锻压机床碳足迹分析与低碳设计映射方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国制造业尤其是高端装备制造业在高速发展的同时,也面临着巨大的碳排放压力。低碳设计研究从产品设计源头出发,将节能减排作为目标,综合考虑产品的低碳排放特性与其它相关设计要素,是制造装备低碳技术中需深入开展的基础性工作。在国家自然科学基金重点课题等项目的支持下,本论文以锻压机床为研究对象,对碳足迹计算、分析及低碳设计映射方法进行了深入研究。主要工作如下:
     首先建立了锻压机床的碳足迹计算流程。在研究产品碳足迹的计算准则的基础上,将基于碳排放因子的产品碳足迹计算方法应用于锻压机床的碳足迹计算,并对碳足迹计算结果进行不确定性及敏感性分析,较为全面地分析了锻压机床的生命周期碳排放情况。
     在锻压机床功能分析的基础上,建立了锻压机床的低碳产品结构模型,并对锻压机床的模块单元碳足迹进行计算与分解,将产品碳足迹分析与功能结构映射有机结合,有效地实现了产品碳足迹在功能结构上的分解。建立了锻压机床使用阶段的碳流模型和主要碳排放环节量化分析模型,为低碳设计参数的提取提供了建模基础。对锻压机床的使用阶段碳排放因素进行识别,并从低碳设计与控制优化、使用与工艺等方面提出了锻压机床的低碳改进技术措施与途径。
     其次提出了低碳设计映射的概念,基于功能层、结构层、参数层三视图建立了低碳设计映射模型,提出了锻压机床的关键低碳设计参数的提取、解耦处理方法。在获取与分析低碳需求及低碳设计要求的基础上,基于环境化质量功能配置方法将产品低碳设计要求映射到产品各层次功能、结构单元及具体的低碳设计参数上,为低碳设计方案的生成提供映射信息基础。
     最后结合传统的产品设计流程,建立了基于多层次映射的锻压机床低碳设计知识重用方法流程与体系;采用可拓物元理论对各层级低碳设计实例进行知识表达,并通过聚类分析对各层级低碳设计实例进行分类处理。基于实例推理原理检索与各层次低碳设计要求相匹配的低碳设计相似实例。构建锻压机床的低碳绩效指标体系,并进行重用方案决策,实现对现有锻压机床低碳设计知识的重用。
While the manufacturing industry of our country especially high-end equipmentmanufacturing industry develops at a high speed, it is facing huge pressure of carbon emission.Setting energy-saving and emission-reduction as the target, the research of low carbon designmethod is proposed from the very begining of product design t'o consider products low carbonemission character and other design information, which is the need of in-depth work carried out inlow carbon technology in manufacturing equipment. With the support of National Natural ScienceFoundation key projects, taking forging machine as study object, this paper gives an in-depthstudy of carbon footprint calculation, analysis and low carbon design mapping method. The mainwork is as follows:
     The calculation process for carbon footprint of forging machine tool is firstly established. Onthe basis of studying calculation criterion of product carbon footprint, this calculation method forproduct carbon footprint based on the factors of carbon emission is applied to forging machine too1. Then an uncertainty and sensitivity analysis is given in the calculation result, which comprehensively analyzes the life cycle carbon emission of forging machine tool.
     On the basis of function analysis for forging machine tool, the structure model of low carbonproduct of the forging machine tool is set and carbon footprint of module unit is calculated and allocated, combining product carbon footprintanalysis and function-structure mapping together, which effectively achieve the carbon footprint separation of function-structure. The carbon flow modeland quantitative analysis model of main carbon emission links for forging machine tool in the usephase is established, which provides low carbon parameters extraction with the modeling foundation. Carbon footprint factors of forging machine tool in the use phase are identified, and low-carbon improvement technical measures are proposed from the aspects of design, control optimization,use and technique.
     Secondly the concept of low carbon design mapping is put forward. The model of low carbondesign mapping is established based on three views of the function layer, structure layer andparameters layer. The extraction and decoupling method of the key low carbon design parametersfor forging machine tool is researched deeply. On the basis of the acquisition and analysis of lowcarbon demand and low carbon design requirements, product requirements of low carbon designare mapped to function structure unit in each level and the low carbon design parameters based onquality function deployment for environment, which provide the mapping information foundationwith the low carbon design scheme.
