再生柞蚕丝素蛋白对小鼠间充质干细胞体外分化生长的支持作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝素蛋白是一种天然合成的高分子聚合物,作为手术缝线用于临床已有一百多年的历史。近年来,由于其低免疫原性,良好的生物相容性,缓慢的降解速度及特有的理化性质,丝素蛋白作为一种新的生物材料应用越来越受到欢迎。柞蚕丝素是除家蚕丝素外的另一大主要品种,在氨基酸组成上柞蚕丝素和家蚕丝素都主要由甘氨酸和丙氨酸两种氨基酸组成,但柞蚕丝素中丙氨酸的含量比家蚕丝素要高,且含有丰富的精氨酸-甘氨酸-天门冬氨酸序列(RGD序列),更有利于细胞的粘附和生长。间充质干细胞(MSC)是干细胞的一种,是属于中胚层的一类多能干细胞,主要存在于结缔组织和器官间质中,因能分化为间质组织而得名,具有亚全能分化潜能。间充质干细胞具有干细胞的共性:即自我更新,多向分化和归巢的能力。在特定的环境下,能够分化为多种组织细胞。而且易于富集和扩增,不涉及伦理问题,在细胞治疗、组织器官修复、发育生物学、药物等领域有着极为广阔的应用前景,已被越来越广泛的应用到组织工程中,是理想的种子细胞。随着医学生物研究地深入,细胞与基质材料的相互作用已成为组织工程中关注的焦点。本实验采用小鼠间充质干细胞株(C3H10T1/2)和緑色荧光蛋白转基因小鼠的羊水干细胞( GFP—mAFS)这两种小鼠间充质干细胞为研究对象,探讨再生柞蚕丝素蛋白对这两种干细胞体外分化发育的支持作用。
     第一部分再生柞蚕丝素蛋白对小鼠间充质干细胞株体外生长和分化的研究
     目的探讨再生柞蚕丝素蛋白对小鼠间充质干细胞株(C3H10T1/2)体外生长和分化的支持作用,为再生柞蚕丝素蛋白应用于组织工程学研究提供理论依据。
     方法采用再生家蚕丝素蛋白、再生柞蚕丝素蛋白、I型胶原、普通细胞培养板为研究对象,观察小鼠间充质干细胞株(C3H10T1/2)在这四种生物材料上的粘附、生长分化以及表面抗原的变化。利用光学显微镜观察细胞生长形态;MTT法检测细胞的增殖度;流式细胞仪测定细胞表型;诱导小鼠间充质干细胞(C3H10T1/2)向成脂肪细胞分化。
     结果再生柞蚕丝素蛋白对于细胞生长、形态,细胞表面抗原表达均无影响。MTT法检测结果显示在培养第6天C3H10T1/2细胞在再生柞蚕丝素膜上的增殖明显(P<0.05)。C3H10T1/2细胞能向成脂肪细胞分化。
     结论本研究结果显示再生柞蚕丝素蛋白在体外支持C3H10T1/2细胞的粘附,生长和分化,具有很好的细胞相容性。
     第二部分再生柞蚕丝素蛋白对小鼠羊水干细胞体外生长的研究
     目的探讨再生柞蚕丝素蛋白对小鼠羊水干细胞体外生长的支持作用,为再生柞蚕丝素蛋白应用于组织工程学研究提供理论依据。
     方法采用再生柞蚕丝素蛋白和普通细胞培养板为研究对象,观察小鼠羊水干细胞( GFP—mAFS)在这两种生物材料上的粘附、生长情况。利用倒置相差显微镜和倒置荧光显微镜观察细胞的生长情况。
     结果再生柞蚕丝素蛋白对细胞的粘附和生长形态均无影响。
     结论本研究结果显示再生柞蚕丝素蛋白在体外支持GFP—mAFS细胞的粘附,生长,具有很好的细胞相容性。
Silk fibroin is a kind of natural macromolecules, and is used as the surgical sutures with more than 100-year history. Recently, Silk fibroin is applied as a new type of biomaterial more and more broadly because of its unique characteristics including low immunogenicity, good histocompatibility, and slow rate of biodegradation and so on. Except for silk fibroin of domestic silkworm, silk fibroin of antheraea penyi is an important member of silk fibroin. Similarly to silk fibroin of domestic silkworm, silk fibroin of antheraea penyi is mainly composed of glycine and alanine. But silk fibroin of antheraea penyi is better than silk fibroin of domestic silkworm in supporting cell adherence and growth because it contains more alanine and is rich in arginine- glycine- asparticacid (RGD sequence). Mesenchymal stem cells ( MSCs) are defined as pluripotent cells and have the ability to differentiate into multiple mesodermal cells. These cells are uncommitted precursor cells with homing ability, and have extensive renewal potential. MSCs are the idea seeds for tissue engineering because these cells are easily to obtain and enrich, and are not involved in ethical problems. Researchers are focused on the interaction of seed cells and matrix material in tissue engineering and its mechanism. The adherent ability is one of the critical characteristics of a biomaterial matrix because the applicable biomaterial should have an idea ability to adhere to seed cells. In this study, to test the supporting ability of regenerated silk fibroin of antheraea penyi (A penyi SF) to stem cells, we studied the growth and differentiation of murine MSCs cell line C3H10T1/2 and amniotic fluid stem cells (mAFS) that cultured onA penyi SF in vitro.
