液压冲击破碎防堵装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于“两硬”煤层一次采全高的综采工作面而言,由于采高大,以及煤质坚硬等原因,造成采煤机割煤过程中煤壁片帮严重,频繁产生大块煤炭。当片帮大煤块经刮板输送机运输到转载机进口处时无法通过而造成主煤流运输转载点拥堵,挡住不断运输过来的煤流,从而导致煤炭从运输槽边上溢出,给井下安全运输带来困难。此时必须停产人工处理,来辅助采煤机后配套运输系统工作,经常导致各设备起动频繁,开机率降低,同时,增大了工人的劳动强度。因此,在转载机进口处设置一套破碎装置,对大煤块进行预破碎处理,来辅助采煤机后配套运输系统作业,即可达到理想的连续破碎效果,来弥补现有技术的不足。这是煤矿安全生产的需要,又有极大的实际意义。
     本项目针对转载点处的特殊工况,开发研制了一套液压冲击破碎防堵装置。该装置由机械部分与液压系统组成。机械装置采用气液动连杆机构,结构简单、紧凑,适合于转载机进口处巷道断面空间狭窄的特点;研究了机架与转载机运输槽的连接固定方式,较好的解决了在采煤的过程中,工作面不断向前推移,要求破碎装置必须随转载机一块推进的难题。本装置液压系统以工作面乳化液泵站为动力源,在锤头下打时采用差动连接与蓄能器供液的双重增速回路,为液压缸无杆腔瞬间提供大流量,以提高锤头的下打速度,得到较大的冲击力。
     为了充分了解本套装置液压系统在工作时的动态特性,本文利用功率键合图法对锤头上升和下打两个过程分别建立了数学模型,并推导出其状态方程,在MATLAB/SIMULINK软件中编程仿真,从得到的仿真曲线可以看出,液压缸的运动能够满足设计要求,同时验证了液压系统方案的可行性。
     最后,课题通过工业性试验研究,对本套装置的现场实用性做了进一步的考察。结果表明,该装置性能可靠,可以满足煤矿连续生产对大煤块的破碎要求。在破碎大煤块的整个过程中,各个工序满足安全性和实用性的统一。
For the full-mechanized mining of full height in "two-hard" coal seam, its big mining height and hard coal will cause a serious problem of coal wall caving during shearer coal mining process and often produce large pieces of coal. When the big coal of the rib fall was transported to reversed loader entrance by the scraper conveyor and can not pass, it will make transfer point congestion of the coal flow transport and block the coal flow of continuous transportation, resulting in the transport of coal from the edge of overflow tank and creating difficulties for the safe transport of underground. At this moment, it has to stop production and take manual handling to support transportation systems after coal mining machine, which often results in frequent starting of the equipment and decreasing operation rate. Thus, the breaking device installed at reversed loader entrance breaks large coals to support the transporting systems after coal mining machines, which can achieve the desired effect of a continuous crushing and compensate for the deficiencies of existing technologies. This is the need for coal mine safety production and has great practical significance.
     The project aimed at a special working conditions of transfer point, developed a set of hydraulic iMPact breaking and anti-clogging device. The device consists of mechanical parts and hydraulic system components. Mechanical devices using gas-liquid dynamic linkage, which structure is simple and coMPact, suitable for the characteristics of narrow space at reversed loader entrance. The paper studied the way of connecting and fixing between frame and the transport tank, Solved problems that breaking device must move with the reversed loader when working face move forward during coal mining process. The power source of the hydraulic system of the device is the emulsion pumping station in working face. The device use double speed increase circuit of back connection and accumulator to provide large instantaneous flow for Non-rod chamber of hydraulic cylinder when hammer’s down, in order to improve the speed of hammer's down and to get a larger iMPact force.
     In order to fully understand the dynamic behavior of hydraulic system of this set when it works, In this paper, a mathematical model of two processes of hammer up and down beat were established through power bond graph method, equation of state was derived. Programming and emulating In the MATLAB / SIMULINK software, from the obtained simulation curves, we can see that the hydraulic cylinder’s movement can meet the design requirements and the hydraulic system is feasible.
     Finally, the topic further studies on the usefulness of the device through industrial test. The results show that the device works reliably and can meet the request of breaking large coal cinder in continuous production. During the entire process of breaking large coal cinder, the various working procedure meet safety and usefulness.
引文
[1]王军.工作面煤壁片帮的原因与预防方法[J].煤体技术,2009,(3):89-90.
    [2]刘忠,龙国键,褚福磊等.国内外液压冲击机械的发展研究[J].建筑机械,2003,(7):29-66.
    [3]孙永宁,葛继,关航健.现代破碎理论与国内破碎设备的发展[J].江苏冶金,2007,(10):5-8.
