散发性帕金森病患者外周血SNCA基因的甲基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究散发性帕金森病(PD)患者外周血单个核细胞(peripheral blood mononuclear cells,PBMCs)中SNCA基因的甲基化水平;研究SNCA甲基化水平、Repl多态及SNCA mRNA表达水平之间的相关性。
     方法密度梯度离心分离65例PD患者和63例正常人的PBMCs;重亚硫酸盐测序法检测SNCA基因内含子1区的甲基化水平;实时荧光定量PCR (real-time fluorescent quantitative PCR, RT-PCR)法检测SNCA mRNA的表达水平;直接测序法检测SNCA启动子区Rep1多态
     结果与正常对照组相比,PD患者PBMCs中SNCA基因内含子1区甲基化水平降低(P=0.024); Rep1等位基因267bp与SNCA内含子1区的高甲基化相关,Rep1等位基因271bp与SNCA内含子1区的低甲基化相关。271bp/271bp基因型较267bp/267bp和269bp/269bp基因型甲基化水平低。SNCA mRNA表达水平在PD组和对照组之间无显著统计学差异(P=0.107), SNCA mRNA表达水平与SNCA内含子1甲基化水平及Rep1多态无明显相关性。
     结论PD患者PBMCs中SNCA基因存在低甲基化。Rep1等位基因及基因型与SNCA内含子1区的甲基化水平相关。
Objective:SNCA is a pathogenic gene identified in rare familial PD, and over-expression of SNCA was suggested in the pathogenesis of familial PD as well as sporadic PD. Allele length variability in Rep1of SNCA modulates susceptibility to sporadic PD and affects SNCA expression levels in both brains and peripheral blood mononuclear cells (PBMCs) of patients with sporadic PD. DNA methylation in SNCA intron-1is also involved in the regulation of SNCA expression and hypomethylation of this region was observed in postmortem brains of patients with sporadic PD. In this study, we studied the methylation status of SNCA intron-1, SNCA mRNA levels and Rep1genotypes in PBMCs of sporadic PD patients and controls and explored the relationship between DNA methylation, mRNA expression and Rep1genotypes.
     Methods:Peripheral blood mononuclear cells (PBMCs) from65sporadic PD patients and63healthy controls were isolated by density gradient centrifugation; DNA methylation level of SNCA intron-1was determined by bisulfite sequencing; mRNA level of SNCA was meatured by real-time quantitative PCR; Rep1polymorphism was examined by direct sequencing.
     Results:Hypomethylation of SNCA intron-1was detected in PBMCs of PD patients (p=0.024). And DNA methylation levels were associated with Rep1alleles and genotypes. The longest allele (271bp) was associated with lower level of methylation, while the shortest allele (267bp) was associated with higher level of methylation. Genotype 271bp/271bp showed significantly lower methylation levels than genotype267bp/267bp and269bp/269bp (p=0.014and0.043respectively). No significant difference of SNCA mRNA level was observed between PD and controls (p=0.107), and no correlation was observed between SNCA mRNA level and methylation level of SNCA intron-1or Rep1polymorphism.
引文
[1]Shulman, J.M., P.L. De Jager, and M.B. Feany, Parkinson's disease:genetics and pathogenesis. Annu Rev Pathol,2011.6:193-222.
    [2]Singleton, A.B., M. Farrer, J. Johnson, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science,2003.302(5646):841.
    [3]Farrer, M., J. Kachergus, L. Forno, et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol,2004. 55(2):174-9.
    [4]Chartier-Harlin, M.C., J. Kachergus, C. Roumier, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet,2004.364(9440): 1167-9.
    [5]Ross, O.A., A.T. Braithwaite, L.M. Skipper, J et al. Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol,2008.63(6):p. 743-50.
    [6]Chiba-Falek, O., G.J. Lopez, and R.L. Nussbaum. Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. Mov Disord,2006.21(10): 1703-8.
    [7]Grundemann, J., F. Schlaudraff, O. Haeckel, et al. Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease. Nucleic Acids Res,2008.36(7): e38.
    [8]Grundemann, J., F. Schlaudraff, and B. Liss, UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson's disease brains. Methods Mol Biol,2011.755:363-74.
    [9]Farrer, M.. D.M. Maraganore, P. Lockhart, et al. alpha-Synuclein gene haplotypes are associated with Parkinson's disease. Hum Mol Genet,2001. 10(17):1847-51.
