低浓度H_2S液相催化氧化动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究中,以低浓度硫化氢气体为研究对象,在充分分析研究了以往的各种治理方法以及前期子课题的研究成果后,采用了一条以铁基离子作为主催化剂的较为简明的催化氧化净化路线,简化工艺的同时兼顾了硫磺回收。实验研究中,主要针对H_2S浓度在200~1500ppm之间,氧含量在0.5~21%的尾气进行了大量的动力学实验分析:随着原料气进气中H_2S浓度的提高,吸收过程的传质动力增强,在其他操作条件不变的情况下,吸收速率随之增大,实验数据对H_2S回归得吸收反应速率方程为:N_(H_2S)=-1.49566+0.009284P_(H_2S),r=0.999043,r~2=0.998087,因此可认为对H_2S是一级反应;在不同的吸收温度下,其吸收速率随原料气中H_2S浓度而变化的趋势基本一致,均随H_2S浓度的增加而增大,吸收反应在60℃时可达到较理想的净化效果;无论原料气中H_2S是高浓度还是低浓度,其吸收速率均随吸收液中Fe~(3+)浓度的增加而增大,在原料气中H_2S浓度较低的情况下,吸收速率受Fe~(3+)浓度的影响更大。当Fe~(3+)浓度的增加到0.05mol/L时,吸收速率曲线的增长趋势均趋于平缓。因此,认为在此浓度下就可以满足反应需要了;在Fe~(3+)离子浓度相同的条件下,pH值对吸收速率的影响较小,尤其在Fe~(3+)离子浓度为0.05 mol/L时,吸收速率就已基本达到最大值。相对而言,H_2S含量低的气体比H_2S含量高的气体易受pH影响,pH控制在7~10的范围内时,反应速率及效率均随pH值的增大而升高,但变化幅度不大,能保持较稳定的状态;综合考虑,pH保持在9左右是较为理想的;在不同的试验温度下,In[P_(H_2S)]-t呈现较好的线性关系,说明本实验中在20~80℃温度范围内,该反应对H_2S为一级反应:吸收反应的表观活化能Ea为24.814kJ/mol:当原料气中的氧含量在0.5%~10%之间时,随着氧含量的增加,吸收速率增长的趋势并不明显;而从10%到21%之间,吸收速率的增长幅度较为显著;在最佳操作条件下,用Fe~(3+)作催化氧化剂,同时加入稳定剂,当尾气中氧含量仅为0.5%时,其净化效率可长时间维持在95%以上,且吸收液的硫容量大于4gH_2S/L吸收液;当吸收液硫容量达到饱和,可通入空气进行再生,同时可回收硫磺。
     因此,本课题研究的液相催化氧化法对低浓度硫化氢尾气的治理及硫的回收利用具有重要的现实意义。
In this paper, the study target is H2S gas in low concentration. After much study of all kinds of ways about H2S harnessing, which we know now, and based on the former researching of this project, we designed a compendious means. The main catalyzer is Fe3+, and after the redox of this reaction we can get sulfur (S).
    In my main dynamics experiments, H2S concentration is during 200 to 1500 ppm, the O2 content is 0.5~21%(volumetric proportion). After my analyzing, I found that: with the H2S concentration of the input gas increasing, the drive power of mass transfer is heightened. When the other experiment conditions are not changed, the reaction rate will also increase. From my experiment data, I got a reaction rate equation: NH2S = -1.49566 + 0.009284PH2S , r =
    0.999043, r2 =0.998087. So, I can consider this reaction is a first-degree reaction to H2S. Under the deferent reaction temperature, the change trend of reaction rate with the changing of H2S concentration in the input gas is almost same: all are heightened with the H2S increasing, and when the reaction temperature is 60℃, the reaction can be more better. Whether the concentration of H2S is low or high, the reaction rate is also heightened with the increasing of Fe3+ content. Especially under the low H2S concentration condition, the change trend is more obvious. When the Fe3+content increased to 0.05 mol/L, the change trend of reaction rate will be gentle. So, I can get that 0.05 mol/L of Fe3+content is better. When the other reaction conditions are same, pH influence is slight to reaction rate. Considering all conditions, pH=9 is better. In my experiment, the apparent activation energy (Ea) is 24.814 kJ/moL When the O2 content is during 0.5~10%( volumetric proportion) in the input gas, the reaction rate change trend is not obvious. But when O2 content changing from 10% to 21%, the increasing trend of reaction rate is more obvious.
