码域发送参考超宽带通信传输与抗干扰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带通信技术具有截获与检测概率低、抗干扰与穿透能力强、系统共存性好、适合高速数据传输以及测距精度高等突出特点,因此在军事和民事领域具有广阔的应用前景。超宽带通信技术目前主要应用于短距离的高速率数据传输等领域,而在国家安全、反恐维稳、交通管理、工业控制等领域对拓展距离超宽带通信技术的应用需求十分旺盛。
     发送参考超宽带通信技术具有无需复杂信道估计、对定时同步要求低、可以实现多径能量收集以及有利于小型化、低功耗设计等特点,因此成为超宽带通信领域的重要研究内容之一。发送参考超宽带通信系统存在时域、频域和码域三种具体实现结构。
     本文面向拓展距离超宽带通信的应用需求,在参与提出码域发送参考超宽带通信技术体制的基础上,针对这一新型超宽带通信技术体制进行了进一步研究,主要研究内容与创新点如下:
     1.从提高系统误码率性能的角度开展研究,提出一种改进型的码域发送参考脉冲超宽带通信接收机结构。本论文给出了改进型接收机的基本结构模型,推导了改进型系统在加性高斯白噪声信道和多径信道条件下的误码率表达式,仿真分析了其误码率性能;同时,针对改进型接收机的同步捕获策略进行研究,推导了改进型接收机在加性高斯白噪声信道和多径信道下的同步捕获参数表达式,仿真分析了改进型接收机的同步捕获性能。研究结果表明,在适当提高接收机复杂度的条件下,通过选取最佳积分区间,改进型接收机不仅可以保持码域发送参考脉冲超宽带通信原型接收机的固有技术优点,而且可以有效提高系统的误码率性能。
     2.从提高系统信息传输速率的角度开展研究,提出一种码域发送参考脉冲超宽带通信系统的多路并行传输方法。本论文给出了多路并行传输系统的基本结构模型,推导了其在加性高斯白噪声信道和多径信道条件下的误码率表达式,给出了多路并行传输结构的正交码选取方法,仿真分析了多路并行传输系统的误码率性能。研究结果表明,通过参考支路信号能量的复用,这种并行传输方法可以适应较高信息速率传输的要求,并且在中低信噪比条件下每一支路具有优于原型系统的误比特率性能。
     3.针对系统多用户的应用需求,提出一种码域发送参考脉冲超宽带通信系统的多址接入方法。本论文给出了多址接入系统的基本结构模型,分析了在加性高斯白噪声信道和多径信道下多址干扰对系统误码率性能的影响,仿真分析了多址接入系统的误码率性能。研究结果表明,通过引入一组伪随机跳时码,结合自身的码域发送参考结构,这种多址接入方法可以有效控制多址干扰的影响,并且系统实现复杂度较低。
     4.从提高系统抗干扰性能的角度开展研究,提出一种码域发送参考Chirp超宽带通信系统的干扰抑制方法。本论文针对码域发送参考Chirp超宽带通信系统的抗干扰性能进行了研究,推导了该接收机在单音干扰和窄带干扰存在条件下信号输出分量和噪声输出分量表达式,仿真分析了该系统的抗干扰性能;在此基础上,结合有源频谱压缩结构,提出一种基于分数阶傅里叶变换的窄带干扰抑制方法,仿真验证了该方法的有效性。研究结果表明,该窄带干扰抑制方法可以有效抑制带内多个随机窄带干扰,具有较强的实用价值。
     本论文提出的码域发送参考超宽带通信传输与抗干扰方法,目前已在相关课题中得到应用。
The Ultra-wideband (UWB) wireless communication system has many advantages such as very low interception and detection probability, excellent anti-interference and material penetration abilities, good performance of system coexistence, high rate data transmission suitability, high precision ranging, and so on, thus making the UWB technology qualified for broad application in military and civil wireless communication. At present, UWB communication technology is mainly used in short distance and high data rate transmission. Meanwhile, there is a strong demand for extending the transmission distance of UWB communication technology in many domains such as national security, antiterrorism and social stabilization, traffic and industrial control, and so on.
     The impulse radio UWB (IR-UWB) system based on the transmitted reference structure can avoid complicated channel estimation, effectively reduce the demand for synchronization accuracy , collect the energy of multipath, and facilitate miniaturization and low power-consuming system design. Accordingly, IR-UWB system based on the transmitted reference structure becomes an important research direction. Transmitted reference IR-UWB system has three realization structures: time domain, frequency domain, and code domain.
     Based on the code domain transmitted reference IR-UWB system (the author is one of the designers), the study is followed up in depth in this paper with emphasis on extended distance UWB communication. The main content and innovation are as follows:
     1. From the point of improving the bit error rate (BER) performance of system, this paper proposes a modified receiver structure of code domain transmitted reference IR-UWB system. The structure model of the receiver is given, and in additive white Gaussian noise (AWGN) and multipath fading (MP) channels, the BER performance expressions are deduced in detail, respectively. The BER performance is also simulated. In addition, this paper studies the synchronization acquisition performance of the modified receiver, and in AWGN and MP channels, the parameter expressions of synchronization acquisition are deduced in detail, respectively. The synchronization acquisition performance is also simulated. The research results indicate that by appropriately increasing the structural complexity of receiver, the modified receiver not only keeps the inherent advantages of the original code domain transmitted reference IR-UWB system receiver, but also achieves improved performance through the selection of optimal integral interval.
     2. From the point of improving the system information transmission rate, a multiple parallel transmission method of code domain transmitted reference IR-UWB system is proposed. This paper gives the structure model, and the BER performance expressions in AWGN and MP channels are also deduced in detail, respectively. The selection method of orthogonal code is also given. In addition, the performance of the proposed structure is simulated. The research results indicate that by energy multiplexing of reference signal, the multiple parallel transmission structure can not only accommodate to higher transmission rate, but also outperform the original code domain transmitted reference IR-UWB system in error performance for each data signal with middle and low signal niose ratio.
