填料塔内胺回收烟道气中CO_2的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2作为主要的温室气体,大约占所有温室气体的60%。近年来,随着工业的快速发展,越来越多的化石燃料燃烧以及绿色植被的减少,导致大气中的CO2含量逐年增加。有机胺吸收CO2工艺出现于20世纪30年代,实现工业化后成为工业净化CO2的主要方法之一。
     本研究通过用Aspen Plus流程模拟软件设计并搭建了胺回收CO2的小型中试装置,考察了不同胺溶液吸收CO2的性能。本实验装置包括吸收塔和再生塔两个部分,并使用填料塔考察吸收剂的吸收效果。
     实验过程中考察了常压下混合胺吸收剂(20%乙醇胺(MEA)+2%N-甲基二乙醇胺(MDEA)与20%羟乙基乙二胺(AEE)+2%N-甲基二乙醇胺(MDEA))对CO2的吸收与再生效果。并对二者的吸收效果进行对比。同时测得了AEE+MDEA混合胺体系吸收剂脱除空气中体积分数约10%的CO2的体积总传质系数KGav的近似值,并考察了进口气体中CO2摩尔流量、气体流量、液体流量等因素对KGav的影响。实验结果表明,AEE+MDEA吸收效果明显好于MEA+MDEA,并且二者解吸效果相同;体积总传质系数KGav随CO2摩尔流量、气体流量、液体流量增大而增大。
     由于胺溶液吸收CO2的再生温度均高于100℃,导致胺与水溶液吸收CO2在再生过程中使水大部分蒸发消耗大量能量。因此本研究考察了用沸点比较高的N-甲基毗咯烷酮做溶剂的胺吸收CO2的效果。实验结果表明在相同的胺浓度下水做溶剂吸收CO2的效果高于N-甲基吡咯烷酮。但是用N-甲基吡咯烷酮做溶剂再生能耗明显下降。
     在工业生产中由于存在胺降解导致吸收剂消耗的问题,本论文采用酸碱中和滴定法测定胺溶液中胺的浓度考察了120℃下MEA吸收剂在氧气,空气以及氧气和CO2同时存在的条件下的降解情况。实验表明通入纯O2、CO2、CO2/O2混合气体、CO2/空气混合气体时不光是O2能引起胺降解,CO2也能引起胺降解。
CO2 as the main greenhouse gas, accounting for 60% of all greenhouse gases. In recent years, with the industry's rapid development, more and more fossil fuel burning and reduction of vegetation, resulting in CO2 increase every year. Amine method for CO2 absorption appeared in the 1930s',and it has became a major industrial CO2 purification methods after its industrialization.
     In this study, we used Aspen Plus process simulation software to design and build a small pilot-plant to investigate the performance of CO2 absorption in different amine solutions. The pilot-plant includes two parts(absorber tower and regeneration tower),and we used pecked tower in the two parts.
     A study of carbon dioxide absorption and regeneration in aqueous amine solutions, consisting of 20%2-(aminoethylamino) ethanol (AEE)+2%N-methyldiethanolamine (MDEA) and 20% monoethylamino(MEA)+2% N-methyldiethanolamine (MDEA) has been carried out in a packed tower. The results showed that the CO2 absorption in 20%AEE+2%MDEA better than 20%MEA+2%MDEA and The CO2 regeneration near the same in both blended amine. Also, The volumetric overall mass transfer coefficient (KGav) of dilute CO2 absorption into AEE/MDEA was measured. The KGav value was evaluated over the ranges of CO2 mole flow rate in inlet gas, overall gas flow rate and liquid flow rate. As a resulte,the KGav could be remarkably improved by increasing CO2 mole flow rate in inlet gas, overall gas flow rate and liquid flow rate.
     As the aqueous regeneration temperature above 100℃, the evaporation of water in water and amine aqueous at regeneration process, leading to most of the energy consumption. Therefore, this study used a relatively high boiling point solvent (N-methyl-pyrrolidone) to research the amine absorption of CO2. Experimental results show that at the same amine concentration, the absorption of CO2 into the water do better than into the N-methyl-pyrrolido ne. But the regeneration energy consumption decreased with the N-methyl-pyrrolidone as solvent.
     In industrial production because of the degradation of amine, leading to the absorbent consumption. In this study the concentration of amine was determined by acid-base titration. we researched MEA's degradation under the conditions of O2, air, CO2/O2 at the 120℃. Experiments show that not only the access of pure O2, CO2/O2 mixed gas, CO2/air mixture can leading to the degradation of ME A, but also the CO2 can leading to the degradation of MEA.
