基于SOI的电容式微加速度计器件物理模型与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于微机械工艺的电容式微加速度计因其体积小、功耗低、灵敏度高和方便与电路集成等优点,已成为民用工业与国防航空航天惯性导航领域的关键部件和研究热点。其中,在基于SOI的微加速度计器件层应力研究、开环模式非线性模型、跨机械、热、电场领域的一体化仿真方法与模型和梳齿加工偏差对性能的作用诸领域尚有待突破与创新。
     本论文针对当前电容式微加速度计有待解决的理论技术问题,展开了器件层的应力分析和实验、开环工作模式非线性研究,对集成一体化仿真予以了探索,进行了MEMS加工误差与性能的关系研究。
     1.分析了SOI器件层中存在的各种应力,及这些应力对微加速度计敏感质量块结构变形的作用,进行了实验,提出了一种支撑结构,导出了该支撑结构的最大变形模型。通过对基于器件层厚50μm,氧化层厚5μm键合SOI片的该结构进行测量,结果表明该模型基本能描述器件层存在应力时的变形。
     2.根据力学理论和电路读出原理,针对开环模式非线性误差大和SOI器件层存在应力梯度的特点,从非线性特性中最大可测量加速度、初始工作点和吸合点与动定电极间距d的变化规律出发,并结合器件层应力梯度导致弹性梁刚度的改变,提出了电容式微加速度计非线性模型。模型指出,随着输出电压的增加,可测量加速度近似成线性增加,在靠近最大可测量加速度amax时斜率增大,其后随输出电压的增加而减小至吸合点;amax由d和弹性梁刚度与敏感质量块质量之比λ决定,且d的作用优于λ,在计入器件层应力梯度后,可测量加速度范围将增大;d在小于初始工作点时加速度计不能工作,该点由传感头参数η决定且η最佳取值范围为1×1019~2×1019,此时准静态条件下吸合点大于整个动电极行程的95%。
     3.就MEMS微加速度计涉及机械、电和热等多物理领域情形,基于力学、热学、电学理论和微加速度计工作原理,依据微加速度计中SOI器件层应力梯度、温度与气膜阻尼的关系,用电压形式描述了气体阻尼、应力梯度、温度和机械结构运动微分方程,并与偏置电压产生的静电力相联系,提出了突破中间电极小位移近似的接口电路模型,从而实现了微加速度计的一体化仿真。通过与文献实验数据和相关理论结果进行比较,表明该模型能较好地应用于微加速度计的一体化仿真。
     4.针对微机械工艺加工可能引起的梳齿间距与版图设计值的偏差,从概率统计和加工误差理论出发,给出了当各梳齿间距偏差在一定范围内独立且均匀分布时,电容式微加速度计电容与静电力模型、灵敏度模型和加速度信号为冲击与阶跃时的响应三物理模型。
     (1)电容与静电力模型表明,电容和静电力均为类高斯分布,它们在一定区段出现的可能性可由其准期望和准方差确定,该准期望与无加工误差情况相比有小于5%的偏移;准方差依赖于梳齿数目和梳齿加工误差,当梳齿数目由10增大到60时,电容与静电力分布准方差分别增大约2倍和1倍,而当梳齿加工误差从5%增大到20%时,则分别增大约3.5倍和2.5倍。其结果与有机结合多物理场、有限元和Monte-Carlo方法原理的仿真数据较为接近。
     (2)导出了单边电容和双边电容驱动的硅微加速度计冲击与阶跃信号响应物理模型。经过有限元仿真和Monte-Carlo模拟验证,结果表明理论模型与仿真值之差小于10%。模型指出,当梳齿间距偏差由0变化到20%,加速度计在受到冲击与阶跃加速度信号作用时,其可靠工作范围将比无偏差理想情况下降10%~15%。
     (3)建立了可描述灵敏度偏差概率的模型。该模型与通过另一途径统计方法的仿真验证结果相差小于10%。模型表明,当偏差约为25%时,灵敏度减小5~10%的概率系40~50%,而其增大5~10%的概率约25~30%;同时,当梳齿数目越小,灵敏度偏差概率越大,在梳齿数目小于20时,灵敏度减小10%的概率约30%,但当梳齿数目增大到50~60时,该概率减小到10%左右。
Due to the small volume, low power, high sensitivity and easily being integrated with circuits, the capacitive micro-accelerometer fabricated by micro-machined process has become key part in civil industry and defense fields as inertia navigation device and therefore, has attracted many attentions and researches recently. In the researches, the residual stress in device layer,the nonlinear model of accelerometer operating in open loop mode, the integrated simulation of the device in mechanic, electric and thermal fields, and the effect of comb fingers gaps’deviation on performance of SOI accelerometers are still in need of being developed.
