基于Fluent的铜闪速熔炼多场仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闪速炼铜技术目前已成为我国铜冶炼的主流技术,铜闪速炉熔炼过程数值仿真是铜冶炼领域的一种高科技研究手段。计算机仿真技术是一门综合性的学科,除了对所仿真的领域要求要有扎实的理论基础和丰富在现场实践外,还要求对计算机技术及其相关学科(如计算方法、燃烧学、流体力学等)有深刻的了解,对铜闪速熔炼炉进行仿真研究的目的是为了提高劳动生产率,实现节能降耗。随着铜闪速熔炼指标要求的提高,进一步提高铜闪速熔炼处理水平日趋重要。
     本文主要以金隆公司铜闪速熔炼过程作为研究对象,通过仿真加深了对铜闪速熔炼过程的反应机理及发生的主要化学反应的认识和理解,同时通过自主开发的复杂化学平衡计算程序对精矿成份进行了物相计算,建立了铜冶炼物质属性材料库,为闪速熔炼仿真提供便利。并对FLUENT进行了二次开发,仿真结果对优化现有工艺参数和延长闪速炉炉体寿命具有重要的指导意义。通过FLUENT商业软件为计算平台,对铜闪速熔炼过程的温度场、浓度场、颗粒场等多场进行仿真研究。
     经仿真研究发现:
     (1)精矿颗粒在反应塔中可以迅速被氧化,同时完成造锍反应,熔融颗粒以较快速度落入沉淀池中,粒度越大的颗粒越快到达沉淀池。颗粒在反应塔中存留的平均时间小于1s。
     (2)精矿在反应塔中温度迅速升温,在中央氧下方出现了高温区,温度最高点位于烧嘴下方,中央喷嘴下方有一块低温区域。
     (3)高浓度的SO_2区域出现在中央喷嘴下方直到沉淀池底部,在伞状颗粒的外侧SO_2浓度相对较低;中央氧下方区域的氧气基本消耗完全,在该区域外侧和烟气出口附近约有7%~8%的氧气未消耗完。
Flash smelting technology has become the mainstream technology of copper smelting,copperflash smelting process simulation research in frontier areas of copper smelting, computersimulation technology is a comprehensive discipline, in addition to the field of simulation required to have a solid theoretical foundation and rich practice in the field, but also requires computer technology and related disciplines (such as calculation, combustion science, fluid mechanics, etc.) have a deep understanding of the copper flash smelting furnace simulation study purpose is to raise labor productivity, achieve energy saving. As indicators of copper flash smelting requirements increase, further increase the level of copper flash smelting processing increasingly important.
     In this paper, the Jinlong Copper Flash Furnace as a research object, to deepen the process of copper flash smelting reaction mechanism and chemical reactions occurring awareness and understanding, through independent development of complex chemical equilibrium composition computer program concentrates phase analysis carried out to establish the material properties of copper smelting materials database, to facilitate the simulation for the flash smelting. FLUENT and the second development. Is calculated by FLUENT commercial software platform for flash smelting of the temperature field and concentration field, particle field and other field simulation.
     The simulation study found that:
     (1) concentrates particles in the reaction tower can rapidly be oxidized, while making complete reaction of sulfur, molten particles at a faster rate into the sedimentation tank, larger particle size the faster the sedimentation tanks arrived.
     (2) concentrate the temperature in the reaction tower rapid warming occurred in the central oxygen under high temperature, the temperature below the highest point in the burner, there was a delegation of the central nozzle temperature region.
     (3) areas with high concentrations of SO_2 in the central sedimentation tank until the nozzle below the bottom of the outside of SO_2 in the thick umbrella of particles is relatively low; the central region of oxygen below the basic oxygen consumption completely, outside and smoke in the region near the exit about 7% to 8% did not consume oxygen.
引文
[1]王中奎.中国铜的生产与消费.世界有色金属,1997,8-10.