     3. Aiming at the application requirement of multi users, a multiple access transmission scheme of code domain transmitted reference IR-UWB system is proposed. This paper proposes the structure model, and based on a Gaussian assumption for the multiple access interference, the BER performance expressions in AWGN and MP channels are also derived in detail, respectively. In addition, the performance of the proposed scheme is simulated. The research results indicate that by introducing a pseudo-random time hopping code to the code domain transmitted reference structure to the code domain transmitted reference structure, the scheme can effectively control the influence of multiple access interference. And the system realization complexity is low.
     4. From the point of improving the system anti-interference performance, an interference suppression method of code domain transmitted reference Chirp-UWB system is proposed. This paper studies the anti-interference performance of the code domain transmitted reference Chirp UWB system. The output signal and noise component expressions of single frequency and narrowband interference of system receiver is deduced, and the anti-interference performance of system is simulated. Furthermore, by combining with the structure of the active spectrum compression, a narrowband interference suppression method based on the fractional Fourier transform is proposed, and its validity is verified through simulation. The research results indicate that the narrowband interference method proposed can effectively suppress the multi random narrowband interference, and is thus of practical value.
     The extended distance UWB communication transmission and interference suppression methods proposed in this paper has been well used in the relevant projects as a basic technology solution.
引文
[1] Hewish M, Gourley S R. Ultra-wideband technology opens up new horizons. Jane’s Information Group: International Defense Review, 1999, 2: 20-22.
    [2] Win M Z, Scholtz R A. Impulse radio: How It Works [J]. IEEE Communications Letters, 1998, 2: 36-38.
    [3] Scholtz R A, Weaver R, Homier E, et al. UWB Radio Deployment Challenges[A]. The 11th IEEE International Symposium on Personal[C], 2000, 1: 620-625.
    [4] Fontana R, Ameti A, Richley E, et al. Recent Ddvances in Ultra Wideband Communications Systems[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2002, 129~133.
    [5] Yang L, Giannakis G B. Ultra-Wideband Communications: an Idea Whose Time Has Come[J]. IEEE Signal Processing Magzine, 2004, 26-54.
    [6] Fontana R J. Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(9): 2087-2104.
    [7] Han J, Nguyen C. On the Development of a Compact Sub-nanosecond Tunable Monocycle Pulse Transmitter for UWB Applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1):285-293.
    [8] Fowler C, Entzminger J, Corum J. Assessment of Ultra-Wideband (UWB) Technology[J]. IEEE Aerospace and Electronic Systems Magazine, 1990, 45.
    [9]葛利嘉,曾凡鑫,刘郁林,岳光荣.超宽带无线通信[M].国防工业出版社, 2006:1-5.
    [10] Federal Communications Commission News Release. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems[A]. FCC[C], 2002, 299-318.
    [11] Sobol, H. Microwave Communications-An Historical Perspective[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32:63-68.
    [12] Black, H.S., J. W. Beyer, T.J. Grieser, and F.A. Polkinghorn. A multichannel microwave radio relay system[A]. AIEE Transaction Electrical Engineering[C], 1946, 65(1946):798-805.
    [13] Bennett C L, Ross G F. Time-Domain Electromagnetics and Its Applications[A]. Proceedings of the IEEE[C], 1978, 66(3): 299-318.
    [14] Hewish M, Gourley S R. Ultra-wideband technology opens up new horizons. Janes International Defense Review, 1999, 2:20-22.
    [15] Multi-band OFDM Physical Layer Proposal, IEEE 802.15-03/267r6[DB/OL], 2003, http:// www.ieee802.org/15/pub/TG3a.html.
    [16] Multiband OFDM Alliance SIG,“Multiband OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a”, http://www.multibandofdm.org.
    [17] Batra A, Balakrishnan J, Aiello G R, et al. Design of a Multiband OFDM System forRealistic UWB Channel Environments[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(9): 2123-2138.
    [18] Wang Y, Dong X d, Wittke P H, et al. Cyclic Prefixed Single Carrier Transmission in Ultra-Wideband Communications[J]. IEEE Tansactions on Wireless Communications, 2006. 5(8): 2017-2021.
    [19] Springer A, Huemer M, Reindl L, et al. A Robust Ultra-Broad-Band Wireless Communication System Using SAW Chirped Delay Lines[J]. IEEE Transactions on Microwave Theory and Technologies, 1998, 46(12): 2213-2219.
    [20] Scholtz R, Pozar D, Namgoong W. Ultra-Wideband Radio[J]. EURASIP Journal on Applied Signal Processing, 2005, 47(23): 252-272.
    [21] Kolenchery S S, Townsend J K, Freebersyser J A. A Novel Impulse Radio Network for Tactical Military Wireless Communications[A]. IEEE Military Communications Conference[C], 1998, 1: 59-65.
    [22] Chung W C, Dong Ha. An Accurate Ultra-Wideband (UWB) Ranging for Precision Asset Location[A]. IEEE Conference on Ultrawideband Systems and Technologies[C], 2003, 389-393.
    [23] R. Fisher, R. Kohno, M. McLaughlin, M. Welbourn. DS-UWB physical layer submission to 802.15 task group 3a, IEEE P802.15-04/0137r4, Jan. 2005.
    [24] Multiband OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a, IEEE P802.15-03/268r3, IEEE P802.15, 2004.
    [25] Mireles F R, Win M Z, Scholtz R. Performance of Ultra-wideband Time-Shift-Modulated Signals in the Indoor Impulse Radio Channel[A]. The 31st Asilomar Conference on Signals, Systems and Computers[C], 1997, 1: 192-196.
    [26] Win M Z, Scholtz R A. Ultra-Wide Bandwidth Time-Hopping Spread-Spectrum Impulse Radio for Wireless Multiple Access Communications[J]. IEEE Transactions on Communications, 2000, 48(4): 679-691.
    [27] Scholtz R A, Kumar P V, Corrada-Bravo C J. Signal Design for Ultra-wideband Radio. Sequences and Their Application, 2001.
    [28] Win M Z, Scholtz R A. Ultra-Wide Bandwidth Signal Propagation for Indoor Wireless Communications[A]. IEEE International Conference on Communications[C], 1997, 1: 56-60.
