基于卡尔曼滤波的动力电池组SOC精确估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油能源的短缺和大气污染的加剧,开发节能环保型电动汽车已经成为现今汽车工业领域发展的主要趋势。作为电动汽车的动力来源和能量载体,电池自身制造工艺以及成组应用技术已成为推动电动汽车商业化的关键因数。因此,为了保证动力电池能够安全有效的工作,电动汽车必须配置特定的电池管理系统对动力电池组的状态进行控制和管理。电池剩余电量SOC估计一直是电池管理系统的核心,是反映电池运作状态的主要参数,为整车控制策略提供判断依据。本文以磷酸铁锂聚合物动力电池为研究对象,采用卡尔曼滤波修正算法对动力电池组进行SOC估计。
     本文首先介绍了电动汽车的发展现状和车用动力电池的性能要求,以磷酸铁锂电池的电化学特性为出发点,分析了电池SOC的各种内外影响因素及在线估算难点。从SOC的定义出发,通过比较几种常用SOC估计方法,并结合车用动力电池的应用环境,本文提出了卡尔曼滤波修正算法。该算法充分发挥了开路电压法、安时计量法和扩展卡尔曼滤波法的优点,从而使得SOC的估算精度和实时性有了很大的提高。根据放电实验数据,系统建立了与算法相关的充放电倍率SOC模型、温度SOC模型、开路电压SOC模型和扩展卡尔曼滤波复合模型。
     然后在此基础上,系统分别从软硬件角度建立了动力电池组SOC估计系统。该系统是由数据采样、算法执行、通讯管理、保护控制、信息存储及数据显示等模块组成,完成了电池电压、充放电电流、温度的在线检测、卡尔曼滤波修正算法执行、单片机SPI及串口通讯、LCD在线显示、电池状态诊断及保护等功能,从而在真正意义上实现了车用动力电池组剩余电量的实时在线精确估计。
     最后制定电池组实验的充放电方案,使用汽车行驶工况HWFET、UDDS、FUDS来对电池组SOC估计算法进行检验和优化。经过工况测试和Matlab分析比较,本文提出的卡尔曼滤波修正算法具有很好的实际估计效果,完全符合电动汽车对电池组SOC估计的准确性要求。
Because of oil resources shortage and air quality degradation, electric vehicle with advantages of energy saving and environment protection has emerged as the main trend in automobile industry. As the major energy carrier and power source, battery’s manufacturing process and group application technology have been the key factors in promoting the commercial progress of electric vehicle. Therefore, in order to keep power battery work securely and effectively, electric vehicle must be equipped with a specific management system to control and supervise the function of battery. The state of charge SOC estimation has always been the core component in battery management system, which is one of the main parameters to reflect the battery working states and can provide judgment basis to vehicle control strategy. This paper takes the LiFeO4 polymer power battery as the research object, and uses Kalman filter correction algorithm for battery pack online SOC estimation.
     Firstly, the paper describes the development of electric vehicle and the performance requirements of vehicular power battery, and it takes the electrochemical characteristics of LiFeO4 battery as a starting point to analyze the various SOC effect factors and study the difficulties of online accurate estimation. After comparing some commonly used methods and considering the electric vehicle environment, this paper proposes a new method named Kalman filter correction algorithm on the basis of SOC definition. The algorithm gives such full play to the advantages of open circuit voltage method, ampere hour counting method and extended Kalman fitering algorithm that makes the estimation accuracy and real-time ability improved significantly. According to discharging experimental data, the system has established discharging or charging rate model, temperature model, open circuit voltage model and extended Kalman filtering combined model.
     Secondly, the paper builds up the power battery pack’s SOC estimation system in view of software and hardware design. This system is made up of data sampling, algorithm execution, communication management, protection control, information storage and display. It possesses so many functions that can take an online accurate estimation on vehicular battery pack in a real sense, including battery data online detection, Kalman filtering correction algorithm implementation, microcontroller communication, liquid crystal display, battery diagnosis and protection.
     Finally, the paper designs the battery pack’s charging and discharge experiments. With the help of automobile driving cycle, such as HWFET, UDDS, FUDS, the performance of SOC estimation algorithm has been verified and improved. Consequently, with a good estimation effect, Kalman filtering correction algorithm can be completely in conformity with the SOC accuracy requirements in electric vehicle environment.
引文
[1]李兴虎.电动汽车概论[M] .北京理工大学出版社,2005:5-41.
    [2]陈妙农.国内外电动汽车发展概况[J] .电器工业市场分析与预测,2003:7-14.
    [3]孟良荣,王金良.电动车电池现状与发展趋势[J] .电池工业,2006,11(3):202-206.