    [2]徐曙光等.未来中国铜消费量得预测与评价.国土资源情报,2010,Vol.9:45~48.
    [3]宛广山译.国际铜研究组织数据年鉴(2010).中经财贸http://www.zcqh.com/userfiles/file/ICSG%20Report-2010.pdf,2010-8-17.
    [4]曹异生.国际铜工业的进展与展望.世界有色金属,2009,Vol.7:22~25.
    [5]张忠义,王士爱等.我国铜工业的现状与发展分析.云南冶金,1998.
    [6]朱祖泽,贺家齐,现代铜冶金学,北京,科学出版社, 2002.
    [7]陈国发,重金属冶金学,北京,冶金工业出版社,2009.
    [8]徐传华奥托昆普公司的冶炼技术,有色冶炼2000, 29(5)3-10.
    [9]姚素平.“双闪”铜冶炼工艺在中国的优化和改进.有色金属《冶炼部分》,2008.6:9-14.
    [10]张法平.奥托昆普闪速熔炼和闪速吹炼工艺.有色冶金设计与研究,1993,Vol.14(4).12:50-58.
    [11]李卫民摘译.三菱法连续吹炼冶金学.中国有色冶金,2008.3:1-6.
    [12]李卫民摘译.澳斯麦特技术一铜吹炼的发展.中国有色冶金,2009.1:1-7.
    [13]简洪生等.大冶诺兰达熔炼工艺的技术进步.中国有色冶金,2009.1:22-26.
    [14]周松林.祥光“双闪”铜冶炼工艺及生产实践.有色金属《冶炼部分》,2009.2:11-18.
    [15]林荣跃.澳斯麦特铜连续吹炼试验.有色金属《冶炼部分》,2009.3:17-20.
    [16]李样人摘译.澳斯麦特工艺--21世纪的铜生产工艺.中国有色冶金,2008.1:6-13.
    [17]胡广生.诺兰达炉系统设备及其运行实践.有色设备,2005.2:8-15.
    [18]吴卫国.铜闪速熔炼多相平衡数模研究与系统开发[硕士论文].江西理工大学,2007.
    [19]童长仁,刘道斌,杨凤丽.基于元素势的多相平衡计算及在铜冶炼中的应用.《过程工程学报》.Vol.8(s1),2008:45-49.
    [20]谢凯,现代铜闪速熔炼炉发展中若干理论与操控优化问题[硕士学位论文],中南大学2006.
    [21]李欣峰.炼铜闪速炉熔炼过程的数值分析与优化[硕士学位论文],.中南大学.2001.
    [22]彭晓波,铜闪速熔炼过程智能优化方法及应用[硕士学位论文],中南大学,2008.
    [23]陈卓.铜闪速炉系统数值熔炼模型及反应塔炉膛内形在线仿真监测研究[博士学位论文],中南大学,2002.
    [24]邹小平.反应塔炉壁温度场及内壁挂渣在线仿真系统研究与开发[硕士学位论文].江西理工大学,2007.
    [25]沈洪远.有色冶金过程数据挖掘及其在铜锍吹炼中的应用研究[博士学位论文].中南大学,2008.
    [26] Jussi VAARNO等.Development of a mathematical model of flash smelting and converting processes Third International of Conference On CFD in Minerals and process Industries[J],2003.12:147-155.
    [27] Andrew A.shook FLASH CONVERTING OF CHALCOCITE CONCENTRATE[J] : A STUDY OF THE FLAME The University of British Columbia, 1987.
    [28]王晓华闪速熔炼中央喷射型精矿喷嘴的研究与改进,矿冶,Vol14(4) 2005:4-6.
    [29]肖兴国,谢蕴国,冶金反应工程学,北京,冶金工业出版社1997.
    [30]任鸿九等.有色金属熔池熔炼.北京:冶金工业出版社,2001.