    Under the best experiment conditions (Fe" is main catalyzer), and throw in a kind stabilizer, although the O2 content just is 0.5%, the purifying efficiency almost can be higher than 95% for a long time. When the absorbing liquid is saturated, we can input air to regenerate. At the same time, we can get sulfur after simply purifying.
    Therefore, this project study will be more useful to waste gas (H2S) harnessing.
引文
[1] 候相林,高荫本,陈诵英.硫化氢的高温脱出.煤炭转化,第18卷,第3期,1995年8月:70-75
    [2] 陈赓良.从硫化氢中回收硫和氢.硫酸工业,1992年第5期:57-61
    [3] 检索查新报告书,云南省科技情报研究所查新中心,2000,11,29
    [4] 湖北化学研究所气体净化中心.T101活性炭精脱硫剂使用说明书.1997(内部资料)
    [5] Bart H.-J,Ning Ping, Sun Pei-Shi, Song Wen-Biao. 1996,Chemisorptive catalytic oxidation process for SO_2 from smelting waste gases by Fe(Ⅱ), Separation Technology, CAB,(6)253-260
    [6] 宁平,孙佩石,宋文彪.冶炼厂SO_2烟气化学催化吸收扩大试验研究.环境科学,1997,CA9,(4)45-48
    [7] 《空气和废气监测分析方法》编写组编.空气和废气监测分析方法.北京:中国环境科学出版社出版,1990:365-368
    [8] 《大学化学手册》,章燕豪,上海交通大学出版社,2000:288-289
    [9] 刘来红,王世宏.恶臭物质及其净化技术.化工环保,2000,2:36
    [10] 朱世勇主编.环境与工业气体净化技术.北京:化学工业出版社、环境科学与工程出版中心,2001,5:15-286
    [11] 郑士民.硫酸工业气体的细菌脱硫.微生物学报,1993,33(3):192-198
    [12] 《三废治理与利用》编委会三废治理与利用.北京:冶金工业出版社,1999,10:261-267
    [13] 刘天齐主编.三废处理工程技术手册(废气卷).北京:化学工业出版社,1999年5月:284-289
    [14] R.J.A.M. Ferorde etal. Catalysis Today, 1993(17):217-224
    [15] Edmonton, Alberta, The 38th Canadian Chemical Engineering Conference, OCT, 1988:5
    [16] Wilson B M, Newel1 R D.H_2S removal by stretford process. Chem Eng Prog 1984, 80(10): 40-47
    [17] Haggin J. Bacterium may clean industrial gas streams. Chem. Eng. News. 1982: 60(19): 48
    [18] J.A. Lagas. Oil & Gas Journal,1988,86(4):68—71
    [19] 何运昭.硫化氢尾气的净化.环境导报,1997年第1期:16-19
    [20] 湖北化学研究所气体净化中心.T101活性炭精脱硫剂使用说明书.1997(内部资料)
    [21] Kohl A L, Riesenfeld F C. Gas Purification (Fourth Edition). Gulf Publishing Company, Houston, Texas, 1985
    [22] 王睿,石冈,魏伟胜等.工业气体中H_2S的脱除方法——发展现状与展望.天然气工业,1999年5月:84-90
    [23] 湖北化学研究所气体净化中心.EF-2氧化铁精脱硫剂使用说明书(1998)(内部资料)
    [24] 马坚,下文章,孙小玲.氧化锌脱硫剂的研制.精细石油化工文摘,1999,13(2):68
    [25] 化工部化肥研究所催化室.化肥与催化.1985(2):15
    [26] Anatassia Kotronarou. Environ Sci Technol. 1992, 26(2): 2420-2427
    [27] US 4,576, 925(1986)
    [28] US 4,507, 274(1985)
    [29] JP 6161638(1986)
    [30] EP 1771102 (1986)
