甲烷在构造煤中吸附和扩散的分子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造煤是煤体的原生结构遭受不同程度破坏甚至内部化学成分和结构变化的一类煤,它的存在与瓦斯突出有着密切的关联。本文采用分子模拟的巨正则系综蒙特卡洛方法(GCMC)和分子动力学方法(MD),通过比较甲烷在构造煤和相应的原生结构煤中吸附及扩散的差异,旨在寻求瓦斯突出的微观原因。本文的主要内容如下:
     依据取自同一矿井、同一煤层的构造煤和相应的原生结构煤XRD分析数据,结合无机晶体结构数据库ICSD中石墨的晶胞参数,构建出构造煤和相应的原生结构煤模型。
     采用GCMC方法,计算283-323K下甲烷在两种煤模型中吸附的亨利常数,得到吸附热。计算结果显示,所有煤样,包含了从肥煤到无烟煤阶段的构造煤和相应的原生结构煤对甲烷的吸附热数值差别很小,说明煤与气体吸附作用的热效应不是瓦斯突出的主要原因。
     选取两组构造差异较大的构造煤和相应的原生结构煤,采用GCMC方法计算298K和303K下甲烷的等温吸附线,计算结果表明在相同温度下构造煤对甲烷的吸附能力大于相应的原生结构煤。
     通过研究温度、煤化程度和水分对甲烷吸附的影响,计算结果表明,在283K-323K范围内,随着温度的升高,两种煤对甲烷的吸附量呈规律性的降低,用线性方程回归得到温度-吸附量经验公式,发现构造煤吸附甲烷对温度的变化更为敏感;随着煤化程度的升高,构造煤对甲烷的吸附量明显增加,在低煤化程度阶段,温度的影响较弱,随着煤化程度的增大,温度的影响显著;由于水分子较甲烷分子更容易吸附,水分子优先占据煤表面的吸附位,使得甲烷的吸附量有所减少;水分子含量越多,甲烷吸附量减少越明显,但在数量上水分子的吸附不会给甲烷的吸附带来本质上的影响。
     采用MD方法,研究了甲烷在构造煤和相应原生结构煤中的扩散,通过分析均方位移(MSD),计算扩散系数,发现构造煤更有利于甲烷的扩散。
     选取了一组构造煤和相应的原生结构煤,计算288、298、308、318和328K下甲烷在两种煤中的扩散系数,并通过Arrhenius方程拟合得到甲烷在构造煤中扩散的活化能小于相应的原生结构煤,即构造煤更有利于甲烷的扩散,认为是瓦斯突出的微观原因。
Deformed coal is a kind of coal that the primary structure has been damaged; even the internal chemistry constituents and structure have been changed. The deformed coal has close relationship with gas outburst. The objective of this work is to explore microscopic reasons to gas outburst by comparing the differences of adsorption and diffusion for methane in deformed coal and corresponding undeformed coal using molecular simulation of grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulation. The main contents are listed as follows:
     The models of deformed coal and corresponding undeformed coal were constructed according to the XRD data of coals excavating from the same mines and seams combined with the cell parameter of graphite in Inorganic Crystal Structure Database (ICSD).
     The Henry constants for methane adsorbed in the two models of coal from 283 to 323K were calculated by GCMC, and the heats of adsorption were obtained. It is found that, in all the coal samples with different ranks from fat-coal to anthracite, there is little differences in the heats of adsorption between deformed coal and corresponding undeformed coal, which shows that the thermal effect of adsorption for methane in coal will not dominant cause gas outburst.
     Two pairs of deformed coal and corresponding undeformed coal with great tectonic differences were selected, and the adsorption isotherms of methane at 298K and 303K were calculated. It is found that the deformed coal adsorbs more methane than corresponding undeformed coal at the same temperature.
     The effects of temperature, coal rank, and water molecule on the adsorption of methane were also studied. The adsorption capacity of methane in the both coal samples decreased regularly with the increase of temperature in the range of 283K to 323K. The empirical formula of temperature-adsorption was obtained by linear regression, which shows that the deformed coal was more sensitive to temperature. The adsorption capacity of methane increased with ranks; moreover, there is a little influence of temperature at low rank, and more significant influence with ranks. The adsorption capacity of methane is decreased due to the water molecular easily adsorbed in coal causing water molecular occupy adsorption sites prior to methane. The adsorption capacity of methane decreased more obviously with the increase of water molecule increase, but would not affect essentially in quantity.
