group (0.85583±0.05241) was more than normal control group (0.14975±0.03093) (P<0.05). After intervention by VPA, the expression of Caspase-3 mRNA in SMA model cell group tend to downregulate (0.61311±0.05093) (P<0.05), but the expression in normal NLC group tend to upregulalte (0.21796±0.03354) (P<0.05).⑥With the addition of VPA concentration, the expression of fl-SMN mRNA and protein in SMA model cell group tend to upregulate, and quantity-effect correlation was elucidated (R=0.9424, P=2.047e-31; R=0.9424, P=5.682e-30). The expression of Caspase-3 mRNA and protein tend to downregulate with the concentration of VPA from 1μmol/ml to 5μmol/ml, and quantity-effect correlation was elucidated (R= 0.959, P= 4.510e-21; R=0.942, P=8.651e-19). When the concentration of VPA exceed 5μmol/ml, the expression of Caspase-3 mRNA came back to unregulated, and hook-like curve was elucidated.⑦Confocal microscopy: The direct interaction between fl-SMN protein and Caspase-3 protein was not identified.
     Conclusion:①The process of apoptosis of SMA experiment model cell is earlier than normal neuron like cell, which may relate with the reduction of fl-SMN protein and the increase of Caspase-3 protein.②VPA can decrease the apoptosis of SMA experiment model cell at the certain dose range by increaseing the expression of fl-SMN protein an reducing the expression of Caspase-3 protein, which suggested SMN protein have the effect of neuron protection, but it is not the result of the direct interaction between fl-SMN protein and Caspase-3 protein.
引文
1 Iannaccone ST, Smith SA, Simard LR. Spinal muscular atrophy. Curr Neurol Neurosci Rep, 2004,4:74-80.
    2 Markowitz JA, Tinkle MB, Fischbeck KH. Spinal muscular atrophy in the neonate. J Obstet Gynecol Neonatal Nurs, 2004,33:12-20.
    3 Crawford TO. Concerns about the design of clinical trials for spinal muscular atrophy. Neuromuscul Disord, 2004,14:456-60.
    4 Briese M, Esmaeili B, Sattelle DB. Is spinal muscular atrophy the result of defects in motor neuron processes? Bioessays, 2005,27:946-57.
    5 Hirtz D, Iannaccone S, Heemskerk J, et al. Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology, 2005,65:1352-7.
    6 Kesari A, Idris MM, Chandak GR, et al. Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy patients from India. Exp Mol Med, 2005,37:147-54.
    7 Pavone P, Velardita M, Trigilia T, et al. [Neonatal muscular spinal atrophy: a case report]. Pediatr Med Chir, 2004,26:139-41.
    8 Russman BS. Development of an interest in spinal muscular atrophy and disabilities. Dev Med Child Neurol, 2005,47:579.
    9 Zaldivar T, Montejo Y, Acevedo AM, et al. Evidence of reduced frequency of spinal muscular atrophy type I in the Cuban population. Neurology, 2005,65:636-8.
    10 Nguyen DB, Sadewa AH, Takeshima Y, et al. Deletion of the SMN1 and NAIP genes in Vietnamese patients with spinal muscular atrophy. Kobe J Med Sci, 2003,49:55-8.
    11 Zilfalil BA, Zabidi-Hussin AM, Watihayati MS, et al. Analysis of the survival motor neuron and neuronal apoptosis inhibitory protein genes in Malay patients with Spinal Muscular Atrophy. Med J Malaysia, 2004,59:512-4.
    12 Tsai CH, Jong YJ, Hu CJ, et al. Molecular analysis of SMN, NAIP and P44 genes of SMA patients and their families. J Neurol Sci, 2001,190:35-40.
    13 van der Steege G, Draaijers TG, Grootscholten PM, et al. A provisional transcript map of the spinal muscular atrophy (SMA) critical region. Eur J Hum Genet, 1995, 3:87-95.
    
    14 Burglen L, Seroz T, Miniou P, et al. The gene encoding p44, a subunit of thetranscription factor TFIIH, is involved in large-scale deletions associated withWerdnig-Hoffmann disease. Am J Hum Genet, 1997,60:72-9.
    15 Lunn MR, Stockwell BR. Chemical genetics and orphan genetic diseases. ChemBiol, 2005,12:1063-73.
    16 Lai AH, Tan ES, Law HY, et al. SMNl deletions among singaporean patientswith spinal muscular atrophy. Ann Acad Med Singapore, 2005,34:73-7.
    17 Kesari A, Rennert H, Leonard DG, et al. SMNl dosage analysis in spinalmuscular atrophy from India. BMC Med Genet, 2005,6:22.
    18 Hahnen E, Forkert R, Marke C, et al. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet, 1995,4:1927-33.
    19 Sun Y, Grimmler M, Schwarzer V, et al. Molecular and functional analysis ofintragenic SMNl mutations in patients with spinal muscular atrophy. Hum Mutat,2005,25:64-71.