    [10]Mizuta, I., M. Nishimura, E. Mizuta, et al. Meta-analysis of alpha synuclein/ NACP polymorphism in Parkinson's disease in Japan. J Neurol Neurosurg Psychiatry,2002.73(3):350.
    [11]Mellick, G.D., D.M. Maraganore, and P.A. Silburn, Australian data and meta-analysis lend support for alpha-synuclein (NACP-Rep1) as a risk factor for Parkinson's disease. Neurosci Lett,2005.375(2):112-6.
    [12]Maraganore, D.M., M. de Andrade, A. Elbaz, et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA,2006. 296(6):661-70.
    [13]Linnertz, C., L. Saucier, D. Ge, et al. Genetic regulation of alpha-synuclein mRNA expression in various human brain tissues. PLoS One,2009.4(10): e7480.
    [14]Chiba-Falek, O. and R.L. Nussbaum, Effect of allelic variation at the NACP-Repl repeat upstream of the alpha-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Hum Mol Genet,2001. 10(26):3101-9.
    [15]Cronin, K.D., D. Ge, P. Manninger, et al. Expansion of the Parkinson disease-associated SNCA-Repl allele upregulates human alpha-synuclein in transgenic mouse brain. Hum Mol Genet,2009.18(17):3274-85.
    [16]Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nat Genet,2003.33 Suppl:245-54.
    [17]Jowaed, A., I. Schmitt, O. Kaut, et al. Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J Neurosci, 2010.30(18):6355-9.
    [18]Matsumoto, L., H. Takuma, A. Tamaoka, et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease. PLoS One,2010.5(11):e15522.
    [19]Hughes, A.J., S.E. Daniel, L. Kilford, et al., Accuracy of clinical diagnosis of idiopathic Parkinson's disease:a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry,1992.55(3):181-4.
    [20]Hoehn, M.M. and M.D. Yahr, Parkinsonism:onset, progression and mortality. Neurology,1967.17(5):427-42.
    [21]Xia Y, Rohan de Silva HA, Rosi BL, et al. Genetic studies in Alzheimer's disease with an NACP/alpha-synuclein polymorphism. Ann Neurol,1996. 40(2):207-215.
    [22]Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001.25(4):402-8.
    [23]Kim, S., B.S. Jeon, C. Heo, et al. Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson's disease. FASEB J, 2004.18(13):1615-7.
    [24]Barroso, N., Y. Campos, R. Huertas, et al. Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin Chem, 1993.39(4):667-9.
    [25]Blandini, F., E. Sinforiani, C. Pacchetti,et al. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology,2006. 66(4):529-34.
    [26]Caronti, B., G. Tanda, C. Colosimo, et al. Reduced dopamine in peripheral blood lymphocytes in Parkinson's disease. Neuroreport,1999.10(14):2907-10.
    [27]Barbanti, P., G. Fabbrini, A. Ricci, et al. Increased expression of dopamine receptors on lymphocytes in Parkinson's disease. Mov Disord,1999.14(5): 764-71.
    [28]Pellicano, C., F.R. Buttarelli, A. Circella, et al. Dopamine transporter immunoreactivity in peripheral blood lymphocytes discriminates Parkinson's disease from essential tremor. J Neural Transm,2007.114(7):935-8.
    [29]Chu, Y., W. Le, K. Kompoliti, et al. Nurrl in Parkinson's disease and related disorders. J Comp Neurol,2006.494(3):495-514.
    [30]Le, W., T. Pan, M. Huang, et al. Decreased NURR1 gene expression in patients with Parkinson's disease. J Neurol Sci,2008.273(1-2):29-33.
    [31]Fuchs, J., A. Tichopad, Y. Golub, et al. Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB J,2008.22(5): 1327-34.
    [32]Esteller, M., Epigenetics in cancer. N Engl J Med,2008.358(11):p.1148-59.
    [33]Levenson, V.V., DNA methylation as a universal biomarker. Expert Rev Mol Diagn,2010.10(4):481-8.
    [34]Mastroeni, D., A. Grover, E. Delvaux, et al. Epigenetic changes in Alzheimer's disease:decrements in DNA methylation. Neurobiol Aging,2010.31(12): 2025-37.
    [35]West, R.L., J.M. Lee, and L.E. Maroun, Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer's disease patient. J Mol Neurosci,1995.6(2):141-6.