引文
[1]肖亚平,贝浼智,二氧化碳.温室效应.对策[J].现代化工,1995(9):34-36.
    [2]K. Honjo, R&D for technology to solve global warming, Materials Processing Technology,1999,59,218-220.
    [3]郑京.温室效应对环境的影响.环境科普,2003,(1):51-52.
    [4]周欢怀,艾宁.二氧化碳减排与可持续发展.杭州化工,2005,32(2):15-18.
    [5]郑瑛,王保文,郑楚光,等.燃煤CO2减排技术[J].中国电力,2006,39(10):91-94.
    [6]陈昌和,曾宪忠等.C02排放导致的地球温升问题及基本技术对策,环境科学进展,1999,12,175-181.
    [7]政府间气候变化专门委员会IPCC.第三次评估报告:气候变化2001,2001:180-185.
    [8]杨明芬.膜吸收法和化学吸收法脱除电厂烟气中二氧化碳的试验研究.[浙江大学工学硕士学位论文].2005:1-2.
    [9]IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage[R].2005,1-443.
    [10]李春鞠,顾国维,温室效应与二氧化碳的控制[J].环境保护科学,1998(26):13-15.
    [11]RobertL. K., D. E. K.. Carbon sequestration:an option for mitigating global climate change, http://www.aiche.org/cep/,2001.
    [12]J. L. G. FIERRO. Pd-modified Cu-Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures Catalytic Structures and Performance, J Catal,2002,210(2):285-294.
    [13]王希涛,钟顺和,肖秀芳.Pd/MO3-TiO2/SiO2光催化CO2与C2H6合成烃类氧化物的反应性能.催化学报,2005,26(10):900-904.
    [14]J.S.KIM, M. REE, S. W. LEE. Spectroscopy Study of the Surface Properties of Zinc Glutarate And its Reactivity with Carbon Dioxide and Propylene Oxide. J Catal, 2003,218(2):386-395.
    [15]姜斌,王大为,冯炜,等.二氧化碳和甲醇直接合成碳酸二甲醋的技术.化工进展,2003,22(1):43-45.
    [16]杜元龙,苏俊华二氧化碳综合利用的可行性[J].吉林工学院学,1998,19(3):24-26,30.
    [17]倪俊海.二氧化碳的回收和利用.河北化工,2000,(3):8-9.
    [18]吴俊生,邵惠鹤.精馏设计、操作和控制(第1版).北京:中国石化出版社,1997.
    [19]GB1062-89(石灰窑和合成氨法)食品添加剂二氧化碳标准.
    [20]姜斌,王大为,冯炜,等.二氧化碳和甲醇直接合成碳酸二甲醋的技术.化工进展,2003,2(1):43-45.
    [21]易红宏,等.变压吸附工艺的研究与进展[J].云南化工,2003,30(3):28-31.
    [22]Y. Takamura, S. N., J. Aoki, et al. Evaluation of dual-bed Pressures Swing adsorption for CO2 reeovery from boiler exhaust gas [J].Sep. Purif. Technol.,2001, 24(2001):519-519.
    [23]V. G. Gomes, M. M. H.. Coal seam methane recovery by vacuurn swing adsorption[J]. Sep. Purif. Technol.,2001,24:P.189-189.
    [24]Vincent G. Gomes, K. W. K. Y.. Pressure swing adsorption for carbon dioxide Sequestration from exhaust gases [J]. Sep. Purif. Technol.,2002,28:161~171.
    [25]夏明珠,严莲荷,雷武,等.二氧化碳的分离回收技术与综合利用.现代化工,1999,19(5):46-48.
    [26]陈慕华.催化燃烧用钻基催化剂的研制、表征与性能研究[D].四川:四川大学,2007.
    [27]李建英.二氧化碳的回收和利用.石油化工环境保护.2004,27(2):40-41.
    [28]P. H. M. Feron and A. E. Janson, The production of carbon dioxidefrom flue gas by membrane gas absorption, Energy Conversion Management,1997,93-98.
    [29]A. Gabelman and S. KhWang, Hollow fiber membrane contactors, J. Membr. Sci.,1999,159, 62.
    [30]甄寒菲,王志,李保安,王世昌,用于分离的CO2高分子膜,高分子材料与工程,1991,15(6),29-31.
    [31]杨明芬,方梦祥,张卫风,等.膜吸收法脱除电厂模拟烟气中的C02[J].环境科学,2005,26(4):24-29.
    [32]David deMontigny, P. T.. Amit Chakma, Comparing the Absorption Performance of Pecked columns and Membrane Contactors [J]. Ind. Eng.Chem.Res.,2005,44:5726-5732.