    [29] Cramer R J, Win M Z, Scholtz R A. Impulse Radio Multipath Characteristics and Diversity Reception[A]. IEEE International Conference on Communications[C], 1998, 3: 1650-1654.
    [30] Ishiyama Y, Ohtsuki T. Performance Evaluation of UWB-IR and DS-UWB with MMSE Frequency Domain Equalization (FDE) [A]. IEEE Global Telecommunications Conference[C], 2004, 5: 3093-3097.
    [31] Ye Z Z, Madhukumar A S, Peng X M, et al. Performance Analysis of a DS-UWB System in the Presence of Narrowband Interference[A]. IEEE 59th Vehicular Technology Conference[C], 2004, 2590-2594.
    [32] Wang Y P, Chang K. Preamble-Based Successive Cancellation Scheme for the ChannelEstimation in the DS-UWB System[J]. IEEE Transactions on Consumer Electronics, 2007, 53(3): 842-845.
    [33] Zhang Y, Brown A K. Data Rate for DS-UWB Communication Systems in Wireless Personal Area Networks[A]. IEEE International Conference on Ultra-Wideband[C], 2008, 1: 187-190.
    [34] Cao W, Nallanathan A, Chai C C. Performance Analysis of Prerake Ds-UWB Multiple Access System under Imperfect Channel Estimation[J]. IEEE Transactions on Wireless Communications, 2007, 6(11): 3892-3896.
    [35] Won S H, Hanzo L. Iterative Code Acquisition for DS-UWB Downlink Using Multiple-Component Decoders[J]. IEEE Electronics Letters. 2008, 44(2): 162-163.
    [36] Chu X, Ghavami M, Murch R. Pilot-Channel-Assisted Log-Likelihood-Ratio Selective Combining for Low-Rate DS-UWB Communications[A]. IEEE International Conference on Communications[C], 2008, 3913-3917.
    [37] Kaligineedi P, Bhargava V. Frequency-Domain Turbo Equalization and Multiuser Detection for DS-UWB Systems[J]. IEEE Transactions on Wireless Communication, 2008, 7(9): 3280-3284.
    [38] Torabi E, Mietzner J, Schober R. Pre-Equalization for Pre-Rake MISO DS-UWB Systems[J]. IEEE Transactions on Wireless Communications, 2009, 8(3): 1295-1307.
    [39] Sungbin Im, Powers E J. An Iterative Decorrelating Receiver for DS-UWB Multiple Access Systems Using Biphase Modulation[A]. IEEE Workshop on Signal Processing Systems[C], 2004: 59-64.
    [40] Cao W, Nallanathan A, Chai C C. A Novel High Data Rate Prerake DS UWB Mutiple Access System: Interference Modeling and Tradeoff between Energy Capture and Imperfect Channel Estimation Effect[J]. IEEE Transactions on Wireless Communications, 2008, 7(9): 3558-3567.
    [41] Hoctor R T, Tomlinson H W. An Overview of Delay-Hopped, Transmitted-Reference RF Communications[J]. Technical Information Series, 2002, 1-29.
    [42] Hoctor R, Tomlinson H. Delay-Hopped Transmitted-Reference RF Communications[A]. IEEE Conference on Ultra-Wideband Systems and Technologies[C], 2002, 265-270.
    [43] Goecke D L, Zhang Q. Slightly Frequency-Shifted Reference Ultra-Wideband (UWB) Radio: TR-UWB without the Delay Element[A]. IEEE Military Communications Conference[C], 2005, 1-7.
    [44] Goeckel D L, Zhang Q. Slightly Frequency-Shifted Reference Ultra-Wideband (UWB) Radio[J]. IEEE Transactions on Communications, 2007, 55(3):508-519.
    [45] Zhang J, Hu H Y, Liu L K, et al. Code-Orthogonalized Transmitted-Reference Ultra-Wideband (UWB) Wireless Communication System[A]. International Conference on Wireless Communications, Networking and Mobile Computing[C], 2007, 528-532.
    [46] Zhang J, Hu H Y, Zhang Z Y. Time Acquisition for Code-Orthogonalized Transmitted- Reference Ultra-Wideband (UWB) Wireless Communication System[A]. IEEE International Workshop on Radio-Frequency Integration Technology[C], 2007, 50-53.
    [47] Zhang J, Hu H Y, Liu L K, et al. Chirp Frequency-Transmitted Reference Ultra-Wideband (UWB) Wireless Communication System[A]. The 4th International Conference on Wireless Communications, Networking and Mobile Computing[C], 2008.
    [48] Zhang J, Hu H Y, Kang R Z, et al. Transmitted-Reference Chirp Ultra-Wideband (UWB) Wireless Communication System[A]. International Conference on Future Computer and Communication[C], 2010, 1-5.
    [49]张剑,胡捍英,李霞,等.有源频谱压缩结构的正交码发送参考Chirp超宽带系统[J].北京邮电大学学报, 2010, 33(6):107-111.
    [50]岳光荣,葛利嘉.超宽带无线电抗干扰性能研究[J].电子与信息学报, 2002, 24(11): 1544-1550.
    [51] Zhao L, Haimovich A M, Grebel H. Performance of ultra-wideband communications in the presence of interference[A]. IEEE International Conference on Communication[C], 2001, 10:2948-2952.
    [52] Choi J D, Stark W E. Performance analysis of ultra-wideband spread-spectrum communications in narrowband interference[A]. MILCOM 2002[C], 2:1075-1080.
    [53] Giorgetti A, Chiani M, Win M Z. Ultrawide bandwidth RAKE reception in the presence of narrowband interference[A]. IEEE 59th Vehicular Technology Conference[C], 2004, 3:1659–1663.
    [54] Giorgetti A, Dardari D. The impact of OFDM interference on TH-PPM/BPAM transmission systems[A]. IEEE 61st Vehicular Technology Conference[C], 2005, 1037-1042.