     To deal with the current theoretical and technology problems in SOI capacitive micro-accelerometers, an investigation on nonlinear model of open loop operating mode, integrated simulation in multi-physics fields, residual stress in device layer and the relationship between performance and MEMS process error has been carried on.
     Firstly, after the analysis of various residual stresses in device layer of SOI and the contribution of these stresses to the deformation of proof mass, a support structure is proposed and a maximum deflection model of the structure is investigated. Meanwhile, an experiment with different dimensions of the proof mass on SOI wafer with device layer depth 50μm and dioxide layer depth 5μm is done, in which the maximum deflection is measured. It is indicated by the experiment that the proposed model could basically describe the maximum deflection of proof mass.
     Secondly, to cope with the nonlinear error of open-loop accelerometers and stresses in SOI device layer, based on the rule of maximum measurand acceleration, initial operating and pull in point changing with the distance between electrodes d and, the variation of spring beams’stiffness due to the stresses, the nonlinear model of micro-machined accelerometer is proposed. It is indicated that, by the model, with the output increasing, the measured acceleration increases roughly linear with the output voltage until it approaches the maximum acceleration amax, then it decrease till the point where electrodes are pulled in. The amax is decided by d andλ, which is the ratio between the spring constant and the mass of the microstructure, and the amax will be increased if the stresses in SOI device layer are taken into account. The accelerometer can not work when d is less than a critical point which is determined by transducer’s parameterηand the optimum ofηis from 1×1019 to 2×1019, where the pull in point is beyond 95% of the full travel range of the moveable electrode.
     Thirdly, to deal with the separated situation of MEMS accelerometer’s simulation in multi-physics fields, based on the mechanics, thermal, electrical theories and mechanism of micro-accelerometer, considering the stress gradient in SOI device layer and the relationship between air damping and temperature, the air damping, the stress gradient and the movement of mechanical structure has been transferred into the form of voltage, then, after combined with the electrostatic force and interface circuits, an integrated simulation model is proposed,which can simulate the middle electrode in the whole travel range. Through the comparison of results obtained by proposed model, classic formula and experiments, it is indicated that the model could basically be applied in the integrated simulation of the micro-accelerometers.
     Finally, due to the deviation between actual comb finger gap and dimension on mask, based on probability and process error theory, the device physical models, which are capacitance and electrostatic force model, sensitivity model and the pulse and step signal response model, are proposed when the deviation is distributed in the adjacent scope of the design value with equal probability.
     It is indicated that, by the capacitance and electrostatic force model, both the capacitance and electrostatic force distributions are quasi-Gaussian distribution type. Hence the probability for the capacitance and electrostatic force occurring in any interval can be estimated by means of quasi-mean and quasi-variance. The quasi-mean is a little bit different from the value of capacitance or electrostatic force without process error, less than 5%. The quasi-variance depends on the comb finger number and process error degree. When the comb finger number increases from 10 to 60, the quasi-variance of capacitance distribution increases 2 times while is about 1 time for electrostatic force distribution and, as process error degree is from 5% to 20%, the quasi-variance increases 1.5 times for capacitance distribution and is about 2.5 times for electrostatic force distribution.