    [31] Vaidyanathan A S, Youngquist G R. Sorption of sulfur dioxide, hydrogen sulfide and nitrogen dioxide by ion-exchange resins, IEC, Product Research & Development, 1973,12(4): 288
    
    
    [32] 国外气体脱硫新技术.重庆:科学技术文献出版社重庆分社,1981
    [33] Kawamura S Aoki, Kawakami W, Hashimoto S, Machi S. Treatment of exhausted gases by irradiation, Proc. Symp, on the Use of High Level Rad. in Wate Treatment, 621,SM194/707,Wien: IAEA (1975)
    [34] Schell W J.Houston C D.Spiral-wound permeators for purification and recovery. Chem. Eng. Prog, 1982,78(10): 33
    [35] 龙晓达,龙玲.膜分离技术在天然气净化中的心应用现状.天然气工业,1993,13(1):100
    [36] 戴人利.细菌脱硫.石油炼制译丛,1989,(2):20
    [37] Cork D J. Acid wate gas bioconversion-an alternate to the claus desulfurization process. Dev Ind Microbiol, 1982,23:379
    [38] 邵立明,何品晶,傅钟等.固定化微生物处理H_2S气体的试验研究.环境科学,1999年1月,20(1):19-22
    [39] Gutafson K J, Healey M M. Removal hydrogen sulfide from nature gas/carbon dioxide mixtures with molecular sieves. Proc of the Gas Conditioning Conference, University of Oklahoma, 1968
    [40] (美)马道克斯RN著,朱利凯、陈赓良、王开岳译,张铁生审校.气体与液体脱硫.见:天然气预处理和加工(第四卷),北京:石油工业出版社,1990
    [41] Kohl A. L. Nielesen R. B. Gas Purification. Fifth ed. Houston, Taxas: Gulf Publishing CO, 1977:53-107
    [42] Jou E. Y. Can. J. of Chem. Eng. 1995, 73(Feb): 140-147
    [43] Isaacs E. E et al. Canadian J. of Chem. Eng. 1977, 55:210-212
    [44] Klein J. P. Oil & Gas Int. 1970, 109(Sep): 109-112
    [45] Teng T. T et al. J. of Chem. & Eng. Data. 1994, 139(2): 290. 2. Hayden T. A, Smith T. G. Journal of Chem. & Eng. Data 1983, 28:196
    [46] Hayden T. A, Smith T. G. Journal of Chem. & Eng. Data 1983,28:196
    [47] Benon H E, Field J H. A modification to hot potassium carbonate process. Petroleum Refineer, 1960,39(4): 127
    [48] Swaim C D, Gas sweetening processes of the 1960"s. Hydroc Proc, 1970,49(3): 127
    [49] U. S. Patent 4741745. 1988
    [50] 朱世勇等.CN85103897.2
    [51] Lurgi-Gas-Chemie GmbH. Hydro. Process. 1996, (April):133
    [52] Hochgesand G. Ind. Eng. Chem. 1970, 62(7): 37-43
    [53] Klein J P, Mij N V. Developments in sulfinol and adip processe increase uses. Oil & Gas Int, 1970,10(9): 109
    [54] Shell Oil Company. Hydro. Process. 1996.(April): 142
    [55] 化学工程师手册编辑委员会编.化学工程师手册.北京:机械工业出版社,2001年1月第1版:817
    [56] Dalrymple D A et al. An overview of liquid redox sulfur recovery. Chem Eng Prog, 1989,85(3):43