    [36]Mastronardi F.G., A. Noor, D.D. Wood, et al. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res, 2007.85(9):2006-16.
    [37]Casaccia-Bonnefil, P., G. Pandozy, and F. Mastronardi, Evaluating epigenetic landmarks in the brain of multiple sclerosis patients:a contribution to the current debate on disease pathogenesis. Prog Neurobiol,2008.86(4):368-78.
    [38]Ai, S., L. Shen, J. Guo, et al. DNA methylation as a biomarker for neuropsychiatric diseases. Int J Neurosci,2011.
    [39]Wang, S.C., B. Oelze, and A. Schumacher, Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS One,2008.3(7):e2698.
    [40]Tan, E.K., V.R. Chandran, S. Fook-Chong, et al. Alpha-synuclein mRNA expression in sporadic Parkinson's disease. Mov Disord,2005.20(5):620-3.
    [41]Barbour, R., K. Kling, J.P. Anderson, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis,2008.5(2):55-9.
    [42]Shi, M., C.P. Zabetian, A.M. Hancock, et al. Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson's disease. Neurosci Lett,2010. 480(1):78-82.
    [1]Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nat Genet,2003.33 Suppl:245-54.
    [2]Urdinguio, R.G., J.V. Sanchez-Mut, and M. Esteller, Epigenetic mechanisms in neurological diseases:genes, syndromes, and therapies. Lancet Neurol,2009. 8(11):1056-72.
    [3]Tsankova, N., W. Renthal, A. Kumar, et al. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci,2007.8(5):355-67.
    [4]Egger, G., G. Liang, A. Aparicio, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004.429(6990):457-63.
    [5]Deaton, A.M. and A. Bird, CpG islands and the regulation of transcription. Genes Dev,2011.25(10):1010-22.
    [6]Reik, W., W. Dean, and J. Walter, Epigenetic reprogramming in mammalian development. Science,2001.293(5532):1089-93.
    [7]Edwards, C.A. and A.C. Ferguson-Smith, Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol,2007.19(3):281-9.
    [8]Berdasco, M. and M. Esteller, Aberrant epigenetic landscape in cancer:how cellular identity goes awry. Dev Cell,2010.19(5):698-711.
    [9]Esteller, M., Epigenetics in cancer. N Engl J Med,2008.358(11):1148-59.
    [10]Gustaw-Rothenberg, K.A., S.L. Siedlak, D.J. Bonda, et al. Dissociated amyloid-beta antibody levels as a serum biomarker for the progression of Alzheimer's disease:a population-based study. Exp Gerontol,2010.45(1): 47-52.
    [11]Thambisetty, M, A. Simmons, L. Velayudhan, et al. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry,2010.67(7):739-48.
    [12]Storace, D., S. Cammarata, R. Borghi, et al. Elevation of{beta}-amyloid 1-42 autoantibodies in the blood of amnestic patients with mild cognitive impairment. Arch Neurol,2010.67(7):867-72.
    [13]O'Bryant, S.E., G. Xiao, R. Barber, et al. A serum protein-based algorithm for the detection of Alzheimer disease. Arch Neurol,2010.67(9):1077-81.
    [14]Bartolome, F., U. Munoz, N. Esteras, et al. Distinct regulation of cell cycle and survival in lymphocytes from patients with Alzheimer's disease and amyotrophic lateral sclerosis. Int J Clin Exp Pathol,2009.2(4):390-8.
    [15]Zhou, X. and J. Jia, P53-mediated G(1)/S checkpoint dysfunction in lymphocytes from Alzheimer's disease patients. Neurosci Lett,2010.468(3): 320-5.
    [16]Thomas, P., O.C. NJ, and M. Fenech, Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mech Ageing Dev,2008.129(4):183-90.
    [17]Zivkovic, L., B. Spremo-Potparevic, B. Plecas-Solarovic, et al. Premature centromere division of metaphase chromosomes in peripheral blood lymphocytes of Alzheimer's disease patients:relation to gender and age. J Gerontol A Biol Sci Med Sci,2010.65(12):1269-74.
    [18]Yoon, S.C., Y.A. Kwon. H. Kim, et al. Altered cell viability and proliferation activity of peripheral lymphocytes in patients with Alzheimer's disease. Psychiatry Investig,2010.7(1):68-71.