     Finally Combining traditional product design process,the process and system for low-carbondesign reuse method of forging machine tool based on multi-hierarchy mapping isestablished.Low-carbon design cases in each hierarchy are represented by extensionmatter-element, and are classified by clustering algorithm. The similar low-carbon design casesare retrieved in conformity with low-carbon design request based on case by reasoning. Theindicator system of low-carbon efficiency for forging machine tool is established. The reuse schemes are devised to reuse the present knowledge of low-carbon design for forging machinetool.
引文
[1]林玉伦.中国制造业现状与国际比较研究[J].华北单利大学学报2010,(03):32-34.
    [2]陶永康?振兴我国制造业的思考[OL].http://www.gongkong.com/webpage/paper/200804/7-AA0C-62BF74F546E3.htm
    [3]孙方雅,孙友松.曲柄压力机能耗分析与节能途径[J].锻压技术.2010,35(1): 110-113.
    [4]北京市2008年国民经济和社会发展统计公报[OL].http://www.china.com.cn/economic/txt/2009-03/01/content17352212.htm
    [5]浙江森林每年吸收二氧化碳5400万吨[OL].http://zj.people.com.cn/GB/13547008.html
    [6]我国承诺2020年单位GDP 二氧化碳排放降40-45%[〇L].http://env.people.com.cn/GB/146189/175118/175138/10466670.html中华人民共和国国民经济和社会发展第十二个五年规划纲要,2010.
    [8]刘昕,王力舟.欧盟再次掀起绿色浪潮[J].WTO经济导刊,2006, 1-2.
    [9] Tamura Hiroshi, Tokumou Teruhiko,Sakuma Osamu."Green" design [EB/OL]. http://www.yokogawa.com/rd/pdf/TR/rd-tr-r00031-009.pdf,2007-09-06.
    [10] Catherine M Rose,Ab Stevels. Metrics for End-of-Life Strategies (ELSEIM)[EB/OL].http://mml,Stanford.edu/Research/Papers/2001/Rose/ieeeOlf.PDF,2007-09-06.
    [11] Takao Bamba,Niall Murtagh.. An Ecological Design Support Tool for Recyclability[EB/OL]. http://global.mitsubishielectric.com/pdf/advance/vol87/87tr4.pdf,2007-09-06.
    [12] Shozo Hiroki I, Hiroshi F. Disassembly operation support system with motion monitoring ofa human operator[C]. Annals of the CIRP,2001,50(1):305-309.
    [13] Askiner Gungor, Surendra M.Gupta. An Evaluation Methodology for DisassemblyProcesses[J]. Computers ind. Engineering1997,33:1-4.
    [14] ISO14040-1997Environmental management-life cycle assessment一part1: principles andframework[S]
    [15] G Fleischer, W P Schmidt. Iterative screening LCA in an ecodesign tool [J]. InternationalJournal of LCA,1997,2(1):20-24.
    [16] Henrik Wenzel, Michael Hauschild, Leo Alting. Environmental Assessment of Products.Volume1(methodology, tools and case studies in product development)[M]. London:Chapman and Hall,1997.
    [17] Michael Hauschild and Henrik Wenzel. Environmental Assessment of Products. Volume2(scientific background). London: Chapman and Hall,1998.
    [18] Mark Goedkoop, Renilde Spriensma. The Eco-indicator99: A damage oriented method forLife Cycle Impact Assessment. Methodology Report.5October1999.
    [19] Elshkaki A, E van der Voe, V Timmermans, et al. Dynamic stock modeling: a method forthe identification and estimation of future waste streams and emissions based on pastproduction and product stock characteristic [C]. Proceedings of Conference on SustainableDevelopment of Energy, Water and Environment Systems, Dubrovnik,2002:120-126
    [20] Guinee J B, Huppes G, Heijungs R. Developing an LCA guide for decision support [J].Environmental Management and Health,2001,12(3):301-311
    [21] Mori Y, G Huppes, H A Udo de Haes, S Otoma. Component Manufacturing Analysis: asimplified and rigorous LCI Method for the Manufacturing Stage [J]. International Journalof LCA,2000,23A,5(6):327-335
    [22] Horvath Arpad, Joshi Satish, Lave Lester B, et al. Economic Input-Output Models forEnvironmental Life Cycle Assessment [J]. Environmental Science&Technology,1998,32(7):184A-191A
    [23] Nair Indira. Life Cycle Analysis and Green Design: A context for teaching design,environment, and ethics [J]. Journal of Engineering Education,1998,87(4):489-494
    [24]山本良一.环境材料[M].北京:化学工业出版社,1997.