    [55] Dowla F, Nekoogar F, Spiridon A. Interference mitigation in transmitted-reference ultra-wideband (UWB) receivers[J]. IEEE Antennas and Propagation Society Symposium, 2004. 2:1307-1310.
    [56] Yong B P, Chol S K, Kyung K C, et al. Performance of UWB DS-CDMA/OFDM/MC- CDMA system[A]. IEEE 47th International Midwest Symposium on Circuits and Systems[C], 2004, 1: 37-40.
    [57] Zhang W, Xia X, Ching P C. Achieving High-Diversity in MB-OFDM Systems[A]. International Conference on Wireless Networks, Communications and Mobile Computing[C], 2005, 2: 1343-1347.
    [58] Nasri A, Schober R, Lampe L. Analysis of Narrowband Communication Systems Impaired by MB-OFDM UWB Interference[J]. IEEE Transactions on Wireless Communications, 2007, 6(11): 4090-4100.
    [59] Kim J H, Song H K. Performance Improvement of Cooperative MB-OFDM System Based Coming Home Network[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2): 442-447.
    [60] Chen R Y, Chen W Y. A High-speed Fast-Acquisition CMOS Phase/Frequency Detector for MB-OFDM UWB[J]. IEEE Transactions on Consumer Electronics, 2007, 23-26.
    [61] Castello R, Lauenti N, Manstretta D. A Reconfigurable Narrow-Band MB-OFDM UWB Receiver Architecture[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2008, 55(4): 324-328.
    [62] Zheng H, Luong H C. A 1.5V 3.1GHz-8GHz CMOS Synthesizer for 9-Band MB-OFDM UWB Transceivers[J]. IEEE Journal of Solid-State Circuits, 2007, 42(6): 1250-1260.
    [63] Ranjan M, Larson L E. A Low Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems[J]. IEEE Journal of Solid-State Circuits, 2007, 42(3): 592-601.
    [64] Leung K N, Chan C F, Choy C S, et al. A Fully Differential Band-Selective Low-Noise Amplifier for MB-OFDM UWB Receivers[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(7): 653-657.
    [65] Wang Y, Dong X d, Wittke P H, et al. Cyclic Prefixed Single Carrier Transmission in Ultra-Wideband Communications[J]. IEEE Tansactions on Wireless Communications, 2006. 5(8): 2017-2021.
    [66] Takizawa K, Yamamoto Y, Li K, et al. A Detect-and-Avoid Method for Single-Carrier UWB Systems[A]. The 4th International Symposium on Wireless Communication Systems[C], 2007, 691-695.
    [67] Han B, Liu M, Ge N. A 3–5GHz UWB CMOS Receiver with Digital Control Technique[A]. IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems[C], 2010, 157-160.
    [68] Gugler W, Springer A, Weigel R. A Chirp-Based Wideband Spread Spectrum Modulation Technique for WLAN Applications[A]. IEEE 6th International Symposium on Spread Spectrum Techniques and Applications[C], 2000, 1: 83-87.
    [69] Koike Y, Ishii S, Kohno R. Chirp UWB System with Software Defined Receiver for Industrial Mobile Ranging and Autonomous Control[A]. International Workshop on Ultra Wideband Systems Joint with Conference on Ultrawideband Systems and Technologies (Joint UWBST & IWUWBS) [C], 2004: 381-385.
    [70] Hohkawa K, Yoshida H, Kaneshiro C, et al. Design Consideration on Ultra-Wideband SAW Devices Operating at GHz Frequency Range[J]. IEEE on Symposium Ultrasonics, 2003, 1: 825-828.
    [71] Brocato R, Heller E, Wendt J, et al. UWB Communication Using SAW Correlators[A]. IEEE Radio and Wireless Conference[C], 2004, 267-270.
    [72] Zhang P, Liu H, Hu J H. A Novel Multiple-Access Scheme for Chirp UWB[A]. IEEE Wireless Communications and Networking Conference[C], 2007, 1633-1637.
    [73] Lee J S, Nguyen C, Scullion T. New Uniplanar Subnanosecond Monocycle Pulse Generator and Transformer for Time-Domain Microwave Applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(6): 1126-1129.
    [74] Rushforth C K. Transmitted-Reference Techniques for Random or Unknown Channels[J]. IEEE Transactions on Information Theory, 1964, 10(1): 39-42.
    [75] Gagliardi R M. A Geometrical Study of Transmitted Reference Communication Systems[J]. IEEE Transactions on Communication Technology, 1964, 118-123.
    [76] Hingorani G D, Hancock J C. A Transmitted Reference System for Communication inRandom or Unknown Channels[J]. IEEE Transactions on Communication Technology, 1965, 13(3): 293-301.
    [77] Yang L Q, Giannakis G B, Swami A. Noncoherent Ultra-Wideband Radios[A]. IEEE Military Communications Conference[C], 2004, 786-791.
    [78] He N, Tepedelenlioglu C, Adaptive Synchronization for Non-Coherent UWB Receivers[A]. IEEE International Conference on Acoustics, Speech, and Signal Processing[C], 2004, 4: 517-520.
    [79] Yang L Q, Giannakis G B, Swami A. Noncoherent Ultra-Wideband (De) Modulation[J]. IEEE Transactions on Communications, 2007, 55(4): 810-819.
    [80] Ying Y, Ghogho M, Swami A. Block-Coded Modulation and Noncoherent Detection for Impulse Radio UWB[J]. IEEE Signal Processing Letters, 2008, 15:112-115.
    [81] Sheng H, You R, Haimovich A M. Performance Analysis of Ultra-Wideband Rake Receivers with Channel Delay Estimation Errors[A]. The 38th Annual Conference on Information Sciences and Systems[C], 2004, 921-926.
    [82] Homier E A, Scholtz R A. Rapid Acquisition of Ultra-Wideband Signals in the Dense Multipath Channel[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2002, 105-109.
    [83] Fleming R, Kushner C, Roberts G, et al. Rapid Acquisition for Ultra-Wideband Localizers[A]. IEEE Conference Ultra Wideband Systems and Technologies[C], 2002, 245-249.