    20 Majumdar R, Rehana Z, Al Jumah M, et al. Spinal muscular atrophy carrierscreening by multiplex polymerase chain reaction using dried blood spot on filterpaper. Ann Hum Genet 2005,69:216-21.
    21 Kesari A, Idris MM, Chandak GR, et al. Genotype-phenotype correlation ofSMN locus genes in spinal muscular atrophy patients from India. Exp Mol MedJT - Experimental & molecular medicine, 2005,37:147-54.
    22 Soler-Botija C, Cusco I, Caselles L, et al. Implication of fetal SMN2 expressionin type I SMA pathogenesis: protection or pathological gain of function? JNeuropathol Exp Neurol, 2005,64:215-23.
    23 Saito M, Chen Y, Mizuguchi M, et al. [Quantitative analysis of SMN2 based onreal-time PCR: correlation of clinical severity and SMN2 gene dosage]. No ToHattatsu, 2005,37:407-12.
    24 Monani UR. Spinal muscular atrophy: a deficiency in a ubiquitous protein; amotor neuron-specific disease. Neuron, 2005,48:885-96.
    25 Wu T, Ding XS, Li WL, et al. Prenatal diagnosis of spinal muscular atrophy inChinese by genetic analysis of fetal cells. Chin Med J (Engl), 2005,118:1274-7.
    26 Lin J, da Silva RJ, Grillo E. Rapidly progressive spinal muscular atrophy in an ambulatory 2-year-old male.Pediatr Neurol ,2005,33:72-4.
    27 Le TT, Pham LT, Butchbach ME, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet, 2005,14:845-57.
    28 Eggermann T, Zerres K, Anhuf D, et al. Somatic mosaicism for a heterozygous deletion of the survival motor neuron (SMN1) gene. Eur J Hum Genet, 2005,13:309-13.
    29 Lefebvre S, Burlet P, Liu Q, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet, 1997,16:265-9.
    30 Modjtahedi N, Giordanetto F, Madeo F, et al. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol, 2006,16:264-72.
    31 Lautrette C, Loum-Ribot E, Petit D, et al. Increase of Fas-induced apoptosis by inhibition of extracellular phosphorylation of Fas receptor in Jurkat cell line. Apoptosis, 2006,11:1195-204.
    32 Rowinsky EK. Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol, 2005,23:9394-407.
    33 Siegel R. Receptor-mediated lymphocyte apoptosis in health and disease. J Pediatr Gastroenterol Nutr, 2005,40 Suppl 1:S16.
    34 Botto M. Phosphatidylserine receptor and apoptosis: consequences of a non-ingested meal. Arthritis Res Ther, 2004,6:147-50.
    35 Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes, 2003,52:165-71.
    36 Watson RW, Fitzpatrick JM. Targeting apoptosis in prostate cancer: focus on caspases and inhibitors of apoptosis proteins. BJU Int, 2005,96 Suppl 2:30-4.
    37 Philchenkov AA. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc), 2003,68:365-76.
    38 Cohen-Saidon C, Razin E. The involvement of Bcl-2 in mast cell apoptosis. Novartis Found Symp, 2005,271:191-5; discussion 195-9.
    39 Thomadaki H, Scorilas A. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci, 2006,43:1-67.
    40 Campioni M, Santini D, Tonini G, et al. Role of Apaf-1, a key regulator of
    2005,14:811-8.
    41 Lindholm D, Arumae U. Cell differentiation: reciprocal regulation of Apaf-1 and the inhibitor of apoptosis proteins. J Cell Biol, 2004,167:193-5.
    42 Newton K, Strasser A. Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system. Genes Dev, 2003,17:819-25.
    43 Benimetskaya L, Lai JC, Khvorova A, et al. Induction of apoptosis by G3139 in melanoma cells. Ann N Y Acad Sci, 2005,1058:235-45.
    44 Van De Water TR, Lallemend F, Eshraghi AA, et al. Caspases, the enemy within, and their role in oxidative stress-induced apoptosis of inner ear sensory cells. Otol Neurotol, 2004,25:627-32.
    45 Elinos-Baez CM, Maldonado V, Melendez-Zajgla J. Caspases: apoptosis inducing molecules. Gac Med Mex, 2003,139:493-9.
    46 Smolewski P. The role of caspases in the apoptosis process. Postepy Hig Med Dosw, 2003,57:335-54.
    47 Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med, 2003,348:1365-75.
    48 Silva JM, Hammond SM, Harmon GJ. RNA interference: a promising approach to antiviral therapy? Trends Mol Med, 2002,8:505-8.
    49 Tuschl T. Functional genomics: RNA sets the standard. Nature, 2003,421:220-l.
    50 McCaffrey AP, Meuse L, Priam TT, et al. RNA interference in adult mice. Nature, 2002,418:38-9.
    51 Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 2001,107:297-307.
    52 Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001,107:465-76.
    53 Battaglia G, Princivalle A, Forti F, et al. Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. Hum Mol Genet, 1997,6:1961-71.