     The diffusion of methane in deformed coal and corresponding undeformed coal was studied by MD. The diffusion coefficients were obtained by analyzing mean square displacement (MSD). It exhibits that deformed coal is more beneficial to the diffusion of methane.
     The pair of deformed coal and corresponding undeformed coal were selected to study the diffusion activation energy in diffusion process. The diffusion coefficients of methane in the two coals were calculated at 288, 298, 308, 318 and 328K, respectively. The diffusion activation energy of methane in deformed coal is smaller than that in undeformed coal by fitting Arrhenius equation, that is, the deformed coal is more beneficial to the diffusion of methane which is considered as the microscopic reasons of gas outburst.
引文
[1] Wang Z R, Chen L X, Cheng C R, etc. Forecast of geological gas hazards for“Three-Softcoal seams in gliding structural areas[J]. Journal of China University of Mining & Technology, 2007, 17(4): 484-488.
    [2]陈家良,邵震杰,秦勇.能源地质学[M],徐州:中国矿业大学出版社, 2004: 80-84, 140, 142.
    [3] Xu T, Tang C A, Yang T H, etc. Numerical investigation of coal and gas outbursts in underground collieries[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43: 905-919.
    [4]张子敏,林又玲,吕绍林.中国煤层瓦斯分布特征[M].北京:煤炭工业出版社, 1998, 14.
    [5] Zhang Y G, Cao Y X, Xie H B, etc. Morphological and structural features of tectonic coal[A]. Li B Q, Liu S Y. Proceeding of the 10th International Coal Conference[C]. Taiyuan: Shanxi Science Press, 1999.
    [6]郝吉生,袁崇孚,张子戌.构造煤及其对煤与瓦斯突出的控制作用[J].焦作工学院学报, 2000, 19(6): 403-406.
    [7] Wang G X, Wang Z T , Rudolph V., etc. An analytical model of the mechanical properties of bulk coal under confined stress[J]. Fuel, 2007, 86: 1873-1884.
    [8]曹代勇,张守仁,任德贻.构造变形对煤化作用进程的影响[J].地质论评, 2002, 48(3): 314-316.
    [9]琚宜文,姜波,侯全林等.构造煤结构-成因新分类及其地质意义[J].煤炭学报, 2004, 29(5): 513-517.
    [10] Farner, I W, Pooley, F D. A hypothesis to explain the occurrence of outbursts in coal, basted on a study of West Wales outburst coal[J]. Int. J. RockMech. Min.Sci., 1967, 4: 189-193.
    [11]郝吉生.模糊神经网络技术在煤与瓦斯突出预测中的应用[J].煤炭学报, 1999, 24(6): 624-627.
    [12] Beamish B B, Crosdale P J. Instantaneous outbursts in underground coal mines: Anoverview and association with coal type[J]. Int. J. Coal. Geol, 1998, 35: 27–55.
    [13] Jagiello, J, Lason, M, Nodzenski, A. Thermodynamic description of the process of gas liberation from a coal bed[J]. Fuel, 1992, 71: 431–435.
    [14] Williams R J, Weissmann J J. Gas emission and outburst assessment in mixed CO2 and CH4 environments. Proc. ACIRL Underground Mining Sem. Australian Coal Industry Res. Lab., North Ryde, 12 pp.
    [15]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学博士论文, 2006, 67-68.
    [16]杨起,潘治贵,翁成敏.华北石炭二叠纪煤变质特征与地质因素探讨[M].北京:地质出版社, 1988: 39-40.
    [17]姜波,秦勇,金法礼.高温高压实验变形煤XRD结构演化[J].煤炭学报, 1998, 23(2): 188-193.
    [18] Bustin R M, Ross J V, Mofat I. Vitrinite anisotopy under differential stress and high confining pressure and temperature: preliminary observation[J]. Inter. J. Coal Geol., 1986, 6(4): 343-351.
    [19]姜波.煤的高温高压实验、变形煤的结构演化及其构造地质意义[D].徐州:中国矿业大学, 1997, 59-67.
    [20]张玉贵,曹运兴,李凯琦.构造煤顺磁共振波谱特征初探[J].焦作工学院学报, 1997, 16(2): 37-40.