    [84] Aedudodla S, Vijayakumaran S, Wong T F. Rapid Ultra-Wideband Signal Acquisition[A]. IEEE Wireless Communications and Networking Confernce[C], 2004, 2: 1148-1153.
    [85] Cramer R J, Scholtz R A, Win M Z. Evaluation of an Ultra Wideband Propagation Model[J]. IEEE Antennas and Propagation, 2002, 50(5):561-570.
    [86]扈罗全,朱洪波.脉冲无线通信信道特性与建模研究进展[J].南京邮电大学学报,2006,26(2): 1-11.
    [87] Cassioli D, Win M Z, Vatalaro F, et al. Performance of Low-Complexity Rake Reception in a Realistic UWB Channel[A]. IEEE International Conference on Communications[C], 2002, 2: 763-767.
    [88] Ishiyama Y, Ohtsuki T. Performance Comparison of UWB-IR Using RAKE Receivers in UWB Channel Models[A]. International Workshop on Ultra Wideband Systems Joint with Conference on Ultrawideband Systems and Technologies (Joint UWBST & IWUWBS) [C], 2004, 226-230.
    [89] Stralen N V, Dentinger A, Welles K, et al. Delay Hopped Transmitted Reference Experimental Results[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2002, 93-98.
    [90] Chao Y L, Scholtz R A. Optimal and Suboptimal Receivers for Ultra-Wideband Transmitted Reference Systems[A]. IEEE Global Telecommunications Conference[C], 2003, 2:759-763.
    [91] Choi J D, Stark W E. Performance of Ultra-Wideband Communications with SuboptimalReceivers in Multipath Channels[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(9): 1754-1766.
    [92] Quek T Q S, Win M Z. Analysis of UWB Transmitted-Reference Communication Systems in Dense Multipath Channels[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(9): 1863-1874.
    [93] Trindade A, Dang Q H, Veen A V D. Signal Processing Model for a Transmit-Reference UWB Wireless Communication System[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2003, 270-274.
    [94] Zhang H, Goeckel D L. Generalized Transmitted-Reference UWB Systems[A]. IEEE Conference on Ultra-Wideband Systems and Technologies[C], 2003, 147- 151.
    [95] Niranjayan S, Beaulieu N C. Accurate Performance Analysis of TR UWB Systems with Arbitrary Front-end Filters[A]. IEEE International Conference on Communications[C], 2007, 4122-4127.
    [96] Niranjayan S, Beaulieu N C. General Performance Analysis of TR UWB Systems[J]. IEEE Transactions on Wireless Communications, 2008, 7(12): 5268-5277.
    [97] Ho M, Somayazulu V S, Foerster J, et al. A Differential Detector for an Ultra-Wideband Communications System[A]. IEEE 55th Vehicular Technology Conference[C], 2002, 4:1896-1900.
    [98] Farahmand S, Giannakis G B. A High-Rate Differential UWB Radio[A]. IEEE Global Telecommunications Conference[C], 2006, 1-5.
    [99] Farahmand S, Luo X, Giannakis G B. Orthogonally-Spread Block Transmissions for Ultra-Wideband Impulse Radios[J]. IEEE Transactions on Wireless Communications, 2008, 7(10): 3668-3673.
    [100] Pausini M, Janssen G J M, Witrisal K. Delay Hopping and Chip Codes Design for a Frame Differential UWB Autocorrelation Receiver[A]. IEEE International Conference on Communications[C], 2005, 417-422.
    [101] Khan M G, Nordberg J, Claesson I. An Energy-Efficient Signaling and Detection Scheme for Transmitted Reference UWB Systems[A]. IEEE International Networking and Communications Conference[C], 2008, 18-22.
    [102] Khan M G, Nordberg J, Claesson I. A Doublet-Shift Transmitted Reference Scheme for Ultra-Wideband Communication Systems[A]. IEEE International Conference on Ultra-Wideband[C], 2007, 845-850.
    [103] Khan M G, Nordberg J, Claesson I. Detection of Impulse Radio Ultra-Wideband Signals using Recursive Transmitted Reference Receivers[A]. IEEE International Conference on Ultra-Wideband[C], 2007, 376-380.
    [104] Zasowski T, Althaus F, Wittneben A. An Energy Efficient Conventional TR Scheme, the Proposed TR Scheme Utilizes Transmitted-Reference Scheme for Ultra Wideband Communications[A]. UWBST[C], Kyoto, Japan, May, 2004.
    [105] Zhao S, Liu H, Tian Z. A Decision Feedback Autocorrelation Receiver for Pulsed Ultra-Wideband Systems[A]. IEEE Radio and Wireless Conference[C], 2004, 251-254.
    [106] Chiou S L, Hua W S, Chang M X. Detection of TR-UWB by Recursion in Dense Multipath[A]. The 14th Asia-Pacific Conference on Communications[C], 2008, 1-5.
    [107] Tufvesson F, Gezici S, Molisch A F. Ultra-Wideband Communications Using Hybrid Matched Filter Correlation Receivers[J]. IEEE Transactions on Wireless Communications, 2006, 5(11): 3119-3129.
    [108] Baringbing J, Witrisal K. MMSE Optimization of the Hybrid Matched-Filter Receiver for Transmitted-Reference UWB[A]. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications[C], 2007, 1-5.
    [109] Franz S, Mitra U. Integration Interval Optimization and Performance Analysis for UWB Transmitted Reference Systems[A]. International Workshop on Ultra Wideband Systems Joint with Conference on Ultrawideband Systems and Technologies (Joint UWBST & IWUWBS) [C], 2004, 26-30.
    [110] Nekoogar F, Dowla F, Spiridon A. Integration Window Position Estimation in TR Receivers[A]. WirelessCom2005[C], 2005, 1-5.
    [111] Tang J, Xu Z. A Novel Modulation Diversity Assisted Ultrawideband Communication System[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4227-4240.
    [112] Tang J, Xu Z, Sadler B M. Performance Analysis of b-Bit Digital Receivers for TR-UWB Systems with Inter-Pulse Interference[J]. IEEE Transactions on Wireless Communications, 2007, 6(2): 494-505.