    [57] Nicklin T. Holland B. H. Gas World. 1963, Sep (7): 273-278
    [58] Moyes A and Wilkinson J. S. The chem. Eng (Brit) 1974, Feb: 84-90
    [59] 张剑锋.液相氧化法脱硫工艺的现状与发展.石油与天然气化工,1992.21(3):142
    [60] Cabodi A J, Van H R,Hardison L C.First commercial test is successful for catalytic hydrogen sulfide oxidation process.Oil & Gas J,1982,80(27):107
    [61] Hardison L C.Go from H_2S to S in one unit.Hydroc Proc,1985,64(4):70
    [62] Goar B G. Sulfur recovery technology.Energy Process,1986,6(2):71
    
    
    [63] Mackinger H. Rossati F. Hydro. Process. 1982, (March): 169-172
    [64] Kohl A. L. Nielsen R. B. Gas Purification Fifth. Houston. Taxas: Gulf Publishing Co. 1997, 825-838,852-853
    [65] 王光祥,钱水林.小氮肥厂脱硫技术.上海:化工部小合成氨设计中心站.1992,111
    [66] 庞锡涛,王建跃.化肥与催化,1986,(2):18
    [67] Hasebe N. Chemical Economy Engineering Review, 1970, March: 27
    [68] 毛小青,刘继红,杨树卿.PDS脱硫技术-液相催化氧化法脱硫的最新发展.石油与天然气化工,1993,2:45-67
    [69] 杨树卿等.东北师大学报(自然科学报).1990(1):1-32
    [70] 徐建平.PDS型脱硫催化剂在我厂的应用.化工设计通讯,1991年3月,第17卷第1期:40-41
    [71] 俞英,王崇智,赵永丰等.氧化-电解法从硫化氢获取廉价氢气方法的研究.太阳能学报,1997年10月,第18卷第4期:400-408
    [72] 广西化工研究所.广西化工技术.1978,(3):6-10
    [73] 黄子衍.天然气化工.1996,增刊,47-52
    [74] 庞锡涛,刘铭.化肥与催化,1979,(4):39
    [75] 谢冰等.微生物法脱臭及其应用.上海环境科学,1993,12(11):23
    [76] 羌宁.气态污染物的生物净化技术及应用.环境科学,1996,17(4)
    [77] 黄兵,黄若华,孙佩石等.低浓度硫化氢恶臭气体的生化处理研究.云南环境科学,1998,17(3):9
    [78] Anatassla Kotronarou. Oxidation of Hydrogn Sulfide in Aqueous Solution by Ultrasonic Irradiation. Environ Sci Technol. 1992.26(2): 2420-2470
    [79] 鲍晓军,刘立斌,魏伟胜等.杂多酸化学吸收从天然气中脱除H_2S回收硫磺的研究.化工冶金,1996年5月,17(2):144-150
    [80] 尹敬执,申泮文合编.基础无机化学.北京:人民教育出版社,1995年2月:436-438
    [81] 王睿,鲍晓军.杂多合物脱硫化氢动力学研究.环境科学学报,2000年11月,第20卷第6期,765-771
    [82] 傅献彩,沈文霞,姚天扬.物理化学:上册:北京:高等教育出版社,2000年6月:133-147
    [83] 朱炳良主编.化学反应工程.北京:化学工业出版社、教材出版中心,2001年1月:242-270
    [84] Novilov G I. Kinetics of hydrogen sulfide oxidation by an aqueous solution of iron (Ⅲ) chloride. Vestsi Akad Navuk BSSR, Serkhim Navuk, 1984(6): 44-47
    [85][美]A.V.斯莱克著.废气脱硫.上海市轻工业设计院技术情报组及上海同济大学供热通风教研室译,中国建筑工业出版社,1977年10月:209-211
    [86] 丁绪准,谈遒工业结晶.北京:化学工业出版社,1985:80-93
    [87] 天津大学物理化学教研室编,物理化学.高等教育出版社,1993年6月
    [88] 李发水,张海鹏等,撞击流吸收器吸收性能研究,石油大学学报(自然科学版),1999年第23第4期,78-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700