     Then, pulse and step acceleration signal response models of capacitive micro-accelerometer with single-sided driving mode and double-sided driving mode are derived respectively. The precision of the models has been verified by the FEA and Monte-Carlo methods with ANSYS software. The deviation between them is less than 10%. It is pointed out by the models that the reliable operation ranges of accelerometers will decrease 10%-15% when the comb gaps deviate 0-20% from ideal value. The models can be used in the estimation of the reliable operation ranges of capacitive accelerometers.
     Lastly, a model to describe the sensitivity deviation probability is proposed and, is verified by a simulation in a statistical way. The difference between the model and simulation results is less than 10%. According to the model, when the process error is about 25%, the sensitivity will decrease 5-10% with 40-50% probability and increase 5-10% with 25-30% probability. Meanwhile, the smaller the comb finger’s number n is, the bigger the deviation probability is. When n is less than 20, the sensitivity decreases 10% with about 30% probability, but when n is close to 50~60, the probability deceases to about 10%. Through the model, a bridge between MEMS process error and the sensitivity is set up and,in the process, a new approach based on probability and statistical theory to study the effect of the process error on performance is presented.
引文
[1] Premachandran C.S.,Lau John, Ling Xie. J, et al. A novel, wafer-level stacking method for low-chip yield and non-uniform, chip-size wafers for MEMS and 3D SIP applications. 58th ECTC, 2008: 314 - 318
    [2] Kepenek Reha.,Ocak Ilker Ender., Haluk. Kulah, et al. Aμg resolution microacelerometer system with a second-orderΣ-Δreadout circuitry. Research in Microelectronics and Electronics, PRIME. Ph.D. 2008, 41 - 44
    [3] Maeda R., Takahashi M., S. Sasaki. Commercialization of MEMS and Nano Manufacturing. Proc. Polymers and Adhesives in Microelectronics and Photonics, 2007, 20 - 23
    [4] J.J. Maciel, J.F. Slocum, J.K. Smith, et al. MEMS Electronically Steerable Antennas for Fire Control Radars. Radar Conference, 2007 IEEE, 677– 682
    [5] A. Wung, R.V. Park, G.K. Fedder, et al. Tri-axial high-g CMOS-MEMS capacitive accelerometer array. IEEE 21st MEMS 2008, 876 - 879
    [6] E.I. Gaura, R.J. Rider, N. Steele, et al. Neural-network compensation methods for capacitive micromachined accelerometers for use in telecare medicine. IEEE Trans. Information Technology in Biomedicine, 2001, 5(3):248– 252
    [7] D. Lapadatu, S. Habibi, B. Reppen, et al. Dual-axes capacitive inclinometer/low-g accelerometer for automotive applications. IEEE MEMS 2001, 34– 37
    [8] A. Gola, F. Pasolini, E. Chiesa, et al. A 2.5-rad/s/sup 2/ resolution digital output MEMS-based rotational accelerometer for HDD applications. IEEE Trans. Magnetics, 2003, 39(2): 915– 919
    [9] M. Esashi. Micro-nano electro mechanical systems for practical applications. 2005 5th IEEE Conference on Nanotechnology, vol. 1:125
    [10] Hyoungho Ko, Sangjun Park, Byoung-doo Choi, et al. Two-chip implemented, wafer-level hermetic packaged accelerometer for tactical and inertial applications. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005, Vol. 1:507 - 510
    [11] C. Lemaire. Surface micromachined sensors for vehicle and personal navigation systems. IEEE Conference on Intelligent Transportation System (ITSC 97),1997: 1068 - 1072
    [12] K.H.-L Chau, a, S.R Lewisa, Y Zhao, et al. An integrated force-balanced capacitive accelerometer for low-g applications. Sensors and Actuators A: Physical. 1996, 54(3): 472-476
    [13] B. Bais, B.Y. Majlis. Structure Design and Fabrication of an Area-changed Bulk Micromachined Capacitive Accelerometer. 2006 IEEE International Conference on Semiconductor Electronics, (ICSE '06) :29– 34
    [14] J.A. Plaza, H. Chen, J. Esteve. New bulk accelerometer for triaxial detection. International Conference on Solid State Sensors and Actuators, 1997, vol.2: 1231 - 1232
    [15] Herrera G.V., Bauer Todd, Blain M.G., et al. SOI-enabled MEMS processes lead to novel mechanical, optical, and atomic physics devices. Proceedings - IEEE International SOI Conference, 2008:5-8
    [16]王阳元,武国英,郝一龙,等.硅基MEMS加工技术及其标准工艺研究.电子学报.2002, 30(11): 1577-1665.