    [113] Dong X, Lee A C Y, Xiao L. A New UWB Dual Pulse Transmission and Detection Technique[A]. IEEE International Conference on Communications[C], 2005, 2835 -2839.
    [114] Kim D I, Jia T. M-ary Orthogonal Coded/Balanced UWB Transmitted-Reference System[A]. IEEE International Conference on Communications[C], 2006, 5552 - 5557.
    [115] Kim D I, Jia T. M-ary Orthogonal Coded/Balanced Ultra-Wideband Transmitted-Reference Systems in Multipath[J]. IEEE Transactions on Communications. 2008, 56(1): 102-111.
    [116] Troesch F, Wittneben A. An Ultra Wideband Transmitted Reference Scheme Gaining from Intersymbol Interference[A]. The 41th Asilomar Conference on Signals Systems and Computers[C], 2007, 1070-1074.
    [117] Pausini M, Janssen G, Witrisal K. Analysis of ISI for an IR UWB Symbol-Differential Autocorrelation Receiver[A]. IEEE 60th Vehicular Technology Conference[C], 2004, 2: 1213-1217.
    [118] Ahmed S, Arslan H. Inter-symbol Interference in High Data Rate Transmit Reference UWB Transceivers[A]. IEEE International Conference on Ultra-Wideband[C], 2007, 773-778.
    [119]廖学文,任品毅,朱世华,等.一种符号间干扰下的超宽带发射参考接收机[J].电子与信息学报,2008, 30(4): 805-808.
    [120] Dong X, Jin L, Orlik P. A New Transmitted Reference Pulse Cluster System for UWB Communications[J]. IEEE Transactions on Vehicular Technology, 2008, 57(5): 3217–3224.
    [121] Zhao L, Lv T. A Novel m-Sequence Coded Transmit-Reference System for UWB Communications[A]. IEEE 11th Singapore International Conference on CommunicationSystems[C], 2008, 1555-1559.
    [122] Bai K, He N, Tepedelenlioglu C. Multipath Energy Combining for Fast UWB Acquisition without Channel Knowledge[J]. IEEE Transactions on Wireless Communications, 2008, 7(10): 3702-3707.
    [123] Schranzhofer A, Wang Y, Veen A V D. Acquisition for a Transmitted Reference UWB Receiver[A]. IEEE International Conference on Ultra-Wideband[C], 2008, 2: 149-152.
    [124] Chao Y, Scholtz R A. Multiple Access Performance of Ultra-Wideband Transmitted Reference Systems in Multipath Environments[A]. IEEE Wireless Communications and Networking Conference[C], 2004, 3: 1788-1793.
    [125] Sumethnapis J, Araki K. Multiple Access Performance of TR-UWB System Using a Combined PPM and Differential Multi-Pulse Modulation[A]. IEEE 63rd Vehicular Technology Conference[C], 2006, 1967-1971.
    [126] Xu Z, Sadler B M. Multiuser Transmitted Reference Ultra-Wideband Communication Systems[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(4): 766-772.
    [127] Jia T, Kim D I. Multiple Access Performance of Balanced UWB Transmitted-Reference Systems in Multipath[J]. IEEE Transactions on Wireless Communications, 2008, 7(3): 1084-1094.
    [128] Li L, Townsend J K, Ulman R J. Transmitted Reference Ultra-Wideband Communications with M-ary PPM[A]. IEEE Global Telecommunications Conference[C], 2008, 1-6.
    [129] Tchere G F, Ubolkosold P, Knedlik S, et al. Communication and TOA Estimation with Differential Impulse Radio UWB systems[A]. The 4th Workshop on Positioning, Navigation and Communication[C], 2007, 87-95.
    [130] Gifford W M, Win M Z. On Transmitted-Reference UWB Communications[A]. The 38th Asilomar Conference on Signals, Systems, and Computers[C], 2004, 2: 1526-1531.
    [131] Zhang Q, Goeckel D L, Burkhart J, et al. FSR-UWB (TR-UWB without the Delay Element): Effect of Impulse Dithering and Experimental Results[A]. IEEE International Conference on Ultra-wideband[C], 2006, 315-320.
    [132] Zhang Q, Goeckel D L. Multi-Differential Slightly Frequency-Shifted Reference Ultra-Wideband (UWB) Radio[A]. The 40th Conference on Information Sciences and Systems[C], 2006, 615-620.
    [133] Zhang Q, Goeckel D L. Multiple-Access Slightly Frequency-Shifted Reference Ultra-Wideband Communications for Dense Multipath Channels[A]. IEEE International Conference on Communications[C], 2007, 1083-1088.
    [134] Manaffam S, Kenari M N. M-ary Frequency Shifted Reference for Ultrawideband Communication Systems[A]. International Symposium on Telecommunications[C], 2008, 251-256.
    [135] Li L, Townsend J K. Multiple-Access Performance of Slightly Frequency-Shifted Reference UWB Communications[A]. IEEE Military Communications Conference[C], 2008, 1-5.
    [136] Joshi H, Lai Z, Morrison K, et al. Optimization of Frequency-Shifted ReferenceUltrawideband Systems[A]. The 42nd Asilomar Conference on Signals, Systems and Computers[C], 2008, 1996-2000.
    [137]张剑,刘洛琨,李铁锋,等.脉冲超宽带通信中码正交发送参考调制与解调设备[P].中国:国家实用新型专利,专利授权号: ZL200820069828.2, 2009.
    [138]张剑,刘洛琨,李铁锋,等.超宽带通信中码正交发送参考调制解调系统及应用方法[P].中国:国家发明专利,专利申请号: 200810049447.2, 2008.
    [139] D’Amico A A, Mengali U. Code-multiplexed UWB Transmitted-Reference Radio[J]. IEEE Transactions on Communications, 2008, 56(12): 2125-2132.
    [140] Gezici S. Coded-Reference Ultra-Wideband Systems[A]. IEEE International Conference on Ultra-Wideband[C], 2008, 3: 117-120.