    [25] Marlen Bertram,Kurt Buxmann, Peter Furrer. Analysis of greenhouse gasemissions related to aluminium transport applications[J]. The International Journalof Life Cycle Assessment.2009.14(Suppl1):S62-S69.
    [26] Gutowski T., Thermodynamic Analysis of Resources Used in Manufacturing Processes,Environmental Science and Technology,2009,43:1584-1590.
    [27] A. Hassanpour Isfahani; H. Lesani. Dsign Optimization of Linear Induction Motor forImproved Efficiency and Power Fator. Electric Machines&Drives Conference,2007.IEMDC '07. IEEE International Volume2,3-5May2007Page(s):988-991
    [28] El Ferik S, Belhadj CA. Neural network modeling of temperature and humidity effects onresidential air conditioner load.PROCEEDINGS OF THE FOURTH IASTEDINTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS:2004:557-562
    [29] El Ferik S, Belhadj CA. Predicting AC power consumption using a stochastic Markov chainsimulating weather conditions. Proceedings of the14th IASTED International Conferenceon Applied Simulation and Modelling:2005:247-52
    [30] Belhadj, C.A.; El Ferik, S. Segregated residential air conditioner load model behavior withtemperature and humidity. Proceedings of the Fifth IASTED International Conference onPower and Energy Systems:132-7,2005
    [31] Ayhan Zora, Mohammed F. Fahmy, Recayi Pecen, Faruk Taban. A Comprehensive EnergyModel Development for Off-Highway Vehicles.Proceedings of the2005American Societyfor Engineering Education Annual Conference&Exposition.
    [32]刘志峰,蒋云,高洋.面向洗碗机产品的节能设计方法研究[J].合肥工业大学学报,2011,34(9):1281-1285.
    [33]戚赞徽,黄海鸿,刘光复,等.基于动态生命周期的能量分析方法m.机械工程学报,2007,43(8):129-134.
    [34]周丹,刘光复,何平.数控机床能量设计因子提取方法研究[J].中国机械工程,2011,22(3):351-355.
    [35] H.C. Zhang, H. Li. An energy factor based systematic approach to energy-saving productdesign [J]. Annals of the CIRP,2010,59:183-186.
    [36] Farirssey William J. RIM parts for automobiles一life cycle energy and ecobalance,(DowChemical Co). SAE Special Publications, n867, Feb, Designing for Recyclability andReuse of Automotive Plastics,1991:1-8
    [37] Kim H.G. Stress analysis and design strategy for lightweight car seat frame (Departmentof Mechanical Engineering, Jeonju University) Source: Key Engineering Materials, v261-263, n I, Advances in Fracture and Failure Prevention: Proceedings of the FifthInternational Conference on Fracture and Strength of Solids (FEOFS2003): SecondInternational Conference on Physics and Chemistry,2004,:597-602
    [38] Herrmann I.T, Hauschild M Z. Effeets of globalization on carbon footprints ofproducts [J]. CIRP Annals-Manufacturing Technology,2009,58(1):13-16.
    [39] Johnson E. Disagreement over carbon footprints: A comparision of electric and LPGforklifls[J].Energy Policy,2008,36(4):1569-1573.
    [40] Foo D C Y,Tan R R,Ng D K S.Carbon and footprint-constrained energy planning usingcascade analysis technique[J].Energy,2008,33(l0):1480-1488.
    [41]戚赞徽,王淑旺,刘光复,等.面向能量优化的产品结构要素组合设计研究.机械工程学报,2008,44(1):161-167
    [42] Xiu FEN Zhang,Shu You Zhang,Zhi Yong Hu etal. Identification of connection units withhigh GHG emissions for low-carbon product structure design [J], Journal of CleanerProduction.2012,27:118-125.
    [43] SONG JS, LEE KM. Development of a low-carbon product design system based onembedded GHG emissions [J].Resources, Conservation and Recycling,2010,54(9):547-556.
    [44] Jeong I-T, Lee K-M. Assessment of the ecodesign improvement options using the globalwarming and economic performance indicators [J]. Journal of Cleaner Production,2009,17(13):1206-1213.
    [45] G.Lucchetta, P.F.Bariani. Sustainable design of injuection moulded parts by materialintensity reduction [J]. Annals of the CIRP,2010,59:33-36.