    [17] Ward M.C.L., King D.O., Hodge A.M. Performance limitations of surface-machined accelerometers fabricated in polysilicon gate material. Sensors and Actuators, Physical A:, 2000, vol. 46(1): 205-209
    [18] Wu Jiangfeng, G.K. Fedder, L.R. Carley. A low-noise low-offset capacitive sensing amplifier for a 50-/spl mu/g//spl radic/Hz monolithic CMOS MEMS accelerometer. J. Solid-State Circuits, 2004, 39(5): 722– 730
    [19] Chae Junseok, H. Kulah, K. Najafi. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. J. Microelectromechanical Systems, 2005, 14(2): 235– 242
    [20] F. Mohd-Yasin, D.J. Nagel, C.E. Korman, et al. Low frequency noise measurement of three-axis surface micro- machined silicon capacitive accelerometer. Semiconductor Device Research Symposium, 2007:1– 2
    [21] M.A. Lemkin, B.E. Boser, D.Auslander, et al. A 3-axis force balanced accelerometer using a single proof-mass.Solid State Sensors and Actuators, International Conference on TRANSDUCERS, 1997, vol.2:1185 - 1188
    [22] Hao luo, Gang Zhang, Carley, L.R. A post-CMOS micromachined lateral accelerometer. Journal of Microelectromechanical Systems, 2002, Vol. 11, No.3:188 - 195
    [23] Tsai, J.M., Fedder, G.K.Mechanical noise-limited CMOS-MEMS accelerometers. 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005:630 - 633
    [24] Huikai Xie, Lars Erdmann, Xu Zhu, et al. Post-CMOS Processing for High-Aspect-Ratio Integrated Silicon Microstructures. J. microelectromechanical systems, 2002, 11(2): 93-101
    [25] Min Miao, Qifang Hu, Yilong Hao, et al.A Bulk Micromachined Si-on-glass Tunneling Accelerometer with Out-of-plane Sensing Capability. International Conference on Nano/Micro Engineered and Molecular Systems, 2007:235 - 240
    [26]谢明媚.z轴硅微陀螺仪残余应力分析及结构优化研究:[硕士学位论文].南京:东南大学, 2004
    [27]刘妤,温志渝,张流强,等. MEMS微加速度传感器的系统级仿真.中国机械工程, 2005,vol.16(增刊):293-296
    [28]罗斯建.电容式微机械加速度计检测电路研究:[硕士学位论文].杭州:浙江大学, 2007
    [29]张洪震.叉指式硅微机械加速度计设计与检测技术研究:[硕士学位论文].长沙:国防科技大学,2006
    [30]吝海锋,杨拥军,郑锋.电容式加速度传感器结构的计算机仿真.微纳电子技术,2002,6:32-35
    [31] Luoto Hannu, Henttinen Kimmo, Suni, Tommi, et al.MEMS on cavity-SOI wafers. Solid-State Electronics, 2007, vol. 51(2): 328-332
    [32] Nafari A., Karlen D., Rusu C., et al. Boron impurity at the Si/SiO2 interface in SOI wafers and consequences for piezoresistive MEMS devices. Journal of Micromechanics and Microengineering, 2009,vol. 19(1): 1-6
    [33] Guan Lingpeng, Sin Johnny K. O., Liu Haitao, et al.A fully integrated SOI RF MEMS technology for system-on-a-chip applications. IEEE Transactions on Electron Devices, 2006,vol. 53(1):167-172
    [34] Azgin K., Temiz Y., Akin T.An SOI-MEMS tuning fork gyroscope with linearly coupled drive mechanism. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, 2007: 607-610
    [35] Sawyer William D., Prince Mert S., Brown Giles J. SOI bonded wafer process for high precision MEMS inertial sensors. Journal of Micromechanics and Microengineering, 2005, vol. 15(8):1588-1593