    [19]Kalman, J., K. Kitajka, M. Pakaski, et al. Gene expression profile analysis of lymphocytes from Alzheimer's patients. Psychiatr Genet.2005.15(1):1-6.
    [20]Barroso, N., Y. Campos, R. Huertas, et al. Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin Chem, 1993.39(4):667-9.
    [21]Shinde, S. and K. Pasupathy, Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from patients with Parkinson's disease: preliminary study. Neurol India,2006.54(4):390-3.
    [22]Petrozzi, L., C. Lucetti, G. Gambaccini, et al. Cytogenetic analysis oxidative damage in lymphocytes of Parkinson's disease patients. Neurol Sci,2001.22(1): 83-4.
    [23]Calopa, M., J. Bas, A. Callen, et al. Apoptosis of peripheral blood lymphocytes in Parkinson patients. Neurobiol Dis,2010.38(1):1-7.
    [24]Blandini, F., E. Sinforiani, C. Pacchetti, et al. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology,2006. 66(4):529-34.
    [25]Caronti, B., G. Tanda, C. Colosimo, et al. Reduced dopamine in peripheral blood lymphocytes in Parkinson's disease. Neuroreport,1999.10(14):2907-10.
    [26]Barbanti, P., G. Fabbrini, A. Ricci, et al. Increased expression of dopamine receptors on lymphocytes in Parkinson's disease. Mov Disord,1999.14(5): 764-71.
    [27]Pellicano, C, F.R. Buttarelli, A. Circella, et al. Dopamine transporter immunoreactivity in peripheral blood lymphocytes discriminates Parkinson's disease from essential tremor. J Neural Transm,2007.114(7):935-8.
    [28]Kim, S., B.S. Jeon, C. Heo, et al. Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson's disease. FASEB J, 2004.18(13):1615-7.
    [29]Le, W., T. Pan, M. Huang, et al. Decreased NURR1 gene expression in patients with Parkinson's disease. J Neurol Sci,2008.273(1-2):29-33.
    [30]Mila, S., A.G. Albo, D. Corpillo, et al. Lymphocyte proteomics of Parkinson's disease patients reveals cytoskeletal protein dysregulation and oxidative stress. Biomark Med,2009.3(2):117-28.
    [31]Emamghoreishi, M., L. Schlichter, P.P. Li, et al. High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar Ⅰ disorder. Am J Psychiatry,1997.154(7):976-82.
    [32]Kato, T., M. Ishiwata, K. Mori, et al. Mechanisms of altered Ca2+signalling in transformed lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol,2003.6(4):379-89.
    [33]Belmaker, R.H., J. Shapiro, E. Vainer, et al. Reduced inositol content in lymphocyte-derived cell lines from bipolar patients. Bipolar Disord,2002.4(1): 67-9.
    [34]Nguyen, A., T.A. Rauch, G.P. Pfeifer, et al. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J,2010.24(8):3036-51.
    [35]Eckhardt, F., J. Lewin, R. Cortese, et al. DNA methylation profiling of human chromosomes 6,20 and 22. Nat Genet,2006.38(12):1378-85.
    [36]Shiota, K., Y. Kogo, J. Ohgane, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells,2002.7(9):961-9.
    [37]Wang, S.C., B. Oelze, and A. Schumacher, Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS One,2008.3(7):e2698.
    [38]Ammerpohl, O., J.I. Martin-Subero, J. Richter, et al. Hunting for the 5th base: Techniques for analyzing DNA methylation. Biochim Biophys Acta,2009. 1790(9):847-62.
    [39]Bibikova, M., Z. Lin, L. Zhou, et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res,2006.16(3):383-93.
    [40]Rauch, T. and G.P. Pfeifer, Methylated-CpG island recovery assay:a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest,2005.85(9):1172-80.
    [41]Deatherage, D.E., D. Potter, P.S. Yan, et al. Methylation analysis by microarray. Methods Mol Biol,2009.556:117-39.
    [42]Down, T.A., V.K. Rakyan, D.J. Turner, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol,2008.26(7):779-85.
    [43]Lister, R., R.C. O'Malley, J. Tonti-Filippini, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell.2008.133(3):523-36.
    [44]Lister, R., M. Pelizzola, R.H. Dowen, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature,2009.462(7271): 315-22.
    [45]Xu, G.L., T.H. Bestor, D. Bourc'his, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature,1999.402(6758):187-91.