    [46]曹华军,李洪丞,宋胜利等.基于生命周期评价的机床碳足迹评估方法及应用[J].计算机集成制造系统,2011,17(11):2432-2437
    [47]尹久,曹华军,杜彦斌.基于扩展一阶混合Petir网的机械制造系统碳流动态建模方法.机械工程学报,2011,47(23):152-160
    [48] Laboratory for Carbon Footprinting[OL].http://www.ce.cmu.edu/GreenDesign/research/lab-carbon.html.
    [49] Timothy Gutowski. Environmentally benign manufacturing: Observations fromJapan,Europe and the United States [J]. Journal of Cleaner Production.2005,13:1-17
    [50] Dahmus, Jeffrey, Timothy Gutowski. An environmental analysis of machining [J]. AmericanSociety of Mechanical Engineers, Manufacturing Engineering Division, MED.2004,15:643-652
    [51] Dalquist Stephanie, Gutowski Timothy. Life cycle analysis of conventional manufacturingtechniques: Sand casting[J].American Society of Mechanical Engineers, ManufacturingEngineering Division.2004,15:631-641
    [52] Mikiko Kainuma, Yuzuru Matsuoka, Tsuneyuki Morita.The AIM/end-use model and itsapplication to forecast Japanese carbon dioxide emissions [J]. European Journal ofOperational Research,2000,122:416-425
    [53] K.R. Haapala, K.N. Khadke,J.W. Sutherland. Predicting Manufacturing Waste and Energyfor Sustainable Product Development via WE-Fab Soflware[C]. Proceedings GlobalConference on Sustainable Product Developme-nt and life Cycle Engineering, Sep.29-Oct.1,2004:243-250
    [54] Karl Haapala, John Sutherland, Julio Rivera. Reducing Environmental Impacts of SteelProduct Manufact-uring [J]. Transactions ofNAMRI/SME,2009,37:419-426
    [55] Christian Brand, Martino Tran, Jillian Anable. The UK transport carbon model: Anintegrated life cycle approach to explore low carbon futures [J]. Energy Policy,2010.8:1-17
    [56] Loulou R., Goldstein G., Noble K.,2004Documentation for the MARKAL[C]. AnImplementing Agreement of the International Energy Agency (IEA), Paris,2004
    [57] Department for Transport (DfT).2005National Transport Model-Working Paper2[OL]. lastaccessed at http://www.dft.gov.uk/pgr/economics/ntm/pdfnatransmodwp2.pdfS on05/11/09.
    [58] Venkatesh A., Griffin W. M., Jaramillo P., et al. Uncertainty analysis of life cyclegreenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuelpolicies[J]. Environ. Sci. Tech-nol.,2010,45(1):125-131
    [59] S. Tridech, K. Cheng. Low Carbon Manufacturing: Characterization, Theoretical Modelsand Implementation[C].The6th International Conference on Manufacturing Research(ICMR2008): p403-402
    [60] S. Tridech, K. Cheng. An investigation on the framework for EREE-based low carbonmanufacturing[C].5th International Conference on Responsive Manufacturing-GreenManufacturing (ICRM2010): p257-267
    [61] Narita Hirohisa, Kawamura Hiroshi等,Development of prediction system forenvironmental burden for machine tool operation (1st report, proposal of calculation methodfor environmental burden).JSME International Journal, Series C: Mechanical Systems,Machine Elements and Manufacturing, v49, n4, p1188-1195, June15,2007.
    [62] Yoshioka Takuyuki, Aruga, Kazuhiro,Nitami Toshio,Kobayashi Hiroshi, Sakai,Hideo.Energy and carbon dioxide (CO2) balance of logging residues as alternative energyresources: System analysis based on the method of a life cycle inventory (LCI)analysis.Journal of Forest Research, v10, n2, p125-134, April2005.
    [63] Portha Jean-Francois, Jaubert Jean-Noel, Louret Sylvain,Pons, Marie-Noelle. Definition ofa thermodynamic parameter to calculate carbon dioxide emissions in a catalytic reformingprocess. International Journal of Thermodynamics, v11, n2, p81-89, June2008.
    [64] Inaba Atsushi, Carbon footprint of products [J]. Nihon Enerugi Gakkaishi/Journal of theJapan Institute of Energy, v89, n7, p623-631, July20,2010.