    54 Fan L, Simard LR. Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum Mol Genet, 2002,11:1605-14.
    55 Monani UR. Sendtner M. Coovert DD. et al. The human centromeric survival
    motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet, 2000,9:333-9.
    56 Schramke V, Sheedy DM, Denli AM, et al. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature, 2005,435:1275-9.
    57 Holen T, Moe SE, Sorbo JG, et al. Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo. Nucleic Acids Res, 2005,33:4704-10.
    58 McManus MT, Haines BB, Dillon CP, et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol, 2002,169:5754-60.
    59 Schwartz M. The molecular-genetic background of spinal muscular atrophy. Diagnosis, prognosis and future treatment. Ugeskr Laeger, 2005,167:745-8.
    60 Bachand F, Boisvert FM, Cote J, et al. The product of the survival of motor neuron (SMN) gene is a human telomerase-associated protein. Mol Biol Cell, 2002,13:3192-202.
    61 Le TT, Pham LT, Butchbach ME, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet, 2005,14:845-57.
    62 Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells-a critical review. APMIS, 2005,113:831-44.
    63 Wislet-Gendebien S, Wautier F, Leprince P, et al. Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin. Brain Res Bull, 2005,68:95-102.
    64 Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells, 2003,21:437-48.
    65 Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. JNeurosci Res, 2002,69:908-17.
    66 Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000,61:364-70.
    67 Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function?. Cell, 2001,105:829-41.
    68 Mezey E. Commentary: on bone marrow stem cells and operanindedness. Stem
    Cells Dev, 2004,13:147-52.
    69 Mezey E, Chandross KJ. Bone marrow: a possible alternative source of cells in the adult nervous system. Eur J Pharmacol, 2000,405:297-302.
    70 Schrank B, Gotz R, Gurmersen JM, et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A, 1997,94:9920-5.
    71 Coovert DD, Le TT, McAndrew PE, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet, 1997,6:1205-14.
    72 Strasswimmer J, Lorson CL, Breiding DE, et al. Identification of survival motor neuron as a transcriptional activator-binding protein. Hum Mol Genet, 1999,8:1219-26.
    73 Ferri A, Melki J, Kato AC. Progressive and selective degeneration of motoneurons in a mouse model of SMA. Neuroreport, 2004,15:275-80.
    74 Simon HU. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev, 2003,193:101-10.
    75 Savill J. Apoptosis in resolution of inflammation. Kidney Blood Press Res, 2000,23:173-4.
    76 Beattie MS. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med, 2004,10:580-3.
    77 Akdis CA, Blaser K, Akdis M. Apoptosis in tissue inflammation and allergic disease. Curr Opin Immunol, 2004,16:717-23.
    78 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983,65:55-63.
    79 Zeng Z, Li W, Yao Y, et al. Study on the mechanism of glutamate mediated neurotoxicity by cortical neuron culture technique in vitro. Hua Xi Yi Ke Da Xue Xue Bao, 1999,30:329-30.
    80 van Bergeijk J, Haastert K, Grothe C, et al. Valproic acid promotes neurite outgrowth in PC 12 cells independent from regulation of the survival of motoneuron protein. Chem Biol Drug Des, 2006,67:244-7.
    81 Sumner CJ, Huynh TN, Markowitz JA, et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol, 2003,54:647-54.
    82 Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet, 2003,12:2481-9.
    83 Rezacova M, Vavrova J, Vokurkova D, et al. Effect of valproic acid and antiapoptotic cytokines on differentiation and apoptosis induction of human leukemia cells. Gen Physiol Biophys, 2006,25:65-79.
    84 Dragunow M, Greenwood JM, Cameron RE, et al. Valproic acid induces caspase 3-mediated apoptosis in microglial cells. Neuroscience, 2006,140:1149-56.
    85 Kernochan LE, Russo ML, Woodling NS, et al. The role of histone acetylation in SMN gene expression. Hum Mol Genet, 2005,14:1171-82.
    1. Le TT, Coovert DD, Monani UR,et al.The survival motor neuron (smn)protein:effect of exon loss and mutation on protein localization. Neurogenetics,2000,3(1):7-16.
    2. Mcandrew PE,Parsons DW,Simard LR,et al.Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number.Am J Hum Genet, 1997,60:1411-1422.
    3. Kao HY, Su YN, Liao HK, et al. Determination of SMN1/SMN2 Gene Dosage by a Quantitative Genotyping Platform Combining Capillary Electrophoresis and MALDI-TOF Mass Spectrometry. Clin Chem, 2006,52(3):361-9.
    4. Kesari A, Rennert H, Leonard DG, et al. SMN1 dosage analysis in spinal muscular atrophy from India. BMC Med Genet, 2005,6:22.
    5. Lai AH, Tan ES, Law HY, et al. SMN1 deletions among singaporean patients with spinal muscular atrophy. Ann Acad Med Singapore, 2005,34:73-7.
    6. Gabanella F, Carissimi C, Usiello A, et al. The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet, 2005,14:3629-42.