     PartⅠThe Role of the Regenerated Antheraea Penyi Silk Fibroin in the Proliferation and Differentiation of Mouse Mesenchymal Stem Cell-line in Vitro
     Objective In order to provide the experimental evidence for applying the regenerated antheraea penyi silk fibroin to tissue engineering, we observe the proliferation and differentiation of the mouse mesenchymal stem cell line(C3H10T1/2) on the regenerated antheraea penyi silk fibroin membrane in vitro.
     Methods Four biomaterials, including the regenerated silk fibroin of domestic silkworm (B mori SF), the regenerated silk fibroin of antheraea penyi (A penyi SF), collagen and the cell culture plastic, were used in the study. The ES cell line C3H10T1/2 cells that were cultured on the four biomaterials, and their adhesion ability, proliferation, differentiation and the phenotypes of were investigated by the observing under inverted microscope, immunostaining and FACS, and MTT assay.
     Result There is no difference of morphology and phenotype of C3H10T1/2 cells after cultured on these four different materials. The MTT assay showed that C3H10T1/2 cells proliferated more rapidly on the antheraea penyi material than that on the other 3 biomaterials after sixth day’s culture(P<0.05). Furthermore, C3H10T1/2 cells can be successfully induced and differentiated into adipocytes. Conclusion These results show that the regenerated silk fibroin of antheraea penyi provide an suitable support for the growth and differentiation of C3H10T1/2 cell, and exhibit good cellular compatibilities.
     Part II The Role of the Regenerated Antheraea Penyi Silk Fibroin in the Growth of Mouse Amniotic Fluid Stem Cells in Vitro
     Objective To provide the experimental evidence for applying the regenerated antheraea penyi silk fibroin to tissue engineering, we discussed the growth of the mouse amniotic fluid stem cells from GFP mice(GFP-mAFS) on the regenerated antheraea penyi silk fibroin membrane in vitro.
     Methods The regenerated silk fibroin of domestic silkworm (B mori SF) and the regenerated silk fibroin of antheraea penyi (A penyi SF) were used in the study. The GFP-mAFS cells were cultured on both biomaterials, and their adhesion ability and growth were investigated by the observing under inverted microscope.
     Result There is no influence of difference of regenerated silk fibroin of antheraea penyi on the morphology and adherent ability of GFP-mAFS cells.
     Conclusion These results show that the regenerated silk fibroin of antheraea penyi provide an good support for the growth and adhrence of mAFS, and exhibit good cellular compatibilities.
引文
1. Joseph P Vacanti, Robert Langer. Tissue engineering : The design and fabrication of living replacement devices for surgical recon-struction and transplantation[J]. The Lancet, 1999, 354: 32-34.
    2. Dietmar W. Hutmacher. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000, 21: 2529-2543.
    3. Felicity R.A.J. Rose, Richard O.C. Oreffo. Bone tissue engineering: hope vs hype[J]. Biochemical and Biophysical Research Communications, 2002, 292: 1-7.