    [36] Azgin K., Temiz Y., Akin T. An SOI-MEMS tuning fork gyroscope with linearly coupled drive mechanism. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2007: 607-610
    [37] Tsuchiya T., Funabashi, H.A Z-axis differential capacitive SOI accelerometer with vertical comb electrodes. 17th IEEE International Conference on Micro Electro Mechanical Systems, 2004:524– 527
    [38] Amini B.V., Pourkamali S., Ayazi, F. A high resolution, stictionless, CMOS compatible SOI accelerometer with a low noise, low power, 0.25μm CMOS interface. 17th IEEE International Conference on Micro Electro Mechanical Systems, 2004:572– 575
    [39] Kuehnel Wolfgang, Sherman Steven. Surface micromachined silicon accelerometer with on-chip detection circuitry. Sensors and Actuators, A: Physical, 1994, 45(1): 7-16
    [40] Hsu Y.W., Chien H.T., Lin C.S, et al. A capacitive low-g three-axis accelerometer. EMAP 2008: 325– 328
    [41] Jung-Tang Huang, Chieh-Han Lee, Chiu-Chin Yang, et al. The 3-axis CMOS-MEMS accelerometer include accelerator sensing method of Z-axis. EMAP,2008:321– 324
    [42] Huikai Xie, Gary K. Fedder. Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. Sensors Journal, 2003,Vol. 3, No. 5:622– 631
    [43] Liang Qian, Jian Wang, Zhengchuan Yang, et al. Monolithic integration of bulk micro-machined capacitive accelerometer and signal conditioning circuit. 9th International Conference on Solid-State and Integrated-Circuit Technology, 2008:2444 - 2447
    [44] Takao H., Ichikawa T., Nakata T., et al. Post-CMOS integration technology of thick-film SOI MEMS devices using micro bridge interconnections. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008:359-362
    [45]闻飞纳. MEMS器件系统级仿真技术研究:[硕士学位论文].南京:东南大学, 2004
    [46]余才佳. MEMS系统级的跨平台技术研究:[硕士学位论文].西安:西北工业大学,2005
    [47]孙振新.力电耦合MEMS器件的VHDL-AMS建模方法:[硕士学位论文].南京:东南大学, 2004
    [48]孙振新,黄庆安,李伟华. MEMS器件VHDL-AMS宏模型.微纳电子技术, 2003,5: 33-38
    [49]张鉴. MEMS加工中电感耦合等离子体(ICP)刻蚀硅片的模型与模拟:[博士学位论文].南京:东南大学, 2007
    [50] Baoqing Li, Deren Lu, Weiyuan Wang. Open–loop operating mode of micromachined capacitive accelerometer. Sensors and Actuators, 2000, vol.79:219–223
    [51] Minhang Bao, Yiping Huang, Heng Yang, et al. Reliable operation conditions of capacitive inertial sensor for step and shock signals. Sensors and Actuators, A: Physical, 2004, vol. 114(1): 41-48
    [52] Che Lufeng, Xiong Bin, Dong Linxi, et al. Effects of bias voltage polarity on differential capacitive sensitive devices. Sensors and Actuators, A: Physical, 2004, vol. 112(2):253-261
    [53]车录峰,徐志农,熊斌,等.力反馈微加速度计的准静态和阶跃响应模型.机械工程学报, 2004, 40(10): 102-108.
    [54] Bao Minhang, Yang Heng, Yin, Hao, et al. Effects of electrostatic forces generated by the driving signal on capacitive sensing devices. Sensors and Actuators, A: Physical, 2000, vol. 84(3):213-219
    [55]魏星,王湘,陈猛,等.薄膜厚埋层SOI材料的新制备技术.半导体学报,2008, 29(7):1349-1353.