    7. Majumdar R, Rehana Z, Al Jumah M, et al. Spinal muscular atrophy carrier screening by multiplex polymerase chain reaction using dried blood spot on filter paper. Ann Hum Genet,2005,69:216-21.
    8. Madocsai C, Lim SR, Geib T, et al. Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs. Mol Ther,2005,12:1013-22.
    9. Klaus Z,Kay E.59th ENMC International Workshop: Spinal Muscular Atrophies:recent progress and revised diagnostic ctiteria. Neuromusc disord, 1999,9:272-278.
    10. Tomaszewicz K, Kang P, Wu BL. Detection of homozygous and heterozygous SMN deletions of spinal muscular atrophy in a single assay with multiplex ligation-dependent probe amplification. Beijing Da Xue Xue Bao,2005,37:55-7.
    11. Theodore L,Kay E.International SMA consortium meeting report.Neuromusc disord,1992,2(5/6):423-428.
    12. Cusco I, Barcelo MJ, Rojas-Garcia R, et al. SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings. J Neurol, 2006,253:21-5.
    13. Wirth B,EL-Agwany A,Baasner A, et al.Mapping of the spinal muscular atrophy gene to a 750 kb interval flanked by two microsatellites.Eur J Hum Genet, 1995,3:56-60.
    14. Lefebvres S,Burglen L,Reboullet S,et al.Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 1995,80:155-165.
    15. Jablonka S, Karle K, Sandner B, et al. Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. Hum Mol Genet, 2006,15:511-8.
    16. Zaldivar T, Montejo Y, Acevedo AM, et al. Evidence of reduced frequency of spinal muscular atrophy type I in the Cuban population. Neurology,2005,65:636-8.
    17. Burghes AHM, Ingraham SE, Kote-Jarai Z,et al.Linkage mapping of the spinal muscular atrophy gene.Hum Genet ,1994 ,21:394-402.
    18. Cobben JM,Van der Steege G,Grootscholten P,et al.Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am J Hum Genet,1995,57: 805-808.
    19. Roy N, Mahadevan MS, Mclean M,et al.The gene for neuronal apoptosis inhibitory protein is partially deleted individuals with spinal muscular atrophy.CelL,1995,80:167-178.
    20. Burglen L,Seroz T,Miniou P,et al.The gene encoding p44,a subunit of the transcription factor TFIIH,is involved in large-scale deletion associated with Werdnig-Hoffmann desease.Am J Hum Genet, 1997,60:72-79.
    21. Carter TA,Bonnemann CG,Wang CH,et al.A multicopy transcription -repair gene,BTF2p44,maps to the SMA region and demonstrates SMA associated deletions.Hum Mol Genet,1997,6:229-236.
    22. Scharf JM,Endrizzi MG,Wetter A,et al.Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics.Nat Genet, 1998,20:83-86.
    23. Burghes AHM, Ingraham SE, Kote-Jarai Z, et al. Linkage mapping of the spinal muscular atrophy gene. Hum Genet ,1994,93(3):305-12.
    24. Bergin A, Kim G, Price DL, et al. Corrigendum to: 'Identification and characterization of a mouse homologue of the spinal muscular atrophy-determining gene, survival motor neuron'. Gene,1998,213(l-2):227.
    25. Lorson CL,Hahnen E,Androphy EJ, et al. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA,1999,96(11): 6307-6311.
    26. van der Steege G,Grootscholten PM,van der Vlies P,et al .PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy.Lancet, 1995,345:985-986.
    27. Lefebvre S, Burlet P, Liu Q,et al. Correlation between severity and SMN protein level in spinal muscular atrophy, Nat Genet, 1997,16:265-269.
    28. Coovert DD, Le TT, McAndrew PE, et, al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet,1997,6(8):1205-1214.
    29. Williams BY,Vinnakota S,Sswyer CA,et al.Differential subcelular localization of the suivival motor neuron protein in spinal cord and skeletal muscule.Biochem Biophys Res Commum,1999,254:10-14.
    30. Francis JW,Ssndrock AW,Bhide PG,et al.Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron tissues.Proc Hatl Acda Sci USA, 1998,95:6492-6497.
    31. Sanchez Ramos J, Song S, Cardozo Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol, 2000,164(2):247-256
    32. Pagliardini S, Giavazzi A, Setola V, et al. Subcellular localization and axonal transport of the survival motor neuron(SMN) protein in the developing rat spinal cord. Hum Mol Genet,2000,9:47-56.
    33. Pellizzoni L,Yong J,Dreyfuss G.Essential role for the SMN complex in the specificity of snRNP assembly. Science,2002,298:1775-1779.
    34. Sharma A, Lambrechts A, Hao le T, et al. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp Cell Res,2005,309:185-97.
    35. Rossol W,Jablonka S,Andreassi C,et al.Smn,the spinal muscular atrophy-determining gene product,modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons.J Cell Biol,2003,163(4):801-12
    36. Liu Q,Dreyfuss G.A novel nuclear structure containing the survival of motor neurons protein. EMBO J, 1996,15:3555-3565.