    4. Julie R. Fuchs, Boris A. Nasseri, Joseph P. Vacanti. Tissue engineering: A 21st century solution to surgical reconstruction. The society of thoracic surgeons[J]. 2001,72: 577-591.
    5. Hutmacher DW, Schantz T, Zein I, et al. Mechanical properties and cell cultural response of plolycaprolactone scaffolds designed and fabricated via fused deposition modeling[J]. J Biomed Mater Res, 2001,55:203-216.
    6. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials[J]. Biomaterials, 2003,24(3): 401-406.
    7. Dal Pral, Freddi G, Minic J, et al. Denovo engineering of reticular connectire tissue in vivo by silk fibroin nonmoven materials[J]. Biomaterials, 2005, 26(14): 1987-1999.
    8. Yamada H, Lgarashi Y, Takasu Y, et al. Identification of fibroin-derired peptides enhancing the proliferation of cultured human skin fibroblasts[J]. Biomatericals, 2004,25(3): 407-472.
    9. Unger RE, Wolf M, Peters K, et al. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering[J]. Biomaterials, 2004, 25(6): 1069-1075.
    10.龚爱华,李明忠,盛伟华,等.再生丝素膜对鼠胚真皮成纤维细胞遗传特征的影响[J].中国生物医学工程学报,2005,24(1):38-42.
    11 Wang Y, Kim HJ, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials[J]. Biomaterials, 2006, 27(36): 6064-6082.
    12 Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials[J]. Biomaterials,2003,24(3):401-416.
    13董运海,张锋,左宝齐,等.再生丝素蛋白纳米纤维网支持和引导神经胶质细胞的生长与迁移[J].中国生物医学工程学报,2009,28(1):96-116.
    14. Bruce Panilaitis, Gregory H, Altman, Jingsong Che, Hyoung-Jooh Jin, Vassilis Karageorgiou, David L, Kaplan. Macrophage responses to silk[J]. Biomaaterials, 2003, 24: 3079-3085.
    15. Freddi G, Monti P, Nagura M, Structure and molecular confermation of tussah silk fibroin films: effect of heat treatment[J]. Polym SciB: Polymphy, 1997, 35: 841-847.
    16. Tsukada M, Freddi G, Kasai N. Physical and chemical properties of tussah silk fibroin films[J]. J Polym SciB: Polym Phys, 1998, 36: 2717-2724.
    17. Kweon HY, Park YH. Structure and conformational changes of regenerated Antheraea pernyi silk fibroin films treated with methanol solution[J]. J Appl polymSci, 1999,73: 2887-2894.
    18. Kweon HY, Woo SO, Park YH. Effect of heat treatment on the structural and conformational changes of regenerated Antheraea pernyi silk fibroin films[J]. J Appl polymSci, 2000, 81: 2271-2276.
    19. Tao W, Li M, Zhao C. Strcuture and properties of regenerated Antheraea pernyisilk fibroin in aqueous solution[J]. Int J Biol Macromol, 2007, 40(5): 472-478.
    20. Minoura N, Aiba SI, Higuchi M. Attachment and growth of fibroblast cells on silk fibroin[J]. Biochemical and Biophysical Research Communications, 1995, 208(2): 511-516.
    21.李明忠,陶伟,卢神州等.再生扎蚕丝素膜的制备[J].中国有色金属学报,2004,14(3):414-419.
    22. Czyz J, Wiese C, Rolletschek A, et al. Potential of embryonic and adult stem cells in vitro[J]. Biol Chem, 2003, 384(10-11):1391-1409.
    23. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood[J]. Br J Haematol, 2000,109(1): 235-242.
    24. Yen BL, Huang HI, Chinen CC, et al. Isolation of multipotert cells from human term placenta[J]. Stem cells, 2005, 23(9): 3-9.
    25. In’t Anker PS, Sccherjon SA, Kleijburg-Van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta[J]. Stem cells, 2004, 22(7): 1338-1345.
    26. Kuznetsov SA, Mankani MH, Grontnos S, et al. Circulating Skeletal stem cells[J]. J Cell Biol ,2001,153(5): 1133-1140.
    27. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derired from adult marrow[J]. Nature, 2002, 418(6893): 41-49.