    [56] Amini B.V., Pourkamali S., Ayazi, F. A high resolution, stictionless, CMOS compatible SOI accelerometer with a low noise, low power, 0.25μm CMOS interface. 17th IEEE International Conference on Micro Electro Mechanical Systems, 2004:572– 57
    [57] Ya'akobovitz.A, Krylov.S, Shacham-Diamand.Y. Large angle SOI tilting actuator with integrated motion transformer and amplifier. IEEE MEMS, 2008:487– 490
    [58] Chia-Pao Hsu, Ming-Chuen Yip, Weileun Fang. A novel soi Z-axis accelerometer with gap closing differential sensing electrodes. Solid-State Sensors, Actuators and Microsystems Conference, 2009:1154– 1157.
    [59] Sharma A., Zaman F.M., Amini B.V., et al. A High-Q In-Plane SOI Tuning Fork Gyroscope. Proceedings of IEEE Sensors, 2004(1): 467-470
    [60]陈新安,黄庆安,李伟华,等.硅/硅直接键合的界面应力.微纳电子技术, 2004,10:29-33.
    [61] Yu H.H., Suo Z. Model of wafer bonding by elastic accommodation. Journal of the Mechanics and Physics of Solids, 1998, 46(5): 829-844
    [62]虞益挺,苑伟政,乔大勇.微机械薄膜残余应力研究.微细加工技术, 2005,2: 46-51
    [63] E.H. Yang, S.S. Yang The quantitative deterrnination of the residual stress profile in oxidized P+ silicon films. Sensors and Actuators A, 1996, 54: 684-689
    [64]吉训生,王寿荣,许宜申,等.电容式硅微加速度计系统的性能分析.东南大学学报(英文版), 2006,22(1): 69-72
    [65]李宝清.微机械电容式加速度传感器及接口电路研究:[博士学位论文].上海:中国科学院上海微系统所,2000
    [66] Grigorie, Teodor Lucian. The Matlab/Simulink modeling and numerical simulation of an analogue capacitive micro-accelerometer. Part 1: Open loop, MEMSTECH, 2008:105– 114
    [67] Grigorie, Teodor Lucian. The Matlab/Simulink modeling and numerical simulation of an analogue capacitive micro-accelerometer. Part 1: Closed loop, MEMSTECH, 2008:115– 121
    [68] Rong Hua, Huang Qing'an, Nie Meng, et al. Analytical model for pull-in voltage of doubly-clamped multi-layer beams. Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2003, vol. 24(11):1185-1189
    [69] Parrain Fabien, Megherbi Souhil, Raynaud Gilles, et al. Experimental measurements and behavioral modeling of an electrostatically actuated bi-axial micromirror. Microsystem Technologies, 2005, vol. 12(1): 8-14
    [70]贾孟军,李昕欣,宋朝晖,等.开关点电可调节的MEMS冲击加速度锁定开关.半导体学报, 2007, vol. 28(8):1295-1302
    [71] Hickey Douglas R.,Wilsey Philip A., Hoekstra Robert J., et al.Mixed-signal simulation with the Simbus backplane. Proceedings - Simulation Symposium, 2006: 223-229
    [72] Wang Yuesheng, Xu Shiliu, Liu Luncai, et al. Design of monolithic BiCMOS open-loop detection circuit for MEMS capacitance accelerometer. International Conference on Solid-State and Integrated Circuits Technology Proceedings, ICSICT, 2008:2448-2451
    [73]董林玺,车录锋,王跃林.梳齿的不平行对电容式微机械传感器可靠工作范围的影响.半导体学报,2005 ,26 (2) :373
    [74]黄如,张国艳,李映雪,等. SOI CMOS技术及其应用.北京:科学出版社, 2005, 30-50
    [75]谭开洲.部分绝缘键合SOI新结构及其应用基础研究:[博士学位论文].成都:电子科技大学, 2008
    [76]郭宇峰. SOI横向高压器件耐压模型和新器件结构研究:[博士学位论文].成都:电子科技大学, 2005
    [77] Cohn Gormley, Anne Boyle, Viji Srigengan, et al. HARM Processing Techniques for MEMS and MOEMS Devices using Bonded SOI Substrates and DRIE. Micromachining and Microfabrication Process Technology VI. SPIE, 2000, Vol. 4174 :98-111.