    [21]姜波,秦勇.实验变形煤结构的13C-NMR特征及其构造地质意义[J].地球科学, 1998, 23(6): 579-582.
    [22] Zhang R X, Xie H R, Gao Y S, etc. A decision support system of open pit mining and its application[A], Xie H P. Proceeding of 29th APCOM[C]. Beijing: A A Balkema Publishers, 2001. 333-336
    [23]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002, 92.
    [24]魏贤勇,宗志敏,秦志宏,等.分子煤化学的构想及其发展前景[A].袁晴棠,金涌主编.中国工程院化工、冶金与材料工程学部第二届学术会议论文集[C].北京:中国工程院, 1999, 623-628.
    [25] Takanohashi T., Fengjuan X , Saito I, etc. Effect of lighter constituents on the solubility of heavy constituents of coals[J]. Fuel, 2000, 79: 955-960.
    [26]田原宇,申曙光,田亚峻,等.煤的可溶化技术与煤的化学族组成[J].太原理工大学学报, 2001, 32(6): 555-558.
    [27]陈茺,高晋生,严勇捷.兖州煤环己酮萃取物的组成、结构及性质的研究[J].燃料化学学报, 1997, 25(2): 135-138.
    [28]王娜,孙成功,李保庆.煤中低分子化合物研究进展[J].煤炭转化, 1997, 20(3): 19-23.
    [29] Wei X Y, Zong Z M, Qin Z H, etc. LC MS Analysis of CS2–NMP soluble fraction from upper freeport coal[A].In: Li B Q, Liu Z Y. Prospects for coal science in the 21 Century[C]. Taiyuan, China: Shanxi Science & Technology Press, 1988: 263-266.
    [30]王晓华,熊玉春,顾晓华,等.几种烟煤CS2萃取物的GC/MS分析[J].燃料化学学报, 2002, 30(1): 72-77.
    [31]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学博士论文, 2006, 58-76.
    [32]张玉贵,张子敏,曹运兴.构造煤结构与瓦斯突出[J].煤炭学报, 2007, 32(3): 281-284.
    [33] Mastalerz M, Bustin R M. Electron microprobe and micro-FTIR analyses applied to maceral chemistry J]. . Int. J. Coal. Geol, 1993, 24: 333-345.
    [34]李小明,曹代勇,张守仁,等.构造煤与原生结构煤的显微傅立叶红外光谱特征对比研究[J].中国煤田地质, 2005, 17(3): 9-11.
    [35]张力,何学秋,聂百胜.煤吸附瓦斯过程的研究[J].矿业安全与环保, 2000, 27(6): 1-4.
    [36] Kaplan I G. Theory of molecular interactions[M]. NewYork: Elsevier,1986: 178-251.
    [37] Busch A, Gensterblum Y, Bernhard M. etc. Methane and carbon dioxide adsorption- diffusion experiments on coal: up scaling and modeling[J]. Inter. J. Coal Geol., 2004, 60: 151-168.
    [38]聂百胜,段三明.煤吸附瓦斯的本质[J].太原理工大学学报, 1998, 29(4): 417-420.
    [39]陈昌国,魏锡文,鲜学福.用从头计算研究煤表面与甲烷分子的作用[J].重庆大学学报, 2000, 23 (3): 77-79.
    [40] Lukovits I. Harmonic force field between the (001) surface of graphite and adsorbed methane[J]. Vib Spectrosc, 1990, 1: 135-144.
    [41] Philips J M, Hammerbacher M D. Methane adsorbed on graphite: Intermolecularpotential and lattice sums[J]. Phys Rev ,1984, B29(10): 5859-5864.
    [42]降文萍,崔永君,张群,等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报, 2007, 32(3): 292-295.
    [43]侯锦绣.煤结构与煤的瓦斯吸附放散特性[D].焦作:河南理工大学硕士论文, 2009, 41-42.
    [44]温志辉.构造煤瓦斯解吸规律的实验研究[D].焦作:河南理工大学硕士论文, 2008:44-45.
    [45]何学秋.含煤瓦斯流变特性及其对煤与瓦斯突出的影响[D].徐州:中国矿业大学博士论文, 1990.
    [46]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995: 134-135.
