石灰浆液荷电喷雾脱硫流场及SO_2浓度场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿钙法烟气脱硫因具有脱硫效率高、技术成熟等优势而成为烟气脱硫的主流技术,但该技术存在的喷淋量大、雾滴直径大、运行成本高等问题已是阻碍湿钙法烟气脱硫工艺在我国广泛应用的重要因素之一。石灰浆液荷电喷雾烟气脱硫是将静电喷雾技术应用于湿钙法烟气脱硫的一种新型脱硫方法,该法可以改善浆液雾化质量和SO2吸收条件,从而降低湿钙法烟气脱硫工艺的投资和运行成本。
     本文在研究荷电两相流及SO2吸收机理的基础上,对实验型石灰浆液荷电喷雾脱硫塔内的流场及SO2浓度场进行数值模拟,分析得到不同充电电压、浆液流量、气液流动方向时的流场和SO2浓度场特性,为石灰浆液荷电雾化脱硫技术的推广应用提供一定的理论基础。本文主要工作及结论如下:
     1.基于环状电极电位的拉普拉斯方程,通过对商用Fluent6.3计算功能的扩展,对环状电极感应静电场分布特性进行数值计算,结果表明:其电场强度对称分布,最高值出现在喷嘴附近,但离开电极后场强衰减迅速;随着电压的增加或电极间距的减小,电场强度增强,但喷嘴电极处比环状电极处增幅明显,是石灰浆液感应荷电的主要部位。
     2.采用Euler-Lagrange方法对石灰浆液荷电喷雾两相流场进行数值模拟,选择颗粒随机轨道模型对石灰浆液滴的运动进行追踪,通过Fluent 6.3中的UDF功能,编写并加载电场力应用程序,实现静电场与流场的耦合计算。结果表明:石灰浆液荷电后使烟气速度梯度在射流区内减小,且射流区边界附近烟气的卷吸作用加强,流量增加后这一影响更加明显,有利于烟气中SO2的吸收。
     3.利用Fluent 6.3中的UDF功能,对以双膜理论建立的SO2吸收模型进行程序编写并导入Fluent进行数值模拟,结果表明,SO2浓度分布与塔内两相流场特性紧密相关;石灰浆液荷电使脱硫效率增加;通过相同工况参数下的脱硫效果的比较可见,较大浆液流量时采取气液同向流动较好;计算脱硫率与实验测量值基本吻合,变化趋势一致。
Wet flue gas desulphurization system has been the main technology among flue gas desulphurization industry in the world, as its high desulfurization degree and mature theory. But there are some problems discourage its wild application China, such as the large spraying quantity, the big size droplet and the high cost. Lime slurry charging spraying desulfurization is a new desulfurization method bringing electrostatic spraying into wet flue gas desulphurization system, with a lower investment and operating cost through atomization quantity and SO2 absorption situation improved.
     In this paper, numerical simulation for charged gas-liquid two phase flow field and SO2 concentration field in experimental lime slurry charging spraying desulfurization tower has been carried out, based on charged two phase flow theory and knowledge about SO2 absorption. From the result, it has been known the affection of charging voltage, slurry flow rate, injection direction and position on flow field and SO2 concentration field. This will make contribuition on extensive application of lime slurry charging spraying desulfurization.
     1. Electrostatic field generated by ring-like electrode has been simulated, based on Laplace equation, through extending commercial Fluent 6.3 function. The result shows that the electrostatic field is symmetry about z-axis, with the highest electrostatic field strength on nozzle, but electrostatic field strength is weakened quickly away from electrode; electrostatic field strength is strengthened as the charging voltage increased or the distension between electrodes decreased, while electrostatic field around nozzle electrode changes obviously, and it is the main part for lime slurry droplet induction charging.
     2. Charged two phase flow field in Lime slurry charging spraying desulfurization tower has been simulated based on Euler-Lagrange method, trajectories of lime slurry droplet using discrete random walk (DRW) model, and coupled simulation between electrostatic field and flow field has been achieved through adding electrostatic force procedure to computing process by UDF function in Fluent 6.3. The result shows gas velocity gradient decreases in jet flow zone after lime slurry charged, and gas entrainment is enhanced on bondary of the jet flow zone, which is obviously enhanced while the lime slurry flow rate increased, this will strengthen SO2 absorption process.
     3. SO2 absorption process has been simulated, adding SO2 absorption model through UDF function in Fluent, the result indicates that SO2 concentration is affected by the gas-liquid two phase flow field, and desulfurization degree calculated has a good agreement with the experimental data, while with the same tendency; desulfurization degree is increased as lime slurry charged; desulfurization performance is better when lime slurry injection and gas motion is in the same direction.
引文
[1]吴颖海.循环流化床烟气脱硫模拟中试试验和理论研究,[博士学位论文],南京:东南大学,2000.