    [78] William D Sawyer, Mert S Prince, Giles J Brown. SOI bonded wafer process for high precision MEMS inertial sensors. J. Micromech. Microeng, 2005 ,15(8): 1588–1593
    [79]张耀平,张云洞,凌宁.薄膜残余应力有限元分析研究.激光与光电子进展,2005, vol. 42(10):23-28
    [80] Yin Zhang. Interface layer effect on the stress distribution of a wafer-bonded bilayer structure. J Mater Sci, 2008, 43(1):88–97
    [81] Mauro J. Kobrinsky, Erik R. Deutsch, Stephen D. Effect of Support Compliance and Residual Stress on the Shape of Doubly Supported Surface-Micromachined Beams. Journal of Microelectromechanical Systems, 2000, Vol. 9(3):361-369
    [82] M.Orpana, A.O.Korhonen. Control of residual stress of polysilicon thin films by heavy doping in surface micromachining. IEEE, TRANSDUCERS '91:957 - 960
    [83] Ok Chan JEONG, Sang Sik YANG. Correlation between Residual Stress and Boron Concentration in Boron-Doped Silicon Films. Japanese Journal of Applied Physics, 2005, 44(1): 350–357
    [84] PauleauY. Generation an devolution of residual stress in physical vapor-deposited thin films. Vacuum, 2001,61:175-181
    [85] Zhenghao Gan, Cher Ming Tan. Thermally induced stress in partial SOI structure during high temperature processing. Microelectronic Engineering, 2004, 71: 150–162
    [86] Guangyu Huang; Cher Ming Tan; Zhenghao Gan;Finite element modeling of residual mechanical stress in partial SOI structure due to wafer bonding processing. Proceedings of the 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2004:189– 192
    [87]刘鸿文.材料力学.北京:高等教育出版社, 1992, 211-232
    [88]徐芝纶.弹性力学.北京:高等教育出版社, 2006, 103-198
    [89] C O’Mahony, M Hill, R Duane,et al. Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams. J. Micromech. Microeng, 2003, vol.13:75–80
    [90] Xiezhao Lin, Ji Ying. Analytical model of Electrostatic Fixed-Fixed Microbeam for Pull-in Voltage. Proceedings of the IEEE/ASME, 2008:803-808
    [91] Ji Xun-Sheng , Wang Shou-Rong. Analysis of characteristics on capacitive silicon micro-accelerometer system. Yuhang Xuebao/Journal of Astronautics, 2005, 26(4): 446-449
    [92]闫子健.MEMS CAD器件级宏模型获取技术:[硕士学位论文].西安:西北工业大学, 2007
    [93] Cardou Philippe, Pasini Damiano, Angeles Jorge. Lumped elastodynamic model for MEMS: Formulation and validation. Journal of Microelectromechanical Systems, 2008, 17(4): 948-961.