    [65] Griffa Gianluca, Radice Lorenzo, Bianco Claudio, Andrae Anders,Bin Zhu,DongHan,Gemma Paolo, Shudong Luo.Carbon footprint of next generation fixednetworks [J].INTELEC,International Telecommunications Energy Conference (Proceedings),2010,32nd Annual International Telecommunications Energy Conference, INTELEC2010.
    [66]张成,浦耿强,王成焘.电动自行车与燃油助动车生命周期评价的比较[J].机械设计与研究,2003,19(4):69-71
    [67]张德英,张丽霞.碳源排碳量估算办法研究进展[J].内蒙古林业科技.2005.1:20-23.
    [68]王微,林剑艺,崔胜辉,吝涛.碳足迹分析方法研究综述[J].环境科学与技术,2010,33(7):71-78.
    [69]刘芳,施进发,陆长德.基于GIS的产品生命周期评价数据库设计研究.信阳师范学院学报(自然科学版),2010,23(3):467-469.
    [70] The Environmentally Benign Manufacturing (EBM) research group [OL].http://web.mit.edu/ebm/www/index.html
    [71] T. Virvalo, W. Sun. Improving Energy一What It is All About[C].6th InternationalConference on Fluid Power Transmission and Control, Hangzhou.2005:55-65.
    [72] W. Sun, T. Virvalo. Accumulator-pump-motor as Energy Saving in Hydraulic Boom[C],8thScandinavian Int-ernational Conference on Fluid Power, Tampere,2003:297-309.
    [73] W. Sun, T. Virvalo. Simulation Study on a Hydraulic-accumulator-balancing Energy-savingSystem in Hydraulic Boom[C],50th National Conference on Fluid Power, Las Vegas,2005:371-381.
    [74] M. Ochiai, S. Rye. Hybrid in Construction Machinery[C], Proceedings of the7th JFPSInternational Symposium on Fluid Power, Toyama,2008:41-44
    [75] M. Ochiai, S. Rye, Hybrid in Construction Machinery, Proceedings of the7th JFPSInternational Symposium on Fluid Power,2008, pp.41—44, SBN:4-931070-07-X,Toyama
    [76] T.O. Andersen, M.R. Hansen, H.C. Pedersen, F. Conrad, Regeneration of Potential Energyin Hydraulic Forklift Trucks,6th International Conference on Fluid Power Transmission andControl,2005, pp.302-306, Hangzhou.
    [77] Takahashi, K, Okamoto, M, Hiraki, E, et al. Simulation analysis of energy-saving effect ofan energy recovery system for electric motor drive system in the injection moldingmachine[C].14th International Power Electronics and Motion Control Conference(EPE/PEMC),6-8Sept,2010, T2:118-122
    [78] Takahashi K, Hiraki E, Tanaka T. Energy-saving effect of the add-on energy recoverysystem for electric motor drive systems in the injection molding machine [J]. IEEJTransactions on Industry Applications,2010,130(5):713-714
    [79]钟掘.论轧机的驱动与节能[M].长沙:中南工业大学出版社(现中南大学出版社),1986
    [80] Albers A, Ottnad J. Integrated structural and controller optimization for lightweight robotdesign[C].9th IEEE-RAS International Conference on Humanoid Robots,7-10Dec2009:93-98
    [81] Dietmair A., Verl A., Eberspacher P. Predic-tive Simulation for Model Based EnergyConsumption Optimisation in Manufacturing System and Machine Control[C], Proc. FAIM2009, Middleborough, UK.
    [82] Dietmair, A., Verl, A., Drive Based Vibration Reduction for Production Machines[C], Proc.MATAR2008Conference, Prague,2008,Czech Republic.
    [83] Beitz Wolfgang, Grote Karl-H. Design for material saving[J]. Materials and Design.1994,15(4):195-202.