    [4]孙成林.破碎机的最新发展[J].中国粉体技术, 2000,(2):32-39.
    [5]任德树.粉碎筛分原理与设备[M].北京:冶金工业出版社,1984.
    [6]孙成林,连钦明,王清发.破碎机械的回顾与展望[J].有色冶金,2005,(7):135-137.
    [7]高斓庆,王文霞,马飞.破碎机的发展现状与趋势[J].冶金设备,2001,(4):27-30.
    [8]万勇.国外辊碎机的应用及发展[J].矿山机械,1990,(6):28-30.
    [9]郎宝贤,郎世平.破碎机[M].北京:冶金工业出版社,2008.
    [10]李启衡.碎矿与磨矿[M].北京:冶金工业出版社,2002.
    [11]郑水林.超细粉碎[M].北京:中国建材工业出版社,1999.
    [12]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [13]牛东明.煤炭切削力学模型的研究[J].煤炭学报,1994,(10):99-101.
    [14]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001.
    [15]Cheng H.Deformation and diffusion behavior in a solid experiencing damage:A continuous damage model and its numerical implementation.J Rock Mech Sci Abstr, 1993.(30):1323-l 33l.
    [16]Yu M H.A unified strength criterion for rock material.International Journal of Rock Mechanics and Mining Sciences,2002,39(8):975-989.
    [17]Sidoroff E Damage mechanics and its application to composite materials.In:Proceedings of the European Mechanics Colloquium 1 82,Elsevier Applied Science Publisher,1985,21-35.
    [18]Germanovich,L.N,Dyskin,A.V Fracture mechanisms and instability of openings in compression,2000,37(1):334-340.
    [19]DougiU,J.W.Damage and energy dissipation in cement pastes in compression.Magazine of Concrete Research,1976,28(3):21-29.
    [20]杜三虎,田取珍.冲击破煤机理的初步探讨[J].西安矿院学院学报,1998,(6):107-110.
    [21]时党勇.基于ANSYS/LS-DYNA8.1进行显示动力学分析[M].北京:清华大学出版社,2005.
    [22]李裕春. ANSYS/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006.
    [23]刘飞,杜长龙,赵子江等.煤和矸石选择性破碎的可行性研究[J].选煤技术,2008,(10),28-29.
    [24]李学荣.四连杆机构综合概论[M].北京:机械工业出版社,1983:204-214.
    [25]机械设计手册编委会.机械设计手册[M].北京:机械工业出版社2004.
    [26]程玉军.基于simulink的冲击式采煤机液压冲击系统动态特性仿真分析[D].太原:太原理工大学,2005.
    [27]车德宁,李炳辉.蓄能器在液压系统中的应用[J].建筑机械化,2005,(2):32-33.
    [28]王琳,曹瑞涛,冯长印.蓄能器基本参数确定及其特性对液压系统的影响[J].陶瓷,2005,(5):40~43.
    [29]冯建华.液压锤用蓄能器的设计[J].工程机械,1996,(11):17-19.
    [30]Muragishi, Yasushi;Kurita,Yutaka;Matsumura,Yuichi; Nakagawa, Junichi.Driving at resonance point of elliptical vibration machine using velocity feedback.Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, May, 2004,70(5), 1251-1257.
    [31] Su, Donghai; Gui, Xiao; Wu, Xihong. Analysis and simulation of dynamic properties of high frequency hydraulic vibrator.Progress of Machining Technology - Proceedings of the Seventh International Conference on Progress of Machining Technology, ICPMT'2004, 2004: 984-989.
    [32] Astashev, V.K.,Tresvyatskij, A.N. Hydraulic self-sustained vibrations exciter for vibratin technological devices. Problemy Prochnosti i Nadezhnos'ti Mashin,1993,(6):52-59.
    [33]C.J. Hua, S.D. Zhao, L.J. Zhang and W. Liu. Investigation of a new-type precision cropping system with variable-frequency vibration. International Journal of MechanicalSciences, 2006, 48(12), 1333~1340.
    [34]Hirojuki Tsuda and Horacio Perez-Blanco. An experimental study of a vibrating screen as means of absorption enhancement. International Journal of Heat and Mass Transfer, 2001, 44(21), 4087-4094.
    [35]薛定宇,陈阳泉.基于Matlab/simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [36]杨涛.液压系统建模仿真与控制系统开发[D].太原:太原理工大学,2008.
    [37]李志国,李夕兵,甘海仁.基于Simulink和功率键合图的囊式蓄能器动态仿真研究[J].矿冶工程,2009,(6):19-22.
    [38]江峰.船用张紧器系统动态建模与仿真研究[D].大连:大连理工大学,2004.
    [39]P.德兰斯菲尔德.液压控制系统的设计与动态分析[M].北京:科学出版社,1987:21-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700