    28. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differtiate into fanctional nepatocyte-like cells[J]. J Clin Inrest, 2003, 109(10): 1291-1302.
    29. Torricelli F, Brizzi L, Bernabei PA, et al. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation[J]. Ital J Anat Embryol, 1993,98(2): 119-126.
    30. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy[J]. Nat Biotechnol, 2007, 25(1): 100-106.
    31. In’t Anker PS, Scherjon SA, Kleijburg-Van er Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation[J]. Blood,2003,102(4):1548-1549.
    32. Prusa AR, Marton E, Resner M, et al. Neurogenic cells in human amniotic fluid[J]. Am J obstet Gynecol,2004,191(1):309-314.
    33. Karlmark KR, Freilinger A, Marton E, et al. Activation of ectopic oct-4 and Rex-1 promoters in human amniotic fluid cells[J]. Int J Mol Med,2005,16(6):987-992.
    34.Tsangaris G, Weitzdorfer R, Pollak D, et al. The amniotic fluid cell proteome[J]. Electrophoresis,2005,26(6):1168-1173.
    35. Tsai Ms, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage cuture protocol[J]. Hum Reprod,2004,19(60):1450-1456.
    36. Fauza D, Amniotic fluid and placental stem cells[J]. Best Pract Res Clin Obstet Gynaecol,2004,18(6):877-891.
    37. Bossolasco P, Montemurro T, Cova L, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential[J]. Cell Research,2006,16(4):329-336.
    38. McLaughlin D, Tsirimonaki E, Vallianatos G, et al. Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells[J]. J Neurosci Res, 2006, 83(7): 1190-1200.
    1 Chiarini A, Petrini P,Bozzini S,et al. Silk fibroin/poly (Carbonate)-Urethane as a substrate for cell growth:in vivo interaction with human cells[J]. Biomaterials,2003,24(5):789-799.
    2 Inouye K, KuroKawa M, NishiKawa S, et al. Use of Bombyx Mori silk fibroin as a substratum for cultivation of animal cells[J]. Biochem Biophys Methods, 1998,37(3):159-164.
    3 Min BM, Jeong L, Nam YS, et al. Formation of silk fibroin with different texture and its cellular response to normal human keratinocytes[J]. International Journal of Biological Macromolecules,2004,34(5):223-230.
    4解琳娜,王健民,邱慧颖.小鼠间充质干细胞培养扩增后生物学特性研究[J].中国实验血液学杂志,2007,15(3):542-546.
    5 Minoura N, Aiba S, Gotoh Y, et al. Attachment and growth of cultured fibroblast cells on silk protein matrices[J]. J Biomed Mater Res 1995,29(10):1215-1221.
    6 Ungera RE,Wolfa M, Petersa K, et al. Growth of human cells on a non-woven silk fibroin net:a potential for use in tissue engineering[J]. Biomaterials, 2004,25(6):1069-1075.
    7 Yamada H,Igarashi Y, Takasu Y,et al. Identification of fibroin derived peptides enhancing the proliferation of cuitured human skin fibroblasts[J]. Biomaterials, 2004, 25(3):467-472.
    8 Jin HJ, Chen Jingsong, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mates[J]. Biomaterials,2004,25(6):1039-1047.
    9 Altmana GH, Horanas RL, Lua HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials,2002,23(20):4131-4141.
    10 Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, et al. Attachment and growth of fibroblast cells on silk fibroin[J]. Biochem Biophys Res commun, 1995, 208(2):511-516.
    11 Ishizuya T, Yokose S, Hori M, Noda T, Suda T,et al. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells[J]. Clin Invest,1997,99(12)2961-2970.
    12 Uzawa T, Hori M, Ejiri S,et al. Comparison of the effects of intermittent and continuous administration of human parathyroid hormone on rat bone[J]. Bone, 1995,16(4):477-484.
    13 Karageorgion V, Meinel L, Hofmann S,et al. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells[J]. Biomed Mater Res A,2004,71(3):528-537.
    14 Altmana GH, Horana RL, Lua HH,et al. Silk matrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials,2002,23(20):4131-4141.