    [2]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [3]国家发改委.关于加快火电厂烟气脱硫产业发展的若干意见,2005.
    [4]周生贤.《全国大气污染防治工作会议报告》.新闻通稿43号.2006.5
    [5]国家发展改革委,环保总局.《现有燃煤电厂二氧化硫治理“十一五”规划》.中国经贸导刊.2007(7):31.
    [6]《2009年中国环境公报》
    [7]杨增军.烟气脱硫工艺综述.第12届中国电除尘学术会议论文文集.2007:655-660.
    [8]王小明,薛建明,彦俭,马果俊.国内外烟气脱硫技术的发展与现状-燃煤电厂烟气脱硫技术及经验专述之一[J].电力环境保护.2000,16(3):31-34.
    [9]Nygaard H G, Kiil S, Johnsson J E, et al. Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber. Fuel,2004,83(9):1151-1164.
    [10]Brogren C, Hakansson R, Benton K,et al. Performance enhancement plates (PEP):Up to 20 percent reduction in power consumption of wfgd. In Combined power plant pollutant control mega symposium.1999.
    [11]DOE. Milliken clean coal demonstration project:A DOE assessment.Technical report. U.S. Department of Energy.2001.
    [12]Dudek S A, Rogers W F. Computation Fluid Dynamics(CFD) Model for Predicting Two-phase Flow in a Flue-gas-desulfurization Wet Scrubber. EPRI-DOE-EPA Combined Uility Air Pollutant Control Symposium, Atlanta Georgia,USA,1999,August,16-20.
    [13]曾芳,陈力,李晓云.湿式脱硫塔流场数值计算[J].华北电力大学学报,2002,29(2):106-110.
    [14]赵哲,田贺忠,郝吉明,张华,刘汉强.颗粒轨道模型用于烟气脱硫喷淋塔两相流数值模拟[J].环境科学,2005,6(26):33-37.
    [15]Marocco L, Inzoli F. Multiphase Euler-Lagrange CFD simulation applied to Wet Flue Gas Desulphurisation technology. International Journal of Multiphase Flow,2009,2(35): 185-194.
    [16]李铁军.喷淋塔式脱硫塔内流场的试验研究和数值模拟,[硕士学位论文].北京:华北电力大学,2006.
    [17]林永明.大型石灰石-石膏湿法喷淋塔技术研究及工程应用,[博士论文].杭州:浙江大学,2006.
    [18]Huie R H, Neta, P. Rate constants for some oxidation of S(IV) by radicals in aqueous solutions, Atmos. Environ.1987,21 (8):1743-1747.
    [19]Li R, Yan K, Miao J S, Wu X L. Heterogeneous reactions in non-thermal plasma flue gas desulfurization. Chemical Engineering Science.1998,8(53):1529-1540.
    [20]Yermanov A N, Zhitomirsky B M, Poskrebyshev G A, et al. Radiation-induced oxidation of HSO-3 in aqueous solution. Radiation Physics and Chemistry.1994,3(43):281-289
    [21]Jiang X D, Li R, Qiu R C, Hu X, Liang H. Kinetic model of non-thermal plasma flue gas desulfurization in a wet reactor. Chemical Engineering Journal 2006,116:149-153.
    [22]Gerbec M, Stergarsek A, Kocjancic R.. Simulation model of wet flue gas desulphurization plant. Computer Chemical Engineering,1995,19 (Suppl1),283-286.
    [23]Eden D, Luckas, M. A heat an mass transfer model for the simulation of the wet limestone flue gas scrubbing process. Chemical Engineering Technology,1998,21.
    [24]Lancia, A., Musmarra, D.,& Pepe, F. (1997). Modeling of SO2 absorption into limestone suspensions. Industrial & Engineering Chemistry Research,36:197-203.
    [25]Kiil S, Michelsen M L, Dam-Johansen K. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Industrial and Engineering Chemistry Research,1998, 37(8):2792-2806.
    [26]Meikap B C, Kundu G, Biswas M N. Modeling of a novel multi-stage bubble column scrubber for flue gas desulfurization. Chemical Engineering Journal,2002,86(3),331-342.
    [27]Antonio G'omeza, Norberto Fueyo a, Alfredo Tom'as. Detailed modelling of a flue-gas desulfurisation plant. Computers and Chemical Engineering,2007,31:1419-1431.
    [28]钟毅,高翔,王惠挺,骆仲泱,倪明江,岑可法.基于CFD技术的湿法烟气脱硫系统性能优化[J].中国电机工程学报,2008,32(28):18-23.
    [29]赵健植,金保升,仲兆平.烟气脱硫喷淋塔的数值模拟[J].化学工程,2007,8(35)61-64.