    37. Renvoise B, Khoobarry K, Gendron MC, et al. Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J Cell Sci,2006,l 19:680-92.
    38. Hebert MD, Szymczyk PW, Shpargel KB, et al. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev,2001,15: 2720-2729.
    39. Xu H, Pillai RS, Azzouz TN, et al. The C-terminal domain of coilin interacts with Sm proteins and U snRNPs. Chromosoma,2005,l 14:155-66.
    40. Liu Q,Fischer U,Wang F,et al.The spinal muscular atrophy disease gene product,SMN and its associated protein SIP1 are in a complex with spliceosomal snRNP protein.Cell, 1997,90:1013-1021.
    41. Pellizzoni L,Charroux B ,Dreyfuss G,et al.SMN mutants of sinal muscular atrophy patients are defective in binding to SnRNP proteins.Proc Natl Acad Sci USA,1999,96:11167-11172.
    42. Lorson CL,Strassuimmer J,Yao JM,et al.SMN oligomerization defect correlates with spinal muscular atropohy severity .Nature Genet,1998,19:63-66.
    43. Buhler D,Raker V,Luhrmann R,et al.An essential role for the tudor domain of SMN in U SnRNP assembly: implications for spinal muscular atrophy .Hum Mol Genet,1999,8:2351-2357.
    44. Bertrandy S,Burlet P,Clermont O,et al.The RNA-binding properties of SMN: deletion analysis of the Zebrafish orthologue defines domains conserved in evolution .Hum Mol Genet,1999,8:775-782.
    45. Lorson CL , Androphy EJ.The domain encoded by exon 2 of the survival moter neuron protein mediates nucleic acid binding.Hum Mol Genet, 1999,7:1269-1275.
    46. Ponting CP. Tudor domains in proteins that interact with RNA. Trends Biochem. Sci,1997,22:51-52.
    47. Mohaghegh P,Rodrigues NR,Owen N,et al.Analysis of mutations in the tudor domain of the survival motor neuron protein SMN. Europ J Hum Genet,1999,7:519-525.
    48. Paushkin S, Gubitz AK, Massenet S,et al. The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol,2002,14:305-312.
    49. Charroux B, Pellizzoni L, Perkinson RA, et al. Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol, 1999,147:1181-1194.
    50. Campbell L, Hunter KM, Mohaghegh P, et al. Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? Hum Mol Genet, 2000,9:1093-1100.
    51. Charroux B, Pellizzoni L, Perkinson RA,et al. Gemin4,A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol,2000,148:1177-1186.
    52. Gubitz AK, Mourelatos Z, Abel L, et al. Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem,2002,277:5631- 5636.
    53. Pellizzoni L, Baccon J, Rappsilber J, et al. Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component. J Biol Chem,2002,277:7540-7545.
    54. Baccon J, Pellizzoni L, Rappsilber J, et al. Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex. J Biol Chem,2002,277:31957-31962.
    55. Feng W, Gubitz AK, Wan L, et al. Gemins modulate the expression and activity of the SMN complex. Hum Mol Genet, 2005,14:1605-11.
    56. Tanner NK, Linder P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell,2001,8:251-262.
    57. Yan X, Mouillet JF, Ou Q, et al. A novel domain within the DEAD-box protein DP103 is essential for transcriptional repression and helicase activity. Mol Cell Biol,2003,23:414-423.
    58. Carissimi C, Saieva L, Baccon J, et al. Gemin8 is a novel component of the survival motor neuron complex and functions in snRNP assembly. J Biol Chem, 2006,281(12):8126-34.
    59. Simard LR,Rochette C,Semionov A,et al.SMN-t and NAIP mutations in Canadian families with spinal muscular atrophy(SMA) :genotype/phenotype correlations with disease severity .Am J Med Genet, 1997,72:51-58.
    60. Winkler C, Eggert C, Gradl D, et al. Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev,2005,19:2320-30.
    61. Meister G,Buhler D,Laggerbauer B,et al.Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum Molec Genet,2000,9:1977-1986.
    62. Olaso R, Joshi V, Fernandez J, et al. Activation of RNA metabolism-related genes in mouse but not human tissues deficient in SMN. Physiol Genomics,2006,24:97-104.
    63. Battaglia G,Princivalle A,Forti F,et al.Expression of the SMN gene ,the spinal muscular atrophy determining gene,in the mammalian central nervous system/Hum Mol Genet, 1997,6:1961-1971.
    64. Mattaj W.Ribonucleoprotein assembly:clues from spinal muscular atrophy.Curr Biol,1998,8:93-95.
    65. Francis JW, Figueiredo D, vanderSpek JC, et al. A survival motor neuron:tetanus toxin fragment C fusion protein for the targeted delivery of SMN protein to neurons. Brain Res, 2004,995:84-96.
    66. Sato K, Eguchi Y, Kodama TS,et al. Regions essential for the interaction between Bcl-2 and SMN, the spinal muscular atrophy disease gene product. Cell Death Differ,2000,7(4):374-383.