    [84]赵韩,陈兴玉,董玉德,等.参数化有限元分析的锻压机床机身轻量化设计m.工程图学学报,2010,(1):20-25
    [85]李艳聪,张连洪,刘占稳,等.基于神经网络和遗传算法的锻压机床上梁轻量化和刚度优化设计m.机械科学与技术,2010,29(2):164-169
    [86]李艳聪,张连洪,刘占稳,等.刚度和质量驱动的预紧组合框架式锻压机床多目标优化设计[J].机械工程学报,2010,46(1):140-146
    [87] W. Z. Guo, F. Gao and S. Mekid. A New Analysis of Workspace Performances andOrientation Capability for3-DOF Planar Manipulators, International Journal of Roboticsand Automation,2010,25(2):89-101
    [88] Suiran Yu, Yunwei Lu. Design Task Decomposition in the Servo Press, Applied Mechanicsand Materials Vols.34-35(2010) pp1966-1972
    [89] M. Sanjari, A. Karimi Taheri,M. R. Movahedi. An optimization method for radial forgingprocess using ANN and Taguchi method[J]. Int J Adv Manuf Technol.2009,40:776-784
    [90] Ryutaro Hino, Akihiko Sasaki, Fusahito Yoshida, et al. A new algorithm for reduction ofnumber of press-forming stages in forging processes using numerical optimization and FEsimulation [J]. International Journal of Mechanical Sciences.2008,50(5):974-983
    [91]吴彦骏,赵震,胡成亮,等.多工位高速锻造工艺优化技术研究现状[J].精密成形工程.2009,1(2)
    [92]陈学文,王进.基于最小损伤值的齿轮毛坯锻造成形过程工艺参数优化设计[J].上海交通大学学报,2005,39(7)
    [93]朱春东,史双喜,华林.汽车半轴套管近净锻造工艺优化[J].金属铸锻焊技术.2009,(1):98-101
    [94]齐作玉.光轴类大锻件锻造余量及其标准的研究[J].大型铸锻件.2010,(3): 14-16
    [95]齐凯.球墨铸铁高温塑性变形行为研究及其应用[D].大连理工大学.2009
    [96]曹建国,唐建新,罗征志.汽车后桥盆齿成形工艺优化及实验研究[J].金属铸锻焊技术.2009,(3):84-86
    [97] Birtish Standards Institute(BSI),PAS2050-Specification for the Assessment of the LifeCycle Greenhouse Gas Emissions of Goods and Services;2008.
    [98] WRI. The greenhouse gas protocol: a corporate accounting and reporting standard (RevisedEdition)[M].Geneva, Switzerland: World Business Council for Sustainable Developmentand World Resource Institute,2006.
    [99]中华人民共和国国家统计局.2011.中华人民共和国2010年国民经济和社会发展统计公报[EB/OL].[2012-10-10].http://www.stats.gov.cn/tigb/ndtjgb/qgndtjgb/t20110228402705692.htm.
    [100]中国国家统计局.中国统计年鉴2008[M].北京:中国统计出版社.2008.
    [101] IPCC.2006IPCC guidelines for national greenhouses gas inventories[R/OL].[2010-03-15].http:www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.
    [102] 2050中国能源和碳排放研究课题组.2050中国能源和碳排放报告[R].北京:科学出版社,2009.
    [103] ISO. Environmental management-life cycle assessment: principles and framework (iso14040)[R].Geneva: International Organization for Standardization,2006.
    [104] Birkhofer H. Development of Environmentally Friendly Products-Methods [C]. Materialand Instruments Proceedings of the4th CIRP International Seminar on Life CycleEngineering,1996,:69-78
    [105] Pawlak Z. Rough sets. International Journal of Information and Computer Science [J]1982,5(11):345-56.
    [106]刘夏璐,王洪涛,陈建,2010.等.中国生命周期参考数据库的建立方法与基础模型[J].环境科学学报,30(10):2136-2144
    [107]顾海澄,何家文.节约金属材料手册[M].北京:机械工业出版社,1995
    [108]俞新陆.锻压机床的设计与应用[M].北京:机械工业出版社.2007
    [109] Brown D.Defining configuring [J]. Artificial Intelligent for Engineering Design, Analysisand Manufacturing,1998,12(4):301-306.
    [110] HEGGE H M H,WORTMANN J C. Generic bill-of-material: a new product model [J].International Journal of Production Economics,1991,23(1/3):117-128.
    [mi张建明,魏小鹏,张德珍,等.基于能量交互模型的机械系统原理方案设计m.中国机械工程,2004,15(9):820-823
    [112]张红娟,权龙,李斌.注塑机电液控制系统能量效率对比研究[J].机械工程学报,2012,48(8):180-187
    [113]刘素红,赵艳平.液压泵、液压马达容积效率检测方法的研究[J].流体传动与控制,2009,(02):15-17.
    [114]凌智勇.关于液压泵容积效率的修正[J].江苏工学院学报,1994,(01):97-101.
    [115]李壮云.液压元件与系统[M].北京:机械工业出版社,2006.
    [116]陈淑梅.Hydraulic and pneumatic transmission(English-chinese blilingual)[M].北京:机械工业出版社,2007.