    [141] Nie H, Chen Z. Code-Shifted Reference Ultra-Wideband (UWB) Radio[A]. The 6th Communication Networks and Services Research Conference[C], 2008, 385-389.
    [142] Winkler M R. Chirp Signals for Communications[]. WESCON Convention Record, 1962.
    [143] Hata M. Application of a Swept fm Sarrier Pluse to a New Digital Data Transmission System[]. Japan Inst. Electron Comm.Engineers, 1966, 49(11): 2256-2263.
    [144] Bush H, Martin A R, Cobb R F, et al. Application of Chirp SWD for Spread Spectrum Communications[A]. IEEE Ultrasonics Symposium[C], 1973, 494-497.
    [145] Hohkawa K, Kaneshiro C, Koh K. Ultra Wide Bandwidth SAW Matched Filter with Chirp Signal Chips[A]. IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference[C], 2004, 3: 1922-1925.
    [146] Brocato R, Heller E, Wendt J, et al. Ultra-Wideband Communication Using a SAW Correlators Zero-IF Architecture[A]. IEEE Topical Conference on Wireless Communication Technology[C], 2003, 443-444.
    [147]贺鹏飞,吕英华,张洪欣,等.基于Chirp-BOK调制的超宽带无线通信系统研究[J].南京邮电大学学报, 2006, 26(2): 21-25.
    [148] Zhang P, Liu H. An Ultra-Wide Band System with Chirp Spread Spectrum Transmission Technique[A]. The 6th International Conference on ITS Telecommunications Proceeding[C], 2006, 294-297.
    [149] Liu H. Multicode Ultra-Wideband Scheme Using Chirp Waveforms[J]. IEEE Journal on Selected Areas in Communication, 2006, 24(4): 885-891.
    [150] Sun X, Liu W, Xu F, et al. Frequency-Band Coded Orthogoanl UWB Pulse Design Based on Chirp Signals for Cognitive NBI Suppression[A]. IFIP International Conference on Wireless and Optical Communications Networks[C], 2007, 1-5.
    [151] Sun J, Liu H. Joint Channel and Timing Estimation for Chirp UWB[A]. The 4th International Conference on Wireless Communications, Networking and Mobile Computing[C], 2008, 1-5.
    [152] Sun J, Liu H. An Improved Synchronization Method of Chirp UWB[A]. ISECS International Colloquium on Computing, Communication, Control, and Management[C], 2008, 654-658.
    [153] Shen H, Zhang W, Kwak K S. The Modified Chirp UWB Ranging System For VehicularApplications[A]. International Symposium on Communications and Information Technologies[C], 2007, 1038-1042.
    [154] Doi K, Matsumura T, Mizutani K, et al. Ultra Wideband Ranging System Using Improved Chirp Waveform[A]. Radio and Wireless Conference[C], 2003, 207-210.
    [155] Saddik G N, Singh R S, Brown E R. Ultra-Wideband Multifunctional Communications/Radar System[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431-1437.
    [156] Zhang P, Liu H. An Improved Autocorrelation Demodulation Detector for a Chirp UWB System[A]. International Conference on Communications, Circuits and Systems[C], 2009, 227-230.
    [157]张剑,刘洛琨,汪涛,等.基于声表面波器件的码域参考Chirp超宽带系统解调设备[P].中国:国家实用新型专利,专利授权号: ZL200920090454.7, 2010.
    [158]张剑,刘洛琨,汪涛,等.基于SAW的码域参考Chirp超宽带系统调制解调方法[P].中国:国家发明专利,专利申请号: 200910065003.2, 2009.
    [159] Caputi W J. Stretch: A Time Transformation Technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(2): 269-278.
    [160] Li W. Wigner Distribution Method Equivalent to Dechirp Method for Detecting a Chirp Signal[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(8): 1210-1211.
    [161] Hong W, Mao S. Chirp and Dechirp Technique in Spotlight Mode SAR Imaging[A]. The 3rd International Conference on Signal Processing[C], 1996, 1: 420-423.
    [162]万永伦,姒强,吕幼新,等.宽带信号去斜脉冲压缩处理方法的研究[J].航空学报, 2006, 27(5): 917-921.
    [163] Zhu D, Shen M, Zhu Z. Some Aspects of Improving the Frequency Scaling Algorithm for Dechirped SAR Data Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1579-1588.
    [164]张剑.码域发送参考超宽带无线通信技术研究[D].解放军信息工程大学博士学位论文, 2010.
    [165]张剑,刘洛琨,汪涛,等.基于有源频谱压缩的码域参考Chirp超宽带系统群解调设备[P].中国:国家实用新型专利,专利授权号: ZL200920090453.2, 2010.
    [166]张剑,刘洛琨,汪涛,等.基于有源频谱压缩的码参考Chirp超宽带系统群解调方法[P].中国:国家发明专利,专利申请号: 200910065002.8, 2009.
    [167]张剑,刘洛琨,汪涛,等.基于多相滤波码域发送参考Chirp超宽带系统群同步方法[P].中国:国家发明专利,专利申请号: 200910065004.7, 2009.
    [168] Iacobucci M S, Benedetto M G D, Nardis L D. Radio frequency interference issues in impulse radio multiple access communication systems[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2002:293-296.
    [169] Claudio R C M da Silva, Milstein L B. The effects of narrowband interference on UWB communication systems with imperfect channel estimation[J]. IEEE Journal on SelectedAreas in Communications, 2006, 24(4):717-723.
    [170] Cui S, Teh K C, Li K H, et al. BER Performance of Transmitted-Reference UWB Systems with Notch Filter in the Presence of Inter-Pulse Interference and Partial-Band Interference[A]. The 6th International Conference on Information, Communications and Signal Processing[C], 2007.
    [171] Shimizu Y, Sanada Yi. Analysis on IR/TR-UWB Interference against Narrowband Systems[A]. IEEE International Conference on Ultra-Wideband[C], 2008, 1: 75-78.
    [172] Bergel I, Fishier E, Messer H. Narrowband interference mitigation in impulse radio[J]. IEEE Transactions on Communications, 2005, 53(8):1278-1282.