    [33]H. L. Chen, L. Sun,Z.J.Zhou, Study on CO2 removal from air by hollow fiber membrane contactor, International Symposium on Membrane Technology and Environmental Protection, Beijing,2000,146-151.
    [34]袁文峰.膜接触器分离、回收烟道气中二氧化碳的研究[D].浙江:浙江大学,2004.
    [35]裴克毅,黄丽坤,等.全球变暖与二氧化碳减排团.节能技术,2005,23(131):239-243.
    [36]江士昂.大气中二氧化碳含量的控制[J].石油规划设计,2000,11(6):13-15.
    [37]晏水平,方梦祥,张卫风,等.烟气中CO2化学吸收法脱除技术分析与进展[J].化工进展,2006.25(9):1018-1024.
    [38]徐讯,等.胺类活化热钾碱脱碳溶液气一液平衡研究[J].华东化工学院学报,1987.
    [39]杨清泉,杨德锋,郝金军,等.一乙醇胺在烟气CO2回收系统中的降解及对策[J].北学工业与工程技术,2005,26(2):53-54.
    [40]Idem R., Wilson M., Tontiwachwuthikul P, Chakrna A., Pilot Plant studies of the C02 capture Performance of aqueous MEA and mixed MEA/MDEA solvents atThe university of regina C02 capture demonstration Plant [J]. Industrial and Engineering Chemistry Research,2006(45):2414-2420.
    [41]Nbojsa Nahicenovic,Aviotl John. CO2 reduction and removal:measures for the next century[J]. Energy,1991,16 (11P12):1347~1377
    [42]Kazuhisa,Ohtaguchi, Kozokoide. An ecotechnology-integrated MEA process for CO2 removal[J]. Energy ConversMgmt,1995,36(6-9):401-404.
    [43]肖九高.烟道气中二氧化碳回收技术的研究[J].现代化工,2004,5:47-49.
    [44]陈赓良.炼厂气CT配方型脱硫溶剂的开发与应用[J].炼油设计,2000,30(11):53-55.
    [45]Mandal B. P., Guha A. K., Biswas, BandyoPadhyay S. S., Removal of carbon dioxide by absorption in mixed amines:modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions[J].Chem. Eng. Sci.,20016217-6224.
    [46]Tan C. S., Chen J. E., Absorption of carbon dioxide with piperazine and its mixtures in a rotating Packed bed [J].Sep. Sci. Technol.,2006(49):174-180.
    [47]黄广萍,王庆林.胺法在脱碳工艺中的应用[J].广州化工,2002,30(1):31-33.
    [48]彭彼德.复合型空间位阻胺NCR-PC3脱CO2工艺的开发和生产应用[J].化肥工业,1994,3:11-16.
    [49]DanekwertsP. V, McNeilK. M., The absorption of carbon dioxide inio aquesous amine solutions and the effects of catalysis[J]. Trans.Instn. Chem. Engrs.,1967(45): T32-T49.
    [50]H. Bosch, G. F. Versteeg, and W. P. M. Swaaij. Gas-Liquid mass transfer with parallel reversible reactions-Absorption of CO2 into solutions of sterically hindered amines [J]. Chem. Eng. Sci.1989,44(11):2723-2734.
    [51]Caplow, M. Kinetics of carbamate formation and breakdown [J].J. Am Chem. Sci. 1968(90):6795-6803.
    [52]Danckwerts. P. V. The reactions of CO2 with ethanolamines[J]. Chem. Eng. Sci, 1979(34),443-446.
    [53]Aroonwilas A, Tontiwachwuthikul P. High-efficiency structuredpacking for C02 separation using 2-amino-2-methyl-1-propanol(AMP) [J]. Sep. Purif. Technol., 1997,12:67-79.
    [54]Aroonwilas A, Tontiwachwuthikul P. Mass transfer coefficients and Correlation for C02 absorption into 2-amino-2-methyl-1-propanol(AMP) using structured packing[J]. Ind. Eng. Chem. Res.,1998,37:569-575.
    [55]Aroonwilas A, Veawab A, Tontiwachwuthikul P. Behavior of the mass transfer coefficient of structured packings in C02 absorbers with chemical reactions[J]. Ind. Eng. Chem. Res.,1999,38:2044-2050.
    [56]Aroonwilas A, Tontiwachwuthikul P, Chakma A. Effects of operating and design parameters on C02 absorption in columns with structured packings[J]. Sep. Purif. Technol.,2001,24:403-411.
    [57]骆培成,焦真,张志炳.填料塔中碳酸钾/哌嗪混合吸收液脱除C02的体积传质系数[J].化工学报,2005,56,1:53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700