    [46]Tao, Q., H. Huang, T.M. Geiman, et al. Defective de novo methylation of viral and cellular DNA sequences in ICF syndrome cells. Hum Mol Genet,2002. 11(18):2091-102.
    [47]Hansen, R.S., R. Stoger, C. Wijmenga, et al. Escape from gene silencing in ICF syndrome:evidence for advanced replication time as a major determinant. Hum Mol Genet,2000.9(18):2575-87.
    [48]Kondo, T., M.P. Bobek, R. Kuick, et al. Whole-genome methylation scan in ICF syndrome:hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet,2000.9(4):597-604.
    [49]Jin, B., Q. Tao, J. Peng, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet,2008.17(5):690-709.
    [50]Tuck-Muller, C.M., A. Narayan, F. Tsien, et al. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet,2000.89(1-2):121-8.
    [51]Jeanpierre, M., C. Turleau, A. Aurias, et al. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet, 1993.2(6):731-5.
    [52]Kubota, T., H. Furuumi, T. Kamoda, et al. ICF syndrome in a girl with DNA hypomethylation but without detectable DNMT3B mutation. Am J Med Genet A,2004.129A(3):290-3.
    [53]Rousseau, F., D. Heitz, V. Biancalana, et al. Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N Engl J Med,1991.325(24): 1673-81.
    [54]Oberle, I., F. Rousseau, D. Heitz, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science,1991. 252(5010):1097-102.
    [55]Bell, M.V., M.C. Hirst, Y. Nakahori, et al. Physical mapping across the fragile X:hypermethylation and clinical expression of the fragile X syndrome. Cell, 1991.64(4):861-6.
    [56]Greenough, W.T., A.Y. Klintsova, S.A. Irwin, et al. Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci U S A,2001. 98(13):7101-6.
    [57]Das, S., T. Kubota, M. Song, et al. Methylation analysis of the fragile X syndrome by PCR. Genet Test,1997.1(3):151-5.
    [58]Panagopoulos, I., C. Lassen, U. Kristoffersson, et al. A methylation PCR approach for detection of fragile X syndrome. Hum Mutat,1999.14(1):71-9.
    [59]Dahl, C., K. Gronskov, L.A. Larsen, et al. A homogeneous assay for analysis of FMR1 promoter methylation in patients with fragile X syndrome. Clin Chem, 2007.53(4):790-3.
    [60]Coffee, B., K. Keith, I. Albizua, et al. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am J Hum Genet,2009.85(4): 503-14.
    [61]Tzeng, C.C., C.P. Liou, C.F. Li, et al. Methyl-CpG-binding PCR of bloodspots for confirmation of fragile X syndrome in males. J Biomed Biotechnol,2009. 2009:643692.
    [62]Chen, L., A.G. Hadd, S. Sah, et al. High-resolution methylation polymerase chain reaction for fragile X analysis:evidence for novel FMR1 methylation patterns undetected in Southern blot analyses. Genet Med,2011.13(6):528-38.
    [63]Elias, M.H., R. Ankathil, A.R. Salmi, et al. A new method for FMR1 gene methylation screening by multiplex methylation-specific real-time polymerase chain reaction. Genet Test Mol Biomarkers,2011.15(6):387-93.
    [64]Godler, D.E., F. Tassone, D.Z. Loesch, et al. Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio. Hum Mol Genet,2010.19(8):1618-32.
    [65]Driscoll, D.J., M.F. Waters, C.A. Williams, et al. A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics,1992.13(4):917-24.
    [66]Dittrich, B., W.P. Robinson, H. Knoblauch, et al. Molecular diagnosis of the Prader-Willi and Angelman syndromes by detection of parent-of-origin specific DNA methylation in 15ql 1-13. Hum Genet,1992.90(3):313-5.
    [67]Buiting, K., S. Gross, C. Lich, et al. Epimutations in Prader-Willi and Angelman syndromes:a molecular study of 136 patients with an imprinting defect. Am J Hum Genet,2003.72(3):571-7.
    [68]Young. I.D., Diagnosing Prader-Willi syndrome. Lancet,1995.345(8965): 1590.
    [69]Buchholz, T., J. Jackson, L. Robson, et al. Evaluation of methylation analysis for diagnostic testing in 258 referrals suspected of Prader-Willi or Angelman syndromes. Hum Genet,1998.103(5):535-9.