    [31]梅炽主编.有色冶金炉设计手册.北京:冶金工业出版,2000.09.
    [32]李人宪.有限体积法基础.北京:国防工业出版社,2008.03.
    [33]华建社,朱军,李小明等,冶金传输原理,西安,西北工业大学出版社,2005.
    [34] chemie-Lng.-Techn,谭天恩蒋斐等译,传递现象,北京,化学工业出版社1983.
    [35]任玉欣,陈海听,计算流体力学基础,北京,清华大学出版社,2006.
    [36]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [37]丁祖荣,流体力学,高等教育出版社,北京,2003.
    [38] (美)约翰D.安德森著;吴颂平.刘赵淼译.计算流体力学基础及其应用.北京:机械工业出版社,2007.
    [39] (美)唐塞·赛比奇[等]著;符松译.工程计算流体力学.北京:清华大学出版社,2009.
    [40]侯凌云,侯晓春.喷嘴技术手册.北京:中国石化出版社,2007.
    [41] (美)约翰D.安德森著;吴颂平.刘赵淼译.计算流体力学基础及其应用.北京:机械工业出版社,2007.
    [42] R.B. Bird W.E. Stewart E.N. Lightfoot. Transport Phenomena (Second Edition)[J]. John Wiley & Sons Inc,2002.
    [43] H.K. Versteeg,W. Malasekera . An introduction to computational fluid dynamics[J]. Longman Scientific & Technical ,1995.
    [44] (美)唐塞?赛比奇[等]著;符松译.工程计算流体力学.北京:清华大学出版社,2009.
    [45]赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [46] MANUEL PEREZ-TELLO ,HONG YONG SOHN ,and PHILIP JOHN SMITH Experimental Investigation and Three-Dimensional Computational Fluid-Dynamics Modeling of the Flash-Converting Furnace Shaft:Part II .
    [47]余其铮编著.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [48] E. H. Chui and G. D. Raithby. Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method. Numerical Heat Transfer[J], Part B, 23:269-288, 1993.
    [49] P. Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method.AIAA Journal[J], 2:1662-1664, 1964.
    [50] R. Siegel and J. R. Howell.Thermal Radiation Heat Transfer.Hemisphere Publishing Corporation[J], Washington DC, 1992.
    [51] J.W. Matousek The Oxidation Mechanism in Copper Smelting and Converting ,JOM[J] 1998-4 64-66
    [52]华一新编著冶金过程动力学导论.北京:冶金工业出版社,2004.
    [53] Petar M Djuric,Jayesh H Kotecha,Jianqui Zhang,et a1.Particle filtering[J].1EEE Signal Processing Magazine,2006.
    [54] L.Helle1.Kojo,etal.Improvements in Outokumpu Flash Smelting proeess and EquiPment Proeeedings of the Seventh International Flash Smelting Congress.[J]
    [55] Pekka HannialaTuula Makinen Markku Kyto. Flash Teehnology for Converting.Proeeedings of the Sixth Intemational Flash Smelting Congress[J], ybtaka、suda.
    [56]赵海波,郑楚光著.离散系统动力学演变过程的颗粒群平衡模拟.科学出版社,2008.
    [57] G.R.Liu,M.B.Liu著;韩旭,杨刚,强洪夫译.光滑粒子流体动力学.湖南大学出版社,2005.11.
    [58]童长仁、吴金财、李明周.基于分步回归策略的霍脱尔气体发射率数学模型.冶金能源,2008.Vol.28(1):23-27.
    [59]王海川,董元箎主编.冶金热力学数据测定与计算方法.北京:冶金工业出版社,2005.
    [60]童景山编著.流体热物性学.中国石化出版社,2008.08.
    [61] (美) B. E.波林,(美) J. M.普劳斯尼茨.J.气液物性估算手册.化学工业出版社,2006.
    [62]刘麟瑞,王丕珍.冶金炉料手册.北京:冶金工业出版社,2000.04.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700