    [117]左明扬.热工基础[M].武汉:武汉理工大学出版社,2006.
    [118] Hwang C L, Chen S J. Fuzzy Multiple Attribute Decision Making: Methods andApplications[M]. New York: Springer,1992.
    [119] Pahl G,Beitz W.Engineering Design[M]. London: The Design Council,1984.
    [120] SHI B, MEERKAMM H, SCHWEIGER W. A multipleview integration approach toinnovative product design[C]//International Conference on Mechanical-ElectronicEngineering and Computer Application, HongKong,2002,1-7.
    [121]李健,邓家提.产品原理结构设计模型[J].计算机辅助设计与图形学学报,2002,14(7):637-645.
    [122]赵有珍,李健,邓家提.产品功能结构建模研究[J].计算机应用研究,2003,(11):32-36.
    [123] Hauser John R, Don Clausing. The House of Quality, Harvard Business Review, No.3,1988,63-73.
    [124] P.P. Bonissone, K. S. Decker. Selecting uncertainly calculi and granularity: An experimentin training-off precision and complexity[C]. Uncertainly in Artificial Intelligence,N orth-Holland, Amsterdam,1986:217-247.
    [125] Tang Jia-fu, Richard Y K, XU Bao-dong, etc. A new approach to quality functiondeployment planning with financial consideration^]. Computers Operation Research,2001,29(11):1447-1463.
    [126] Suh N. P. The Principles of Design [M]. Oxford University Press, New York,1990.
    [127] Suh N. P. Axiomatic Design of Mechanical Systems [J]. Journal of Mechanical Design andthe Journal of Vibration and Acoustics, Transactions of the ASME,1995,117:1-10.
    [128] Suh N. P. Design and Operation of Large Systems [J]. Journal of Manufacturing systems,1995,14(3):203-213.
    [129]江屏,檀润华,马建红.公理设计应用软件研究[J].计算机集成制造系统,2004,10:1199-1206.
    [130] Lee K. M., Park P. J.EcoDesign: Best Practice of ISO-14062. Eco-Product ResearchInstitute (ERI), Ajou University, Korea.2005.
    [131] Wimmer W, Zust R, Lee KM. Ecodesign implementation-a systematic guidance onintegrating environmental considerations into product development.Dordrecht,TheNetherlands: Springer;2004.
    [132] Keijiro Masui. Applying quality function deployment to environmentally consciousdesign[J]. International Journal of Quality&Reliability Management,2003,20(1):90-106.
    [133] Karlsson J,Ryan K.A cost-value approach for prioritizing requirements [J].IEEESoftware,1977,14(5):67-74.
    [134] Suh N P. Axiomatic design: advance and applications[M].New York,N.Y.,USA:OxfordUniversity Press,2001.
    [135] Steward D V. The Design Structure System: A Method for Managing the Design ofComplex Systems [J]. IEEE Transaction on Engineering Management,1981,28(3):71-74.
    [136]高云凯,康健.汽车动力总成弯曲振动固有特性的有限元计算及结构修改灵敏度分析[J].汽车工程,1995,17(6):354-359.
    [137] Chen Jianjun,Ma Hongbo,Dai Jun,et al. Sensitivity Analysis of Structural Reliability BasedStrucural Optimaization[J]. Chinese Journal of Applied Mechanics,2002,19(1):14-17.
    [138]王美清,唐晓青.产品设计中的用户需求与产品质量特征映射方法研究[J].机械工程学报,2004,40(5):136-140.
    [139]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998.
    [140]蔡文,杨春燕,林伟初.可拓工程方法[M].北京:科学出版社,1997。
    [141]苏金明,阮沈勇,王永利.MATLAB工程数学[M].北京:电子工业出版社,2005。
    [142]韩江洪,刘小平,杜兆芳等.基于案例推理的纺纱质量预测模型研究[J].系统仿真学报,2009,21(5):1347-1351.
    [143] Karlsson J,Ryan K.A cost-value approach for prioirtizing requirements [J].IEEESotfware,1977,14(5):67-74.
    [144]张跃,邹寿平,宿芬.模糊数学方法及其应用[M].煤炭工业出版社,1992。
    [145] Verfaillie HA,Bidwell R.Measuring eco-efifciency, a guide to reporting companyperformance[M].World Business Council for Sustainable Development (WBCSD);2000.
    [146]徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700