    [4] W.X.Shen, Member,, IEEE, K.T.Chau, Senior Member,IEEE, C.C.Chan, Fellow, IEEE,and Edward W.C.Lo,Member, IEEE. Neural Network-Based Residual Capacity Indicator for Nickel-Metal Hydride Batteries in Electric Vehicles. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2003,54(5):1705-1712.
    [5]陈全世.先进电动汽车技术[M] .化学工业出版社,2007:67-99.
    [6]肖婷.车用动力镍氢电池SOC建模与仿真[D] .武汉理工大学硕士学位论文,2008:13-21.
    [7]焦慧敏.电动汽车动力电池剩余电量的预测方法及其实现[D] .湖南大学硕士学位论文,2006:24-45.
    [8]朱元,韩晓东,田光宇.电动汽车动力电池SOC预测技术研究[J] .电源技术,2000,24(3):153-156.
    [9]劳力.动力蓄电池管理系统SOC算法研究[D] .北京交通大学硕士学位论文,2007:9-34.
    [10] John Chatzakis,Kostas Kalaitzakis, Nicholas C. Voulgaris, and Stefanos N. Manias,Senior Member,IEEE. Designing a New Generalized Battery Management System. IEEE TRANSACTIONS ON INDUSTIRIAL ELECTRONICS,2003,50(5):990-999.
    [11]吴友宇,肖婷,雷冬波.电动汽车用动力镍氢电池SOC建模与仿真[J] .武汉理工大学学报,2008,30(1):55-58.
    [12]乔国艳.电动汽车电池管理系统的研究与设计[D] .武汉理工大学硕士学位论文,2006:21-50.
    [13]刘倩.镍氢电池管理系统及其SOC预测方法研究[D] .武汉理工大学硕士学位论文,2004:20-57.
    [14]冯华.电动汽车用电池管理系统的研制[D] .北京交通大学硕士学位论文,2007:27-49.
    [15]廖晓军,何莉萍,钟志华,周红丽,高雪峰.电池管理系统国内外现状及其未来发展趋势[J] .汽车工程,2006,28(10):961-964.
    [16] Do Yang Jung,Baek Haeng Lee,Sun Wook Kim.Development of battery management system for nickel-metal hydride batteries in electric vehicle applications. Journal of Power Sources,2002,109:1-10.
    [17] H.J. Bergveld,W.S.Kruijt,P.H.L. Notten.Electronic-network modeling of rechargeable NiCd cells and its application to the design of battery management systems. Journal of Power Sources,1999,77:143-158.
    [18] Peng Rong and Massoud Pedram.An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries. Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’03),2003:1530-1591.
    [19]吴宇平,戴晓兵,马军旗,程预江.锂离子电池应用与实践[M] .化学工业出版社,2004:5-11.
    [20]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M] .化学工业出版社,2008:6-65.
    [21]陈晗,薄红志,范长岭,徐仲榆,韩绍昌.锂离子电池正极材料LiFePO4的研究进展[J] .电池工业,2006,11(5):345-349.
    [22]李军,郑育英,李大光,黄慧民,赖桂棠.新型高比能量磷酸铁锂的制备及电化学性能[J] .材料导报,2008,22(4):138-140.
    [23]胡成林,代建清,戴永年,易惠华.锂离子电池正极材料磷酸铁锂研究进展[J] .无机盐工业,2007,39(4):8-11.
    [24]周宗子,朱刚.磷酸铁锂材料及其动力电池产业化现状及前景[J] .船电技术,2007,27(4):257-260.
    [25]李贵海.电池SOC估算策略研究[D] .浙江大学硕士学位论文,2006:34-55.
    [26] D. Feder, M. Hlavac.Analysis and interpretation of conductance measurements used to assess the state-of-health of valve regulated lead acid batteries. Proceedings of the 16th International Telecommunications Energy Conference,1994:282-291.
    [27] I. Damlund.Analysis and interpretation of ac-measurements on batteries used to assess state-of-health and capacity-condition. Proceedings of the 17th International Telecommunications Energy Conference,1995:828-833.
    [28]叶华明.复合电源混合动力汽车电池SOC的估算研究[D] .吉林大学硕士学位论文,2006:10-42.
    [29] A. Salkind,C. Fennie, P. Singh,T. Atwater,D. Reisner. Determination of state-of-charge and state of health of batteries by fuzzy logic methodology. Journal of Power Sources,1999, 80(1/2):293-300.
    [30]王佳.汽车动力电池SOC模糊估计及其在DSP上的实现[D] .吉林大学硕士学位论文,2006:30-41.
    [31] M. Ehsani,Y. Gao,K. Butler.Application of electrically peaking hybrid (ELPH) propulsion system to a full size passenger car with simulated design verification. IEEE Trans. Veh. Technol,1999,48(6):1779-1787.