    67. Young PJ, Day PM, Zhou J,et al. A Direct Interaction between the Survival Motor Neuron Protein and p53 and Its Relationship to Spinal Muscular Atrophy. J Biol Chem,2002,277( 4): 2852-2859.
    68. Vyas S, Bechade C, Riveau B,et al. Involvement of survival motor neuron (SMN) protein in cell death. Hum Mol Genet,2002,11(22):2751-64.
    69. Krebs S, Medugorac I, Russ I, et al. Fine-mapping and candidate gene analysis of bovine spinal muscular atrophy. Mamm Genome,2006,17:67-76.
    70. Coovert DD,Le TT,Morris GE,et al.Does the survival motor neuron protein (SMN)interact with Bcl-2? J Med Genet, 2000,37:536-539.
    71. Tsai MS, Chiu YT, Wang SH, et al. Abolishing Trp53-dependent apoptosis does not benefit spinal muscular atrophy model mice. Eur J Hum Genet,2006,14:372-5.
    72. Gangwani L,Mikrut M,Theroux S,et al.Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nature Cell Biol, 2001,3: 376-383.
    73. Gangwani L, Flavell RA, Davis RJ. ZPR1 is essential for survival and is required for localization of the survival motor neurons (SMN) protein to cajal bodies. Mol Cell Biol,2005,25(7):2744-2756.
    74. Guettier-Sigrist S,Coupin G,Buarn S,et al.On the possible role of muscule in the pathogenesis of spinal muscular atrophy .Fundam Clin Pharmacol,2001,15(1):31-40.
    75. Cifuentes-Diaz C,Frugier T,Tiziano FD,et al.Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy.J Cell Biol,2001,152(5):1107-1114.
    76. Shafey D, Cote PD, Kothary R. Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Exp Cell Res, 2005, 311(1): 49-61.
    77. Fan L, Simard LR. Survival motor neuron(SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum Mol Genet, 2002, 11: 1605-1614.
    78. Briese M, Esmaeili B, Sattelle DB. Is spinal muscular atrophy the result of defects in motor neuron processes?. Bioessays, 2005, 27: 946-57.
    79. DiDonato CJ, Chen XN, Noya D, et al. Charactedzation, and copy number of the murine survival motor neuron gene. Genome Res, 1997, 7: 339-352.
    80. Hahnen E, Forkert R, Marke C, et al. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet, 1995, 4: 1927-1933.
    81. Rodrigues NR, Owen N, Talbot K, et al. Gene deletions in spinal muscular atrophy. J Med Genet, 1996, 33: 93-96.
    82. van der Steege G, Grootscholten PM, Cobben JM, et al. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. Am J Hum Genet, 1996, 59: 834-838.
    83. Velasco E, Valero C, Moreno F, et al. Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy(SMA) families and correlation between number of copies of cBCD541 andSMA phenotype. Hum Mol Genet, 1996, 5: 257-263.
    84. Wirth B, Herz A, Wetter A, et al. Quantitative Analysis of Survival Motor Neuron Copies: Identification of Subtle SMN1 Mutation in Patients with Spinal Muscular Atrophy, Genotype-Phentype Correlation and Implications for Genetic Counseling. Am J Hum Genet, 1999, 64: 1340-1356.
    85. Wirth B. An Update of the Mutation Spectrum of the Survival Motor Neuron gene(SMN1) in Autosomal Recessive Spinal Muscular Atrophy(SMA). Human Mutation, 2000, 15: 228-237.
    86.张丽芳,杨晓苏,肖波.脊髓性肌萎缩症的基因研究,中华内科杂志,2001,40(6):401-404
    87.张丽芳,杨晓苏,肖波.儿童脊髓性肌萎缩症的基因学研究.中国当代儿科杂志.2001,3(1):6-10.
    88.丁华新,杨晓苏,肖波,等.脊髓性肌萎缩症SMN拷贝数定量分析.中华医学遗传学杂志,2004,21(2):153-155.
    89.杨晓苏,丁华新,肖波,等.儿童型脊髓性肌萎缩症SMN-T和SMN-C拷贝数定量分析.中华儿科杂志,2004,42(2):147-149
    90.杨晓苏,邓益东,肖波.儿童型脊肌萎缩症SMN基因缺失与微突变检测.中国当代儿科杂志,2005,6:489-492
    91. Fujii T, Miyajima T, Ito M, et al. Utility and intricacy of molecular diagnosis of spinal muscular atrophy. No To Hattatsu, 1999, 31(6): 505-10.
    92. Monani UR. Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron, 2005, 48: 885-96.
    93. Rochette CF, Surh C, Ray PN, et al. Molecular diagnosis of non-deletion SMA patients using quantitative PCR of SMN exon 7. Neurogenetics, 1997, 1: 141-147.
    94. Jedrzejowska M, Wiszniewski W, Zimowski J, et al. Application of a rapid non-invasive technique in the molecular diagnosis of spinal muscular atrophy(SMA). Neurol Neurochir Pol, 2005, 39: 89-94.