    [70]Ramsden, S.C., J. Clayton-Smith, R. Birch, et al. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet, 2010.11:70.
    [71]Vieregge, P., J. Hagenah, I. Heberlein, et al. Parkinson's disease in twins:a follow-up study. Neurology,1999.53(3):566-72.
    [72]Raiha, I., J. Kaprio, M. Koskenvuo, et al. Alzheimer's disease in Finnish twins. Lancet,1996.347(9001):573-8.
    [73]Willer, C.J., D.A. Dyment, N.J. Risch, et al. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci U S A,2003.100(22): 12877-82.
    [74]Dias, J.A., M.M. Felgueiras, J.P. Sanchez, et al. The prevalence of Parkinson's disease in Portugal. A population approach. Eur J Epidemiol,1994.10(6): 763-7.
    [75]Andersen, K., L.J. Launer, M.E. Dewey, et al. Gender differences in the incidence of AD and vascular dementia:The EURODEM Studies. EURODEM Incidence Research Group. Neurology,1999.53(9):1992-7.
    [76]Schwendimann, R.N. and N. Alekseeva, Gender issues in multiple sclerosis. Int Rev Neurobiol,2007.79:377-92.
    [77]Voutsinas, G.E., E.F. Stavrou, G. Karousos, et al. Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease. Hum Mutat,2010.31(6):685-91.
    [78]Bassett, S.S., D. Avramopoulos, R.T. Perry, et al. Further evidence of a maternal parent-of-origin effect on chromosome 10 in late-onset Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet,2006.141B(5):537-40.
    [79]Ebers, G.C., A.D. Sadovnick, D.A. Dyment, et al. Parent-of-origin effect in multiple sclerosis:observations in half-siblings. Lancet,2004.363(9423): 1773-4.
    [80]Ramagopalan, S.V., I.M. Yee, D.A. Dyment, et al. Parent-of-origin effect in multiple sclerosis:observations from interracial matings. Neurology,2009. 73(8):602-5.
    [81]Petronis, A., Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature,2010.465(7299):721-7.
    [82]Mastroeni, D., A. Grover, E. Delvaux, et al. Epigenetic changes in Alzheimer's disease:decrements in DNA methylation. Neurobiol Aging,2010.31(12): 2025-37.
    [83]Mastroeni, D., A. McKee, A. Grover, et al. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One,2009.4(8):e6617.
    [84]West, R.L., J.M. Lee, and L.E. Maroun, Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer's disease patient. J Mol Neurosci,1995.6(2):141-6.
    [85]Tohgi, H., K. Utsugisawa, Y. Nagane, et al. Reduction with age in methylcytosine in the promoter region -224 approximately-101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res,1999. 70(2):288-92.
    [86]Tohgi, H., K. Utsugisawa, Y. Nagane, et al. The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett,1999.275(2):89-92.
    [87]Siegmund. K.D., C.M. Connor, M. Campan, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One,2007.2(9):e895.
    [88]Jowaed, A., I. Schmitt, O. Kaut, et al. Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J Neurosci, 2010.30(18):6355-9.
    [89]Matsumoto, L., H. Takuma, A. Tamaoka, et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease. PLoS One.2010.5(11):el5522.
    [90]Pieper, H.C., B.O. Evert, O. Kaut, et al. Different methylation of the TNF-alpha promoter in cortex and substantia nigra:Implications for selective neuronal vulnerability. Neurobiol Dis,2008.32(3):521-7.
    [91]Mastronardi, F.G., A. Noor, D.D. Wood, et al. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res, 2007.85(9):2006-16.
    [92]Casaccia-Bonnefil, P., G. Pandozy, and F. Mastronardi, Evaluating epigenetic landmarks in the brain of multiple sclerosis patients:a contribution to the current debate on disease pathogenesis. Prog Neurobiol,2008.86(4):368-78.
    [93]Silva, P.N., C.O. Gigek, M.F. Leal, et al. Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer's disease. J Alzheimers Dis,2008.13(2):173-6.
    [94]Maeda, T., J.Z. Guan, J. Oyama, et al. Aging-associated alteration of subtelomeric methylation in Parkinson's disease. J Gerontol A Biol Sci Med Sci, 2009.64(9):949-55.
    [95]Ziemann, U., M. Wahl, E. Hattingen, et al. Development of biomarkers for multiple sclerosis as a neurodegenerative disorder. Prog Neurobiol,2011.