    [32] P. Lurkens,W. Steffens.State of charge estimation of lead-acid batteries using a Kalman filtering technique. EtzArchiv,1986,8(7):231-236.
    [33]周志敏,周纪海,纪爱华.充电器电路设计与应用[M] .人民邮电出版社,2005:8-11.
    [34]王鸿麟,钱建立,周晓军.智能快速充电器设计与制作[M] .科学出版社,1998:116-122.
    [35]林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J] .电池,2004,34(5):376-378.
    [36]林成涛,陈全世,王军平,黄文华,王燕超.用改进的安时计量法估计电动汽车动力电池SOC[J] .清华大学学报自然科学版,2006,46(2):247-251.
    [37]邓文莲,徐鸣谦,沈勇.电动车用NiMH电池SOC预测方法的探讨[J] .通信电源技术,2004,21(4):33-36.
    [38]赵剑.电动汽车蓄电池剩余电量预测方法的研究[D] .大连理工大学硕士学位论文,2006:29-44.
    [39] Domenico Di Domenico,Giovanni Fiengo and Anna Stefanopoulou.Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model. 17th IEEE International Conference on Control Applications Part of 2008 IEEE Multi-conference on Systems and Control San Antonio,2008,702-707.
    [40] Antonio Affanni,Alberto Bellini,Member,IEEE,Giovanni Franceschini,Paolo Guglielmi,and Carla Tassoni,Senior Member,IEEE.Battery Choice and Management for New-Generation Electric Vehicles. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2005,52(5):1343-1349.
    [41] A. Cooper.Development of a lead-acid battery for a hybrid electric vehicle. Journal of Power Sources,2004,133:116-125.
    [42]周红丽.电动汽车动力电池剩余容量预测及性能分析仿真[D] .湖南大学硕士学位论文,2007:40-46.
    [43]邓自立.最优估计理论及其应用——建模、滤波、信息融合估计[M] .哈尔滨工业大学出版社,2005:98-175.
    [44]邓自立.卡尔曼滤波与维纳滤波——现代时间序列分析方法[M] .哈尔滨工业大学出版社,2003:56-137.
    [45] Gregory L.Plett.Extended Kalman filering for battery management systems of LiPB-based HEV battery packs. Journal of Power Sources,2004,134: 252-292.
    [46] Gregory L.Plett.Sigma-point Kalman filering for battery management systems of LiPB-based HEV battery packs. Journal of Power Sources,2006,8261:1-13.
    [47] ZHU Chun-bo, WANG Tie-cheng, HURLEY W G.A new state of charge determination method for battery management system. Journal of Harbin Institute of Technology,2004,11(6):624-630.
    [48] A. Jossen,V. Spath,H. Doring,J. Garche.Reliable battery operation-a challenge for the battery management system. Journal of Power Sources,1999,84:283-286.
    [49] J. Alzieu, P. Gagnol,H. Smimite.Development of an on-board charge and discharge management system for electric-vehicle batteries. Journal of Power Sources,1995,53:327-333.
    [50]杨朔,何莉萍,钟志华.电动汽车蓄电池荷电状态的卡尔曼滤波估计[J] .贵州工业大学学报(自然科学版),2004,33(1):99-102.
    [51] S. Julier,J. Uhlmann.A new extension of the Kalman filter to nonlinear systems. Proceedings of the 1997 SPIE AeroSense Symposium,1997:21-24.
    [52]张贤达.现代信号处理[M] .清华大学出版社,2002:177-188.
    [53]邵海岳,钟志华,何莉萍,钟勇,陈宗璋.电动汽车动力电池模型及SOC预测方法[J] .电源技术,2004,28(10):637-640.
    [54] M.Saakes,R.Woortmeijer,D.Schmal Bipolar lead-acid battery for hybrid vehicles.Journal of Power Sources,2005,144:536-545.
    [55]宫学庚,齐铂金,刘有兵,杨清新,路宗利.电动汽车动力电池模型和SOC估算策略[J] .电源技术,2003,28(10):633-636.
    [56]赵慧勇,罗永革,佘建强,杨启梁.车载镍氢电池管理系统电压采集方案的研究[J] .湖北汽车工业学院学报,2005,19(3):5-8.
    [57]张志涌.精通MATLAB 6.5版[M] .北京航空航天大学出版社,2003:234-255.
    [58]贾迎春.燃料电池混合动力电动车仿真分析与控制策略研究[D] .吉林大学硕士学位论文,2003:55-60.
    [59]张富兴.城市车辆行驶工况的研究[D] .武汉理工大学硕士学位论文,2005:20-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700