    95. Clermont O, Burlet P, Cruaud C, et al. Mutation analysis of the SMN gene in undeleted SMA patients. Annual Meeting of the American Society of Human Genetics. Am J Hum Genet, 1997, 61: A329.
    96. Parsons DW, McAndrew PE, Iannaccone ST, et al. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet, 1998, 63: 1712-1723.
    97. Parsons DW, McAndrew PE, Allinson PS, et al. Diagnosis of spinal muscular atrophy in an SMN non-deletion patient using a quantitative PCR screen and mutation analysis. J Med Genet, 1998, 35: 674-676.
    98. Martin Y, Valero A, Castillo E del, et al. Genetic study of SMA patients without homozygous SMN1 deletions: identification of compound heterozygotes and characterisation of novel intragenic SMN1 mutations. Hum Genet, 2002, 110: 257-263.
    99. Skordis LA, Dunckley MG, Burglen L, et al. Characterisation of novel point mutations in the survival motor neuron gene SMN, in three patients with SMA. Hum Genet, 2001, 108(4): 356-357.
    100. Monani UR, Pastore MT, Gawilina TO, et al. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe(type Ⅰ) spinal muscular atrophy. J Cell Biol, 2003, 160(1): 41-52.
    101. Talbot K, Ponting CP, Theodosiou AM, et al. Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism?Hum Mol Genet, 1997, 6: 497-501.
    102. Roy N, McLean Md, Besner-Johnston, et al. Refined physical map of the spinal muscular atrophy gene(SMA) region at 5q13 based on YAC and contiguous arrays. Genomics, 1995, 26: 451-460.
    103. Burghes AHM. When is a deletion not a deletion?When it is converted. Am J Hum Genet, 1997, 61: 9-15.
    104. Le TT, Pham LT, Butchbach ME, et al. SMNDelta7, the major product of the centromeric survival motor neuron(SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet, 2005, 14: 845-57.
    105. Sangiuolo F, Filareto A, Spitalieri P, et al. In vitro restoration of functional SMN protein in human trophoblast cells affected by spinal muscular atrophy by small fragment homologous replacement. Hum Gene Ther, 2005, 16: 869-80.
    106. Matthijs G, Burglen L, Clermont O, et al. Large scale deletions of the 5q13 region are specific to Werding-Hoffmann disease. Hum Med Genet, 1996, 33: 469-474.
    107. Monani UR, Sendtner M, Coovert DD, et al. The human centromeric survival motor neuron gene(SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet, 2000, 9(3): 333-9.
    108. Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet, 2003, 12: 2481-9.
    109. Struhl K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell, 1999, 98(1): 1-4.
    110. Wirth B, Brichta L, Schrank B, et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet, 2006, 119(4): 422-8.
    111. Swoboda KJ, Prior TW, Scott CB, et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol JT-Annals of neurology, 2005, 57: 704-12.
    112. Chen Ke-Lian, Wang Y. Lynn, Rennert H, et al. Duplications and de novo deletions of the SMNt gene demonstrated by fluorescence-based carrier testing forspinal muscular atrophy.Am J Med Genet,1999,85:463-369.
    113.Feldkotter M,Schwarzer V,Wirth R,et al.Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR:fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy.Am J Hum Genet,2002,70(2):358-368.
    114.Kesari A, Idris MM, Chandak GR, et al. Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy patients from India. Exp Mol Med, 2005,37:147-54.
    115.Kerr DA,Nery JP,Traystman,et al. Survival motor neuron protein modulates neuron-specific apoptosis. Proc Natl Acad Sci USA,2000,97:13313-13317.
    116.Kornberg RD. Eukaryotic transcriptional control. Trends Cell Biol,1999,9:46-49.
    117.Pollard KJ,Peterson CL. Chromatin remodeling:a marriage between two families? BioEssays, 1998,20:771-780.
    118.Fletcher TM,Hansen JC. The nucleosomal array:structure/function relationships. Crit Rev Eukaryote Gene Expr,1996,6:148-188.
    119.Phiel CJ,Zhang F,Huang EF,et al. Histone deacetylase is a direct target of valproic acid,a potent anticonvulsant,mood stabilizer,and teratogen. J Biol Chem,2001,276:36734-36741.
    120.Gottlicher M,Minucci S,Zhu P,et al.Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J,2001,20: 6969-6978.
    121.Kernochan LE, Russo ML, Woodling NS, et al. The role of histone acetylation in SMN gene expression. Hum Mol Genet,2005,14:l 171-82.
    122.Berget SM. Exon recongnition in vertebrate splicing.J Biol Chem,1995, 270:2411-2414.
    123.Graveley BR. Alternative splicing:increasing diversity in the proteomic world. Trends Genet,2001,17:100-107.
    124.Modrek B, Lee C. A genomic view of alternative splicing. Nature Genetics, 2002, 30:13-19.
    125.Smith CW, Valcarcel J. Alternative pre-mRNA splicing:the logic of combinatorial control. Trends Biochem Sci,2000,25:381-388.
    126.Skordis LA, Dunckley MG, Yue B, et al. Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci U S A, 2003,100:4114-9.