    [96]Liggett, T., A. Melnikov, S. Tilwalli, et al. Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis. J Neurol Sci,2010. 290(1-2):16-21.
    [97]Baranzini, S.E., J. Mudge, J.C. van Velkinburgh, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature, 2010.464(7293):1351-6.
    [98]Handunnetthi, L., A.E. Handel, and S.V. Ramagopalan, Contribution of genetic, epigenetic and transcriptomic differences to twin discordance in multiple sclerosis. Expert Rev Neurother,2010.10(9):1379-81.
    [99]Cardno, A.G. and Gottesman,Ⅱ, Twin studies of schizophrenia:from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet,2000.97(1):12-7.
    [100]Bertelsen, A., B. Harvald, and M. Hauge, A Danish twin study of manic-depressive disorders. Br J Psychiatry,1977.130:330-51.
    [101]Kendler, K.S. and C.A. Prescott, A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry,1999.56(1):39-44.
    [102]Bruder, C.E., A. Piotrowski, A.A. Gijsbers, et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet,2008.82(3):763-71.
    [103]Kuratomi, G., K. Iwamoto, M. Bundo, et al. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry,2008.13(4):429-41.
    [104]Philibert, R.A.. H. Sandhu, N. Hollenbeck, et al. The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet,2008.147B(5):543-9.
    [105]Philibert R.A., S.R. Beach, T.D. Gunter, et al. The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. Am J Med Genet B Neuropsychiatr Genet,2010.153B(2):619-28.
    [106]Philibert, R.A., T.D. Gunter, S.R. Beach, et al., MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet B Neuropsychiatr Genet,2008.147B(5):565-70.
    [107]Caliskan, M., D.A. Cusanovich, C. Ober, et al., The effects of EBV transformation on gene expression levels and methylation profiles. Hum Mol Genet,2011.20(8):1643-52.
    [108]Sun, Y.V., S.T. Turner, J.A. Smith, et al.. Comparison of the DNA methylation profiles of human peripheral blood cells and transformed B-lymphocytes. Hum Genet,2010.127(6):651-8.
    [109]Muhle, R., S.V. Trentacoste, and I. Rapin, The genetics of autism. Pediatrics, 2004.113(5):e472-86.
    [110]Gregory, S.G., J.J. Connelly, A.J. Towers, et al., Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med,2009.7:62.
    [111]Insel, T.R. and L.E. Shapiro, Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci U S A, 1992.89(13):5981-5.
    [112]Winslow, J.T. and T.R. Insel, The social deficits of the oxytocin knockout mouse. Neuropeptides,2002.36(2-3):221-9.
    [113]Petronis, A., Gottesman,Ⅱ, P. Kan, et al., Monozygotic twins exhibit numerous epigenetic differences:clues to twin discordance? Schizophr Bull,2003.29(1): 169-78.
    [114]Uddin, M., K.C. Koenen, A.E. Aiello, et al., Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med,2011.41(5):997-1007.
    [115]Cravo, M.L. and M.E. Camilo, Hyperhomocysteinemia in chronic alcoholism: relations to folic acid and vitamins B(6) and B(12) status. Nutrition,2000.16(4): 296-302.
    [116]Hillemacher, T., H. Frieling, K. Luber, et al., Epigenetic regulation and gene expression of vasopressin and atrial natriuretic peptide in alcohol withdrawal. Psychoneuroendocrinology,2009.34(4):555-60.
    [117]Hillemacher, T., H. Frieling, T. Hartl, et al., Promoter specific methylation of the dopamine transporter gene is altered in alcohol dependence and associated with craving. J Psychiatr Res,2009.43(4):388-92.
    [118]Bleich, S., B. Lenz, M. Ziegenbein, et al., Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol Clin Exp Res,2006.30(4):587-91.
    [119]Bonsch, D., B. Lenz, J. Kornhuber, et al., DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport,2005.16(2): 167-70.
    [120]Biermann, T., U. Reulbach, B. Lenz, et al., N-methyl-D-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal. J Neural Transm,2009.116(5):615-22.
    [121]Muschler, M.A., T. Hillemacher, C. Kraus, et al., DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J Neural Transm,2010.117(4):513-9.
    [122]Levenson, V.V., DNA methylation as a universal biomarker. Expert Rev Mol Diagn,2010.10(4):481-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700