    [173] Wang J, Tung W T. Narrowband interference suppression in time-hopping impulse radio ultra-wideband communications[J]. IEEE Transactions on Communications, 2006, 54(6): 1057-1067.
    [174] Pausini M, Janssen G J M. On the Narrowband Interference in Transmitted Reference UWB Receivers[A]. IEEE International Conference on Ultra-Wideband[C], 2005, 571-575.
    [175] Witrisal K, Alemseged Y D. Narrowband Interference Mitigation for Differential UWB Systems[A]. The 39th Asilomar Conference on Signals, Systems and Computers[C], 2005, 177-181.
    [176]岳光荣,超宽带无线通信抗干扰与共存性研究[D].电子科技大学博士学位论文, 2006,09.
    [177] Alemseged Y D, Witrisal K. Two Stage Narrowband Interference Mitigation for Transmitted Reference UWB Systems[A]. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications[C], 2007, 1-5.
    [178]罗娟,岳光荣,李仲令,等.提高超宽带冲激无线电信号抗单频干扰能力的参数选择方法[J].通信学报, 2004, 25(12):131-137.
    [179] Zhang H, Kohno R. SSA realization in UWB multiple access systems based on prolate spheroidal wave functions[A]. IEEE Wireless Communications and Networking Conference[C], 2004, 3:1794-1799.
    [180]郭锋,庄奕琪.带内干扰抑制的超宽带脉冲设计[J].光子学报,2006,35(9),1345-1348.
    [181]罗振东,高宏,刘元安,高锦春.抑制多窄带干扰的超宽带脉冲设计方法[J]. 2005,28(1),55-58.
    [182] Shen H, Zhang W, Kwak K S. Using Non-inear Chirp Waveform to Suppress Narrowband Interference in UWB System[A]. International Symposium on Communications and Information Technologies[C], 2006, 1212-1215.
    [183]马龙,王庭昌. UWB-IR室外通信信道模型及其容量近似求解[J].电波科学学报. 2006, 21(4): 595-600.
    [184] Zhou C, Guo N, Sadler B M, et al. Performance Study on Time Reversed Impulse MIMO for UWB Communications Based on Measured Spatial UWB Channels[A]. IEEE Military Communications Conference[C], 2007.
    [185] Wang Y, Chen R, Zhang W. Design and Simulation of a Chirp Pulse CompressionUltra-Wideband Communication System[A]. International Conference on Electronic Computer Technology[C], 2009, 415-419.
    [186] G. Giancola. Comparative Analysis of UWB, CDMA, and OFDM transmission techniques [J], Networding with Ultra Wide Band, M.-G.Di Benedetto editor, Ingegneria, 2000(2002),1.1-1.28.
    [187] Rihaczek, A. W. Principles of High-Resolution Radar. Artech House, Boston, MA, 1996.
    [188] Uguen B. A Deterministic Ultra Wideband Channel Modeling[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2000, 1-5.
    [189] Hovinen V, Hamalainen M, Patsi T. Ultra Wideband Indoor Channel Models: Preliminary Results[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2002, 75-79.
    [190] Cassioli D, Win M Z, Molisch A F. A Statistical Model for the UWB Indoor Channel[A]. IEEE 53rd Vehicular Technology Conference[C], 2001, 1159-1163.
    [191] Cramer R J, Scholtz R A, Win M Z. Evaluation of an Ultra Wideband Propagation Model[J]. IEEE Antennas and Propagation, 2002, 50(5):561-570.
    [192]扈罗全,朱洪波.脉冲无线通信信道特性与建模研究进展[J].南京邮电大学学报, 2006, 26(2):1-11.
    [193] IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a (TG4a) 04/662r0, Channel Model Final Report Revision 1[S], 2004.
    [194] Stephan V S. Analysis of time variance of a UWB propagation channel. IEEE P802.15-02/452-SG3a and IEEE P802.15-02/453-SG3a.
    [195]Li X, Jiang H, Zhang J, et al. A Modified Code Domain Transmitted Reference UWB System[J]. Journal of Electronics (China), accepted。(中文版:李霞,江桦,张剑,等.一种改进型码域发送参考超宽带系统[J].电子科学学刊(英文版),已录用.)
    [196]Lovelace W M, Townsend J K. The Effects of Timing Jitter on the Performance of Impulse Radio[A]. IEEE Conference on Ultra Wideband Systems and Technologies[C], 2002, 251-254.
    [197]Tian Z, Giannakis G B. BER Sensitivity to Mistiming in Correlation-Based UWB[A]. IEEE Global Telecommunications Conference[C], 2003, 441-445.
    [198]李霞,张剑,江桦,等.码域发送参考脉冲超宽带系统的多路并行传输方法[J].信息工程大学学报,已录用。
    [199]Li X, Jiang H, Zhang J, et al. Performance of Code-Orthogonalized Transmitted-Reference Ultra-Wideband System in presence of interference[A]. International Conference on Wireless Communications, Networking and Mobile Computing[C], 2010, 1-5。
    [200]Li X, Jiang H, Zhang J. Performance of Chirp Code-Orthogonalized Transmitted-Reference Ultra-Wideband System in Presence of Interference[A]. IEEE 3rd International Congress on Image and Signal Processing[C], 2010, 4416-4420.
    [201]李霞,基于分数阶Fourier变换的Chirp-COTR-UWB系统窄带干扰抑制[J].信息工程大学学报,已录用。
    [202]张贤达,保铮.非平稳信号分析与处理[M].国防工业出版社, 1998年.
    [203]Barbarossa S. Analysis of Multicomponent LFM Signals by a Combined Wigner-Hough Transform[J]. IEEE Transactions on Signal Processing, 1995, 43:1511-1515.
    [204]戴征坚,郁文贤,胡卫东,等.强干扰下LFM信号的检测与参数估计[J].国防科技大学学报, 1999, 21(2):50-54.
    [202]Ozaktas H M, Orhan A, Alper K M, et al. Digital Computation of the Fractional Fourier Transform[J]. IEEE Transactions on Signal Processing, 1996, 44(9):2141-2150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700