    15 Li Mingzhong, Tao Wei, Shigenori Kuga, et al. Controlling Molecular conformation of Regenerated Wild Silk Fibroin by Aqueous Ethanol Treatment[J]. Poly Adv Technol,2003,14(10):694-698.
    16 Li Mingzhong, Tao Wei, Lu Shenzhou, et al. Compliant Film of Regenerated Antheraea penyi Silk Fibroin by Chemical Crosslinking[J]. Inter J Bio Macromol,2003,32(3-5):159-163.
    1姚康德,尹玉姬.组织工程相关生物材料[J].北京:化学工业出版社,2003,100-120.
    2 Torricelli F, Brizzi L, Bernabei PA, et al. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation[J]. Ital J Anat Embryol,1993,98(2):119-126.
    3 De Coppi P,Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy[J]. Nat Biotechnol,2007,25(1) :100-106.
    4 In’t Anker PS, Scherjon SA, Kleijburg-Van der keur C,et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation[J]. Blood,2003,102(4):1548-1549.
    5 Prusa AR, Marton E, Rosner M, et al. Neurogenic cells in human amniotic fluid[J]. Am J Obstet Gynecol,2004,191(1):309-314.
    6 Karlmark KR, Freilinger A, Marton E, et al. Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells[J]. Int J Mol Med,2005,16(6):987-992.
    7 Prusa AR,Hengstschlager M. Amniotic fluid cells and human stem cell research:a new connection[J]. Med Sci Monit,2002,8(11):RA253-RA257。
    8 Kaviani A, Perry T, Dzakovic A,et al. The amniotic fluid as a source of cells for fetal tissue engineering[J]. J Ped Surgery,2001,36(11):1662-1665.
    9 Adama van Scheltema PN, In’t Anker PS, Vereecken A, et al. Biochemical composition of amniotic fluid in pregnancies complicated with twin-twin transfusion syndrome[J]. Fetal Diagn Ther,2005,20(3):186-189.
    10 Tsangaris G, Weitzdorfer R, Pollak D, et al. The amniotic fluid cell proteome[J]. Electrophoresis,2005,26(6):1168-1173.
    11 Tsai MS, Hwang SM, Tsai YL, et al. Clonal amniotic fluid-derived stem cellsexpress characteristics of both mesenchymal and neural stem cells[J]. Bio Reprod,2006,74(3):545-551.
    12 Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage cuture poetocol[J]. Hum REprod,2004,19(6):1450-1456.
    13 De Gemmis P, Lapucci C, Bertelli M, et al. A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells[J]. Stem cells Dev,2006,15(5):719-728.
    14 Trounson A. A fluid means of stem cell generation[J]. Nat Biotechnol, 2007,25(1):62-63.
    15 Delo DM, Eberli D, Williams JK,et al. Angiogenic gene modification of skeletal muscle cells to compensate for ageing-induced decline in bioengineered functional muscle tissue[J]. BJU-Int,2008,102(7):878-884.
    16 Li Mingzhong, Tao Wei, Lu Shenzhou, et al. Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking[J]. Int J Biol Macromol, 2003,32(3-5):159-163.
    17栾希英,段巧艳,段祥,等。再生柞蚕丝素蛋白对人骨髓间充质干细胞体外扩增的支持作用[J].中国生物医学工程学报,2007,20(2):276-281.