    [94] Joshi, B.P.; Chaware, A.S.; Gangal, S.A.Optimising performance of a cantilever-type micro accelerometer sensor. Defence Science Journal, 2007, 57(3): 261-269
    [95] Zhang Yufeng, Liu Xiaowei, Chen Weiping. Damping characteristic analysis of MEMS inertial devices. Proceedings of SPIE, 2005, v 6040
    [96] Chen Weiping, Zhao Zhengang, Liu, Xiaowei, et al. Damping analysis of asymmetrical comb accelerometer. Key Engineering Materials, Progresses in Fracture and Strength of Materials and Structures- Selected peer reviewed papers from the Asian Pacific Conference Fracture and Strength, 2006:2597-2600
    [97] Wu Liming, Dong Jingxin, Han Fengtian, et al. Research on gas film damping of an electrostatically levitated micromachined accelerometer. 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2008: 1081-1086
    [98]陈宇晓.电容式微机械静电伺服加速度计系统分析: [硕士学位论文].成都:电子科技大学, 2003
    [99]高池名.微机械加速度计零位偏移的影响因素研究: [硕士学位论文].西安:西安电子科技大学,2008
    [100] Yang Zunxian, Li Xinxin. Simulation and optimization on the squeeze-film damping of a novel high-g accelerometer. Microelectronics Journal, 2006, vol. 37(5): 383-387
    [101] Joshi B.P., Chaware A.S., Gangal S.A. Optimising performance of a cantilever-type micro accelerometer sensor. Defence Science Journal, 2007, vol. 57(3):261-269
    [102]梁兴雨,舒歌群,张宝欢,等.基于瑞利法的内燃机曲轴纵向振动研究.中国机械工程, 2008,19(6): 648-653
    [103]梁兴雨,舒歌群,卫海桥,等.基于瑞利法的内燃机曲轴扭纵藕合振动.机械工程学报, 2006,42(增刊): 183-191
    [104] Veretennikov V.G., Sinitsyn V.A.. Development of the Rayleigh method on the basis of the variable action principle. Doklady Physics, 2008,53(2): 103-106
    [105] Ali Ahachian, Burhanuddin Yeop Majlis. Simulation of an Analog Differential Capacitive Accelerometer. IEEE International Conference on Semiconductor Electronics, 2004:331-335
    [106]单光宝,刘佑宝,魏海龙.硅微加速度计的建模与仿真.功能材料与器件学报, 2006, 12(5): 398-403
    [107]陈伟平,赵振刚,刘晓为,等.力平衡框架结构加速度计的设计.传感技术学报, 2006, vol. 19(5): 2193-2198
    [108]裘安萍,庄瑞芬,施芹.硅微谐振式加速度计结构设计与仿真.中国惯性技术学报, 2009 17(1): 93-97
    [109]寇剑菊.叉指式微加速度计的系统仿真分析: [硕士学位论文].北京:中国工程物理研究院, 2003
    [110] Da Silva, Mark. Standard open tool packages for MEMS-enabled products. Advanced Packaging, 2004, 13( 9): 26-28.
    [111] Bart, Stephen F. The design environment for MEMS. American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS), 2002:541-545,
    [112] Korsmeyer Tom, Zeng Jun, Greiner Ken. Design tools for BioMEMS. Proceedings - Design Automation Conference, 2004: 622-627
    [113]殷刚毅. MEMS微传感器件IP库的建立方法.电子器件, 2005,28(3):690-695
    [114]关乐,褚金奎,王晓东.系统级设计方法及其在力学特性集成测试中的应用.传感技术学报. 2006, 19(5):1313-1319.
    [115]林伟松,秦华标.电荷泵锁相环的VHDL-AMS行为建模与仿真.微计算机信息, 2008, 24(8): 143-145
    [116] Pecheux F., Lallement C., Vachoux A. VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, vol. 24(2): 204– 225
    [117] Zhang Yufeng , Liu Xiaowei, Chen Weiping. System-Level Modeling and Simulation of Force-Balance MEMS Accelerometers. Chinese Journal of Semiconductors, 2008, 29(5): 917-923
    [118] Christopher P.Lewis, Michael Kraft. Simulation of a Micromachined Digital Accelerometer in SPMULINK and PSPICE. '96, UKACC International Conference on Control, 1996, vol.1: 205– 209
    [119]吴黎明,董景新,韩丰田,等.静电悬浮微硅陀螺的空气阻尼特性.清华大学学报, 2007,47(11):1972-1975
    [120]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社, 1993, 51-56
    [121] Ming-Han Tsai, Chih-Ming Sun, Chuanwei Wang, et al. A monolithic 3D fully-differential CMOS accelerometer. 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2008:1067– 1070
    [122] Gomez, J.M., Bota, S.A., Marco, S. et al. Force-balance interface circuit based on floating MOSFET capacitors for micro-machined capacitive accelerometers. Circuits and Systems II: Express Briefs, IEEE Transactions, 2006, 53(7):546– 552
    [123] Chao Wang, Xiaowei Liu, Yichao Ren. et al. Signal Detection of Bulk-Silicon Capacitive Dual-Axis Micro-Accelerometers. ICMA 2007:1862– 1866

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700