    [30]王贞涛,闻建龙,陈燕,王正.静电雾化理论及应用技术研究进展[J].排灌机械,6(22):41-44.
    [31]Eric K, Anderson A, Antonio P, et al Synopsis of experimentally determined effects of electrostatic charge on gasoline sprays. Energy Conversion and Management,2007, 48:2762-2768
    [32]Meng X B, Zhang H, Zhu J X. Characterization of particle size evolution of the deposited layer during electrostatic powder coating processes. Powder Technology,2009,195:264- 270.
    [33]Zhao S, Castle G S P, Adamiak K. Factors affecting deposition in electrostatic pesticide spraying. Journal of Electrostatics,2008,66:594-601.
    [34]Jae H J, Hyuncheol O, Sang S K. Numerical simulation of the deposition pattern in multiple electrohydrodynamic spraying. Powder Technology,2010,198:439-444.
    [35]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟,[博士学位论文].华中科技大学,2004.
    [36]Oh H, Kim K, Kim S. Characterization of deposition patterns produced by twinnozzle electrospray. J. Aerosol Sci,2008,39 (9):801-813.
    [37]Devanand M. Divaker Durairaj. Effects of electrode voltage, liquid flow rate, and liquid properties on spray chargeability of an air-assisted electrostatic-induction spray-charging system.. J. Electrost,2010,68:152-158.
    [38]Bailey A G, Hashish A H, Williams T J. Drug delivery by inhalation of charged particles.J. Electrost,1998,44:3-10.
    [39]Jung J H, Lee J E, Kim S S. Generation of nonagglomerated airborne bacteriophage particles using an electrospray technique, Anal. Chem,2009,81 (8):2985-2990.
    [40]Shrimption J S,Yule A j. Atomization, combustion and control of charged hydrocarbon sprays. Journal of the international institutions for liquid atomization and spray system, 2001.9:365-396.
    [41]高良润,洗福生.静电喷雾理论及其测试技术的研究[J].江苏工学院学报,1986,2(7):1-13.
    [42]王泽.荷电气固两相流及在植保工程中的应用,[博士学位论文].镇江:江苏理工大学,1994
    [43]Colbert S A, Cairncross R A. A computer simulation for predicting electrostatic spray coating patterns. Powder Technology,2005,151:77-86.
    [44]Ye Q, Steigleder T, Scheibe A, Domnick J. Numerical simulation of the electrostatic powder coating process with a corona spray gun. J. Electrost,2002,54:189-205.
    [45]Shah U, Zhang C, Zhu J, Wang F, Martinuzzi R. Validation of a numerical model for the simulation of an electrostatic powder coating process. International Journal of Multiphase Flow,2007,33:557-573.
    [46]吴有金,吴亚雷,许晓慧,褚家如.PZT溶胶液静电雾化雾场模拟[J].中国科学技术大学学报,2006,7(36):755-760.
    [47]刘彦娜.静电雾化过程的理论分析与数值模拟,[硕士学位论文].上海:东华大学,2009.
    [48]王军锋.荷电喷雾燃烧的基础研究-燃油静电喷雾及荷电两相湍流射流的研究[博士学 位论文].镇江:江苏大学,2002.
    [49]葛自良.液体静电雾化现象及其应用[J].自然杂志.1999,22(1):37-40.
    [50]Michael J. Pilat, Steven A, Jaasund, Leslie E. Sparks. Collection of aerosol particles by electrostatic droplet spray scrubbers[J].Environmental Science&Technology,1974,8: 360-362.
    [51]陈汇龙,刘新爱,邓云天,郑捷庆,邹晓琳.高电压技术在烟气脱硫中的应用研究[J].高电压技术.2006,32(11):96-99.
    [52]陈汇龙,刘新爱,邓云天,郑捷庆,邹晓琳,崔亚兵.采用石灰浆液荷电雾化的脱硫机理试验研究[J].动力工程,2007,27(5):781-784.
    [53]Wang Z T, Luo T Q. Experimental Investigation on Flue Gas Desulfurization by Electrostatic Spray. International Conference on Energy and Environment Technology (ICEET 2009)Guilin, PEOPLES R CHINA,2009,OCT:16-18.
    [54]Don B, Byun Y C, Hwang J. Flue gas desulfurization with an electrostatic spraying absorber. ENERGY & FUELS,2008,2(22):1041-1045.
    [55]邹晓林.石灰浆液荷电雾化脱硫内部气液两相流流场的数值模拟,[硕士学位论文].镇江:江苏大学,2007.
    [56]亢燕铭.荷电喷雾脱硫与细颗粒捕集的研究,[博士学位论文].西安:西安交通大学,1999.
    [57]Carroz J W, Keller P N. Electrostatic Induction Parameters to Attain Maximum Spray Charge. Transactions of the American Society for Aerospace Education,1978,21(1): 63-69.