    1. Sofia S, McCarthy MB, Gronowicz G,et al. Functionalized silk-based biomaterials for bone formation[J]. J Biomater Res, 2001, 54:139-148
    2. Inouye K,KuroKawa M, Nishikawa S,et al. Use of bombyx mori silk fibroin as a substratum for animal cells[J]. Biochem Bio-phys Methods,1998, 37:159-164
    3. Min BM, Jeong L,Nam Ys,et al. Formation of silk fibroin with different texture and its cellular response to normal human keratiancytes[J].Int J Biol Macromol, 2004, 34:223-230
    4. Hutmacher DW, Schantz T, Zein I,et al.Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated Via fused deposition modeling[J]. BIOmed Mater Res, 2001, 55(2): 203-216
    5. Altman GH, Diaz F, Jakuba C,et al.Silk-based biomaterials. Biomaterials, 2003, 24(3): 401-416
    6. Santin M, Motta A, Freddi G, et al.In vitro evaluation of the inflammatory responses to silk fibroin[J]. Biomed Mater Res, 1999, 46(3): 382-389
    7. Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory response to silk films in vitro and in vivo [J]. Biomaterials, 2005, 26(2): 147-155
    8. Wang Y, Kim HJ, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials[J]. Biomaterials, 2006, 27(36): 6064-6082
    9.李明忠,卢神州,李从新,等.复合丝素膜的制备[J].纺织学报,1998, 19(6): 45-47
    10.卢神州,李明忠,康宁,等.环氧交联集在丝素膜制备中的应用[J].丝绸,2000, (3):7-10
    11.盛伟华,龚爱华,李明忠,等.几种丝素材料细胞毒性的实验研究[J].中国生物医学工程学报,2005, 24(3):277-281
    12.龚爱华,李明忠,盛伟华,等.再生丝素膜对鼠胚真皮层成纤维细胞遗传特性的影响[J].中国生物医学工程学报,2005, 24(1):38-42
    13. Dal Pra I, Petrini P, Charini A, Bozzini S, Fare S, Armato U. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts[J]. Tissue Eng, 2003, 9(6):1113–21.
    14. Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, etal.Parathyroidhormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells[J]. Clin Invest, 1997, 99(12): 2961–70.
    15. Uzawa T, Hori M, Ejiri S, Ozawa H. Comparison of the effects of intermittent and continuous administration of human parathyroid hormone (1–34) on rat bone. [J]. Bone, 1995, 16(4): 477–84.
    16. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V,Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells[J]. Biomed Mater Res A, 2004, 71(3): 528–37.
    17. N. Minoura, S. Aiba, M, Higuchi. Attachment and growth of fibroblast cells on silk fibroin [J]. Biochem Biophys Res commun, 1995, 208: 511-516
    18.李明忠,严灏景,等.再生丝素的结构及其生物医学应用[J].丝绸,2000, 5:37-39
    19. Romanov YA, S vintsits kaya VA,S mimov VN. Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilical cord[J]. Stem Cell, 2003, 21(1):105-110
    20. Almeida-Porada G,Shabrawy D,Porada C,et al. Differentiative potential of human metanephric mesenchymal cells[J]. Exp Hematol, 2002, 30(12): 1454-1462
    21. Musina RA,Bekchanova ES,Sukhikh GT,et al. comparison of mesenchymal stem cells obtained from different human tissues[J]. Bull Exp Biol Med, 2005, 139(4): 504-509
    22. Zongning Miao,Jun Jin,XueGuang Zhang,et al. Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells[J]. Cell Biology International , 2006, 30(9):681-687
    23. In tAnker PS,Scherjin SA, Kleijburg-Van-der_KeurC, et al.Isolation of mesenchymal stem cells of fetal or matemal origin from human placenta[J]. Stem Cells, 2004, 22(7):1338-1345
    24.颉玉欣,王旭,张进贵。间充质干细胞的研究进展[J].河北医药,2005, 27(2): 130-132
    25. Fukuchi Y, Nakajima H,Sugiyama D,et al.Human placenta-derived cells have mesenchymal stem/progenitor cell potential[J]. Stem Cells, 2004, 22(5): 649-658
    26. Bailo M, Soncini M,Vertua E, et al. Engraftment potential of human amnionand chorion cells derived from term placenta[J]. Transplantation, 2004, 78(10): 1439-1448
    27.乔海晅 ,王清明,陈惠鹏,等.波形蛋白在细胞凋亡中的变化[J].军事医学科学院院刊,2005, 29(3): 275-277
    28. Clarke EJ,Allan V.Intermediate filaments:vimentin moves in[J]. Curr Biol, 2002, 12(17): R596-R598
    29. Fukuchi Y, Nakajima H,Sugiyama D, et al. Human placenta-derived cells have mesenchymal stem /progenitor cell potential[J]. Stem cells, 2004, 22(5):649-658
    30. Pittenger F, Mackay A,Beck S,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science , 1999,284(4):143-147
    31. Kveiborg M, Flyvbjerg A, Eriksen E F, et al. 1,25-Dihydroxy vitaminD3 stimulates the production of insulin-like growth factor-dinding proteins-2,-3 and-4 in human bone marrow stromal cells[J]. Eur J Endocrinol, 2001,144(5):549-557
    32. Hanada K, Dennis J E, Caplan A I.Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells[J]. J Bone Miner Res, 1997, 12(10): 1606- 1614