    [47]杨起,潘治贵,翁成敏.华北石炭二叠纪煤变质特征与地质因素探讨[M].北京:地质出版社, 1998: 40.
    [48] Feynman, R P. Statistical Mechanics, A Set of Lectures[M]. San Francisco: Benjamin Cumming Publishing Company, 1972: 1-2.
    [49]胡英,刘国杰,徐英年,等.应用统计力学-流体物性的研究基础[M].北京:化学工业出版社, 1990: 12-13. [ 50 ] Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Application[M]. San Diego: Academic Press, 2002: 2-5.
    [51]阳庆元,刘大欢,仲崇立.金属-有机骨架材料的计算化学研究[J].化工学报, 2009, 4(60): 805-819.
    [52] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. New York: Oxford University Press, 1987: 39-43.
    [53] Cornell W D, Cieplak P, Bayly C I. etc. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. J. Am. Chem. Soc., 1995, 117(19): 5179-5197.
    [54] Rappe A K, Casewit C J, Colwell K S. etc. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. J. Am. Chem. Soc., 1992, 114(25): 10024-10035.
    [55] Mayo S L, Olafson B D, Goddard W A. DREIDING: a generic force field for molecularsimulations[J]. J. Phys. Chem., 1990, 94(26): 8897-8909. [ 56 ] Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. J. Phys. Chem. B, 1998, 102(38): 7338-7364.
    [57] Chandrasekhar J, Spellmeyer D C, Jorgensen W L. Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions[J]. J. Am. Chem. Soc, 1984, 106(4): 903-910.
    [58] Mundy C J, Balasubramanian S, Bagchi K. etc. Equilibrium and non-equilibrium simulation studies of fluid alkanes in bulk and at interfaces[J]. Faraday Discuss, 1996, 104: 17-36.
    [59] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. New York: Oxford University Press, 1987: 110-112.
    [60] Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Application[M]. San Diego: Academic Press, 2002: 23-25.
    [61] Leach A R. Molecular Modelling: Principles and Applications[M].北京:北京世界图书出版公司, 1997.
    [62] Brooks C L, Montgomery P B, Karplus M. Structural and energetic effects of truncating long range interactions in ionic and polar fluids[J]. J. Chem. Phys., 1985, 83(11): 5897-5908.
    [63] Kitson D H, Hagler A T. Theoretical studies of the structure and molecular dynamics of a peptide crystal[J]. Biochemistry, 1988, 27(14): 5246-5257.
    [64] McQuarrie D A,Statistical Mechanics[M]. New York: Harper&Row, 1976: 142-156.
    [65] Karasawa N, Goddard W. Force fields, structures, and properties of poly (vinylidene fluoride) crystals[J]. Macromolecules, 1992, 25(26): 7268-7281.
    [66] Deem M W, Newsam J M, Sinha S K. The h=0 term in coulomb sums by the Ewald transformation[J]. J. Phys. Chem., 1990, 94(21): 8356-8359.
    [67] Catlow C R A, Norgett M J. Lattice structure and stability of ionic materials[M].Harwell Memorandum AERE-M2936, 1976, personal communication.
    [68] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. New York: OxfordUniversity Press, 1987: 4-6. [ 69 ] Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Application[M]. San Diego: Academic Press, 2002: 23, 63.
    [70] Yang Q Y, Zhong C L. Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study[J]. ChemPhysChem., 2006, 7(7): 1417-1421.
    [71] Yang Q Y, Zhong C L. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks[J]. J. Phys. Chem. B, 2006, 110(36): 17776-17783.
    [72]孙晓岩,李建伟,李英霞,等.苯与丙烯在β分子筛上吸附行为的蒙特卡罗研究[J].化学学报, 2008, 15(66): 1810-1814.
    [73]曹达鹏,高广图,汪文川.巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储[J].化工学报, 2000, 1(51): 23-30.
    [74] Yong H, Jhon, Miyoung C, etc. Simulation of methane adsorption and diffusion within Alkoxy-Functionalized IRMOFs exhibiting severely disordered crystal structure[J]. J. Phys. Chem. C, 2007, 111: 16618-16625.
    [75]王冬一,薛春瑜,仲崇立.金属-有机骨架材料二聚铜-苯-1,3,5三羧酸酯中烷烃扩散机理的分子模拟研究[J].物理学报, 2009, 8(58): 5552-5558.