    127.Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet,2003,34:460-3.
    128.Cartegni L, Hastings ML, Calarco JA, et al. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet, 2006,78:63-77.
    129.Singh NK, Singh NN, Androphy EJ,et al. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol,2006,26:1333-46.
    130.Blencowe BJ, Bowman JA, McCracken S, et al.SR-related proteins and the processing of messenger RNA precursors. Biochem Cell Biol, 1999,77:277-291.
    131.Fu XD. The superfamily of arginine/serine-rich splicing factors. RNA, 1995,1:663-680.
    132.Manley JL , Tacke R. SR proteins and splicing control. Genes Dev,1996, 10:1569-1579.
    133.Xiao SH, Manley JL. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev ,1997,11:334-344.
    134.Wu JY , Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell, 1993,75:1061-1070.
    135.Hoffmen Y,Lorson CL,Stamm S,et al. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron-2 (SMN2). Proc Natl Acad Sci USA ,2000,97:9618-9623.
    136.Young PJ,DiDonato CJ,Hu D,et al. SRp30c-dependent stimulates of survival motor neuron(SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2betal. Hum Mol Genet, 2002,11:557-587.
    137.Hoffmen Y,Wirth B. HnRNP-G promotes exon 7 inclusion of survival motor neuron(SMN) via direct with Htra2-β1. Hum Mol Genet ,2002,11:2037-2049.
    138.Chang HC, Hung WC, Chuang YJ, et al. Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int, 2004,45:1107-12.
    139.Ruiz R, Lin J, Forgie A, et al. Treatment with trkC agonist antibodies delays disease progression in neuromuscular degeneration (nmd) mice. Hum Mol Genet, 2005,14:1825-37.
    140. DiDonato CJ, Parks RJ, Kothary R. Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Hum Gene Ther, 2003, 14: 179-88.
    141. Azzouz M, Le T, Ralph GS, et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest, 2004, 114: 1726-31.
    142. Francis JW, Figueiredo D, vanderSpek JC, et al. A survival motor neuron: tetanus toxin fragment C fusion protein for the targeted delivery of SMN protein to neurons. Brain Res, 2004, 995: 84-96.
    143.李玉光,刘爱萍.白喉毒素及其抗癌作用的研究状况.河南肿瘤学杂志,2001,14(4):310-312
    144. Sumner CJ, Huynh TN, Markowitz JA, et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol, 2003, 54: 647-54.
    145. Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet, 2003, 12: 2481-9.
    146. Monani UR, McPherson JD, Burghes AHM. Promoter analysis of the human centromeric and telomeric survival motor neuron genes(SMNC and SMNT). Biochem Biophys Acta, 1999, 1445: 330-336.
    147. Chen G, Yaun P, Hawver DB, et al. Incresae in AP-1 transcription factor DNA binding activity by valproic acid. Neuropsychopharmacology, 1997, 16: 237-245.
    148. Chen G, Yaun P, Jiang YM, et al. Valproate robustly enhances AP-1 nediated gene expression. Brain Res Mol Brain Res, 1999, 64: 52-58.
    149. Echaniz-Laguna A, Miniou P, Bartholdi D, Melki J. The promoters of the survival motor neuron gene(SMN) and its copy(SMNC) share common regulatory elements. Am J Hun Genet, 1999, 64: 1365-1370.
    150.罗新明,杨晓苏,肖波.丙戊酸对脊髓性肌萎缩症患者神经元样细胞SMN2基因mRNA表达的影响。中华神经科杂志,2006,03:159-162
    151. Russman BS, Iannaccone ST, Samaha FJ. A phase 1 trial of riluzole in spinal muscular atrophy. Arch Neurol, 2003, 60: 1601-3.
    152. Andreassi C, Angelozzi C, Tiziano FD, et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet, 2004, 12: 59-65.
    153. Brahe C, Vitali T, Tiziano FD, et al. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet, 2005, 13: 256-9.
    154.Merlini L, Solari A, Vita G, et al. Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized Italian study. J Child Neurol, 2003,18:537-41.
    155.Miller RG, Moore DH, Dronsky V, et al. A placebo-controlled trial of gabapentin in spinal muscular atrophy. J Neurol Sci, 2001,191:127-31.
    156.Jarecki J, Chen X, Bernardino A, et al. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet, 2005,14:2003-18.
    
    157.Soler-Botija C, Cusco I, Caselles L, et al. Implication of fetal SMN2 expression in type I SMA pathogenesis: protection or pathological gain of function?. J Neuropathol Exp Neurol,2005,64(3):215-23.
    158.Grzeschik SM, Ganta M, Prior TW, et al. Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol,2005,58(2): 194-202.
    159.Grondard C, Biondi O, Armand AS, et al. Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse. J Neurosci,2005,25:7615-22.
    160.Mercuri E, Messina S, Battini R, et al. Reliability of the Hammersmith functional motor scale for spinal muscular atrophy in a multicentric study. Neuromuscul Disord,2006,16:93-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700