    33. Worster A A, Nixon A J,Brower-Toland B D,et al. Effect of transforming growth factorβ1 on chondrogenic differentiation of cultured equine mesenchymal stem cells[J]. Am J Vet Res, 2000,61(9):1003-1010
    34. Worster A A, Brower-Toland B D, Fortier L A,et al.Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming groeth factorβ1 in monolayer and insulin-like growth factor I in a three dimensional matrix[J].J Orthop Res, 2001,19(4):738-749
    35. Bruder S.P., Jaiswal N., Haynesworth S.E., Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J]. Cell Biochem, 1997, 64: 278-294
    36. Colter D.C., Class R., DiGirolamo C.M., Prockop D.J.,Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow, Proc.Natl. Acad. Sci. U. S. A, 2000, 97: 3213-3218
    37. Friedenstein A.J., Chailakhyan R.K., Latsinik N.V.,Panasyuk A.F., Keiliss- Borok I.V., Stromal cells responsiblefor transferring the microenvironment of thehemopoietic tissues. Cloning in vitro and retransplantation in vivo[J]. Transplantation, 1974, 17: 331-340
    38. Castro-Malaspina H., Gay R.E., Resnick G., Kapoor N., Meyers P., Chiarieri D., McKenzie S., Broxmeyer H.E., Moore M.A., Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny[J]. Blood, 1980, 56: 289-301
    39. Bianchi G., Banfi A., Mastrogiacomo M., Notaro R.,Luzzatto L., Cancedda R., Quarto R., Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2, Exp. Cell Res, 2003, 287: 98-105
    40. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD,Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99:3838–43.
    41. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al.Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen -specific Tcells to their cognate peptide[J]. Blood, 2003, 101: 3722–9.
    42. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003, 57:11–20.
    43. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase mediated tryptophan degradation[J]. Blood, 2004, 103:4619–21.
    44. Rasmusson I,RingdenO, Sundberg B, Le BlancK.Mesenchymal stemcells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells[J]. Transplantation, 2003, 76:1208–13.
    45. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated Tcells[J]. Blood, 2005, 105:2821–7.
    46. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells[J]. Stem Cells, 2006, 24:74–85.
    47. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell (MSC)/natural killer (NK) cell interactions:evidence that activated NK cells are capable of killing MSC while MSC can inhibit IL-2-induced NKcell proliferation[J]. Blood, 2006, 107:1484–90.
    48. Corcione A, Benvenuto F, Ferretti E,GiuntiD, CappielloV, Cazzanti F, et al. Humanmesenchymal stem cells modulateB-cell functions[J].Blood , 2006, 107:367–72.
    49. ZhangW, GeW, Li C,You S, Liao L, Han Q, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells[J]. Stem Cells, Dev 2004, 13:263–71.
    50. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood, 2004, 105:1815–22.
    51. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S,et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol, 2002, 30: 42–48.
    52. Lazarus HM, Koc ON, Devine SM, Curtin P,Maziarz RT, Holland HK, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients.Biol Blood Marrow Transplant 2005, 11:389–398.
    53. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M,Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet 2004, 363:1439–1441.
    54. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E,et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T cell anergy. Blood 2005, 106:1755–1761
    55. Meine L, Karageorgiou V, Fajardo R, et al. Bone tissue engineering using human mesenchymal stem cells:effects of scaffold material and medium flow. Ann Biomed Eng 2004, 32(1):112-122
    56. Meine L, Karageorgiou V, Hofmann s, et al. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds[J]. Biomed Mater Res A, 2004, 71(1):25-34
    57. Kim HJ, Kim UJ,Vunjak-Novakovic G,et al. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells[J]. Biomaterials, 2005, 26(21):4442-4452
    58. Andrew M, Altman, Yasheng Yan,et al.[J] Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance woung repair in a murine soft tissue injury model. 2009, 27;250-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700