    [76]郝吉生.模糊神经网络技术在煤与瓦斯突出预测中的应用[J].煤炭学报, 1999, 24(6): 624-627.
    [77]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学博士论文, 2006, 66-67.
    [78]张小兵,张子敏,张玉贵.力化学作用与构造煤结构[J].中国煤炭地质, 2009, 21(2): 10-14.
    [79]蒋建平,罗国煜,康继武.煤X射线衍射与构造煤变质浅议[J].煤炭学报, 2001, 26(1): 31-34.
    [80]杨起,潘治贵,翁成敏.华北石炭二叠纪煤变质特征与地质因素探讨[M].北京:地质出版社, 1988: 39-40.
    [81]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学博士论文, 2006: 43-44.
    [82]刘洁翔,董梅,秦张峰,等.二甲苯在AlPO4-5分子筛中吸附的分子模拟研究[J].分子催化, 2002, 19(1): 41-45.
    [83]杨小震.分子模拟与高分子材料[M].北京:科学出版社, 2002: 27-28.
    [84]刘洁翔,董梅,秦张峰,等.二甲苯在AlPO4-5分子筛中吸附的分子模拟研究[J].分子催化, 2005, 19(1): 41-44.
    [85]熊秀章,沈喜洲,周涵,等.几种吡啶衍生物在八面沸石中吸附的分子模拟[J].计算机与应用化学, 2008, 25(12): 1553-1556.
    [86]傅献彩,沈文霞,姚天扬,等.物理化学(下册)[M].北京:高等教育出版社, 2006, 360-361
    [87]陈昌国,鲜晓红,张代钧,等.温度对煤和炭吸附甲烷的影响[J].煤炭转化, 1995, 18(3): 87-92.
    [88]何继善,吕少林.瓦斯突出地球物理研究[M].北京:煤炭工业出版社, 1999, 6-7.
    [89]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社, 2002: 38.
    [90]陈昌国,张代钧,鲜晓红,等.煤的微晶结构与煤化度[J].煤炭转化, 1997, 20(1): 45-49.
    [91]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社, 2002: 38.
    [92]谢克昌.煤结构与反应性[M].北京:科学出版社, 2002, 32.
    [93]秦文贵,张延松.煤孔隙分布与煤层注水增量的关系[J].煤炭学报, 2000, 25(5): 514-517.
    [94]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002, 33.
    [95]秦跃平,傅贵.煤孔隙分形特征及其吸水性能的研究[J].煤炭学报, 2000, 25(1): 55-60.
    [96]傅贵,陈学习,雷之平.煤体吸湿速度实验研究[J].煤炭学报, 1998, 23(6): 630-633.
    [97]金龙哲,蒋仲安,任宝宏,等.煤层注水中水分蒸发现象的研究[J].中国安全科学学报, 2000, 10(3): 58-62.
    [98]郭淑敏,段小群,徐成法.煤储层条件下平衡湿度测定方法研究[J].焦作工学院学报:自然科学版, 2004, 23(2): 157-160.
    [99] Joubert J I, Grein C T, Bienstock D. Sorption of methane in moist coal[J]. Fuel, 1973, 52(2): 64.
    [100]降文萍,崔永君,钟玲文,等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学, 2007, 18(4): 576-579.
    [101]聂百胜,何学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报, 2004, 33(4): 379-383.
    [102]付爱萍,冯大成.水在石墨面上吸附的理论研究[J].山东大学学报, 1998, 33(2): 188-194
    [103]张占存,马丕梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报, 2008, 33(2): 144-147.
    [104] Martyna G, Tuckerman M E, Tobias D J. etc. Explicit reversible integrators for extended systems dynamics[J]. Mol. Phys., 1996, 87, 1l17-1157.
    [105] Hoffmann D, Fritz L, Ulbrich J. etc. Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials[J]. Macromol. Theory. Simul., 2000, 9(6): 293-297.
    [106]陶长贵,冯海军,周健,等.氧气在聚丙烯内吸附和扩散的分子模拟[J].物理化学学报, 2007, 7: 1373-1378.
    [107]吴建洋.分子模拟研究醇/水在沸石分子筛膜中的吸附与扩散[D].厦门:厦门大学硕士学位论文, 2009, 7-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700