    [58]Hu D, Balachandran. A non-wetting Electrostatic Assisted Nozzle for Spraying a Catalytic Melt. in IAS'94,1994, (2):1445-1450.
    [59]刘景良.荷电液滴特性及液滴荷电量测定方法的研究[J].工业安全与防尘,1991,(8):14-16.
    [60]郑加强,冼福生,高良润.静电喷雾荷质比测定研究.江苏工学院学报[J],1992,13(1):1-5
    [61]闻建龙,王军锋,陈松山,王泽,罗惕乾.荷电改善喷雾均匀性的实验研究[J].排灌机械,2000,18(5):45-47
    [62]Rayleigh J W S. On the Instability on the Jets. Proc.Roy. Soc.1879,24:71-97.
    [63]Jones A R, Thong K C.The Production of Charged Monodisperse Full Droplets by Electrical Dispersion.Brit.Jour.Appl.Phy.Series.D.1971,4:1159-1166.
    [64]Garmendia L. A Simplified Model of Electro-aerodynamic Atomization.AIChE Jour.1977, 23:935-938.
    [65]Thong K C, Weinberg F J.Electrical Control of the Combustion of Solid and Liquid Particulate Suspensions. Proc.Roy.Soc.1971,32(4):201-215
    [66]杨超珍,叶五梅,赵伟敏.感应荷电中环形电极参数影响的实验研究[J].农机化研究,2009,11:178-181.
    [67]杨超珍,吴春笃,陈翠英.环形电极感应充电机理及其应用研究.高电压技术[J].2004,5(30):9-12.
    [68]陶文铨.数值传热学.西安交通大学出版社,2001:333-335.
    [69]Marzio P, Enrico N, J, Thomas D N. Sstudy of turbulent transport at low Prandtl numbers in channel flow. Journal of Fluid Mechanics,2004,485:419-441.
    [70]周向阳,郑楚光.用求解概率密度函数输运方程的方法模拟湍流自由射流.工程热物理学报[J].1996,17(2):244-248.
    [71]Yakhot V, Orzag S A. Renormalization group analysis of turbulence:basic theory. J Scient Comput.1986,1:3-11.
    [72]Shih T H, Liou A, Shabbir, Z G. et al. A new K-ε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids,1995,24(3):227-238.
    [73]陈晓利.脱硫塔内雾化蒸发及反应特性数值模拟,[硕士学位论文].哈尔滨:.哈尔滨工业大学,2007.
    [74]陈汇龙.石灰浆液荷电雾化脱硫的基础理论与实验研究,[博士学位论文].镇江:江苏大学,2007.
    [75]Fluent 6.3 User's Guide, Fluent Inc.,2006.
    [76]Zhao S, Castle G S P, Adaamiak K. The effect of space charge on the performance of an electrostatic induction charging spray nozzle [J]. Journal of Electrostatics,2005,63(3/4): 261-272.
    [77]Hidemasa T, Kazuhiro O, Tetsuo S, et al. Computational simulation of cold spray process assisted by electrostatic force. Powder Technology,2008,185:116-123.
    [78]李庆利.石灰浆液荷电雾化脱硫的化学反应动力学研究,[硕士学位论文].镇江:江苏大学,2008.
    [79]赵毅,王小明,汪黎东Ca(OH)2颗粒脱硫反应的动力学研究[J].电力环境保护,2005,21(1):21-23.
    [80]Saboni A,Alexandrova S.Sulfur dioxide absorption and desoption by water drops[J]. Chemical Engineering Journal,2001,84 (3):577-580.
    [81]候庆伟.石灰石湿法烟气脱硫塔内过程分析与研究,[硕士学位论文].济南:山东大学热能工程,2005.
    [82]张云峰,归柯庭.磁流化床脱硫模型[J].中国电机工程学报,2006,26(24):94-99
    [83]鲍重光编.静电技术原理[M].北京:北京理工大学出版社,1993
    [84]Newton G H, Kramlich J. Rayne R. Modeling the SO2-slurry droplet reaction[J]. AIChE J, 1990,36(12):1865-1872
    [85]刘新爱.石灰浆荷电雾化脱硫中雾滴吸收S02的传质机理研究,[硕士学位论文].镇江:江苏大学,2007.
    [86]Barrie L A. An Improved Model of Reversible SO2-washout by Rain. Atmos.Environ., 1978,12(3):407-412.
    [87]王淑兰主编.物理化学[M].北京:冶金工业出版社,2007.
    [88]马双枕,赵毅.循环流化床烟气脱硫数学模型参数的确定[J].动力工程,2006,26(5):716-719
    [89]陈汇龙,李庆利,袁寿其,刘新爱,崔亚兵.低浓度石灰浆雾滴荷电特性的试验研究[J].高电压技术,2007,10(33):83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700