多孔硅外延层转移SOI新材料制备与改性多孔硅发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SOI技术和多孔硅纳米发光技术研究是当今微电子与光电子研究领域的前沿课题,本文根据科学院创新工程研究工作的需要,开展了多孔硅外延层转移ELTRAN-SOI新材料制备与改性多孔硅发光性能的研究,获得的主要结果如下:
     系统研究了硅片掺杂浓度、掺杂类型和阳极氧化条件等因素对多孔硅结构、单晶性能和表面状态的影响,发现多孔硅与衬底并不是严格的四方畸变,在多孔硅/硅衬底的界面上,多孔硅的晶格与衬底完全一致,但在孔的边缘,多孔硅的晶格发生弛豫。研究结果为多孔硅衬底上材料的生长和光学性能的研究提供了良好的实验依据。
     首次采用超高真空电子束蒸发的方法在多孔硅上成功地外延出晶体质量和电学性能良好的单晶硅。深入研究了影响外延的各种因素,特别是多孔硅的孔隙率和外延温度对外延层质量的影响,发现多孔硅的预氧化可以有效地阻止外延时B的扩散,外延层中主要的缺陷是沿着{111}面生长的层错。从晶体生长动力学角度分析了多孔硅上外延硅的生长机理。
     研究了多孔硅在HF/H_2O_2溶液中的腐蚀行为,发现多孔硅的腐蚀以孔内腐蚀为主,腐蚀液通过毛细效应进入纳米孔内,孔壁被腐蚀掉后使得多孔硅整层同时坍塌。多孔硅在HF/H_2O_2溶液中的腐蚀速率比体硅的高几个数量级。
     优化了外延条件,结合低温键合与多孔硅的剥离技术,在国内首次用多孔硅外延层转移技术成功地制备出了SOI材料。分析表明,ELTRAN-SOI的顶层硅厚度均匀,单晶质量优良;界面清晰、陡直;电学特性优异。
     首次研究了碳等离子体注入对多孔硅的改性,得到了强蓝光发射,详细研究了退火温度对发光强度的影响,发现在400℃时达到最大值,并探讨了相关的机理。这一研究结果为硅基蓝光材料的制备提供了一种新的技术。
     深入研究了等离子体浸没式氢注入硅的发光性能,发现在700—1000nm范围内获得低温荧光,当退火温度为400℃时荧光强度达最大。从600℃退火的注氢样品上获得白色室温电致发光。根据对注氢样品的结构和成分分析结果,分析了可能的发光原因。
    
     摘 要
     首次研究了硅中碳氢共注样品的发光性能c发现在适当碳含量的碳化硅样
    品中注入氢可以获得室温蓝光发射,追火温度对荧光有明显的影响。分析表明
    该荧光可能与碳化硅/硅的界面有关,氢在此起重要的作用。
     探索硕-究了用脉冲檄光沉积的方法在多孔硅衬底上制备BST薄膜。发现多
    孔硅的孔隙率对BST的晶粒尺寸有明显的影I’向,与相同条件下在体硅衬底上生
    长的SST薄膜相比,其晶体质量有所改善。*ST与多孔硅界面处的非晶*ST是
    山于田T多孔硅的界面相互扩散引起的。多孔硅衬底上的*盯结构为高灵敏
    度、低热噪音的红外探测器的制备提供了新材料。
Silicon-on-insulalor (SOI) and porous silicon are two kinds of advanced silicon based material for microelectronics and opto-electronics. According to the requirement of Innovation Engineering in Chinese Academy of Sciences, the work in this thesis focused on fabrication of SOI material with epitaxial layer transfer of porous silicon and study of luminescence of modified porous silicon, and we obtained the following new results:
    The effect of doping and anodizing condition on the properties of porous silicon, including the microstructure, ciystallinity and surface morphology, has been studied systematically. It is found that the porous silicon and substrate have the same orientation and share a coherent boundary. But at the edge of pores, the lattice relaxes, which induces XRD peak moving of porous silicon. These results provide important information for the epitaxy on porous silicon substrate and luminescence study of porous silicon.
    Silicon films with high crystal quality and good electrical properties have been successfully grown on porous silicon substrate by ultra-vacuum electron beam evaporator. Many factors which affect the epitaxy qualities, especially the porosity of porous silicon and growth temperature, have been studied in detail. It is found that the pre-oxidation of porous silicon can efficiently prevent the Boron diffusion during epitaxy. The defaults along {111} are the main defects in epitaxial silicon layer. In addition, the growth mechanism on porous silicon has been discussed in view of growth kinetics.
    The corrosion behavior of porous silicon in HF/H2O2 solution has been studied. It is found that the inner corrosion of porous silicon takes precedence, that is, the solution enters the pores through capillary and the whole porous silicon collapses because of the simultaneous corrosion of the silicon pillars. The corrosion rate of
    
    
    
    porous silicon in HF/H2O2 solution is several orders higher than that of bulk silicon. The research results help us to smooth the surface of SOI.
    After optimizing the epitaixal condition, low temperature bonding, splitting and removing of porous silicon, SOI material has been successfully fabricated for the first time in China with the epitaxial layer transfer of porous silicon (ELTRAN) The ELTRAN - SOI has been characterized and the results indicate that the top Si layer is perfect single crystal, and its thickness is uniform. The interfaces of the lop Si/SiO2 and SiO2/Si substrate are very sharp and straight. The ELTRAN-SOI has also excellent electrical properties.
    Carbon plasma immersion ion implantation (PIII) into the porous silicon has been studied for the first time, and obtained intense blue light. The effect of annealing temperature on the luminescence has been investigated and results show that the luminescence intensity of sample reaches maximum after annealed at 4000C. The related mechanics are also discussed. The results present a new technique to prepare silicon based blue light material.
    The luminescence of buried nano-cavities produced by implanting hydrogen PIII into silicon has been investigated. Samples annealed between 200-400℃ exhibit cryogenic PL with the peak at 888 nm (infrared) and the intensity reaches maximum at the temperature of 400 ℃. When the annealing temperature reaches 600℃, PL is replaced by strong (while light) EL. Based on the analysis of microstructure and chemical component of hydrogen implanted samples, the possible mechanisms for the luminescence are discussed.
    The luminescence of silicon co-implanted by carbon and hydrogen has been studied. It is found that room temperature blue light can be obtained from the hydrogen-implanted silicon carbide with proper carbon content. The annealing temperature influences the luminescence obviously. Analysis shows that the luminescence is possible related to the interface between the SiC/Si and hydrogen plays an important role.
    The BST thin film grown on porous silicon substrate has been investigated for the first time. Experiment results indicate that the porosity of
引文
1. Collinge J-P, Silicon-on-insulator technology: Malerials to VLSI, 2nd ed. Boston, MA, USA: Kluwer Academic Publishers, 1997
    2. K. lzumi, M. Doken, and H. Ariyoshi, Electron. Lett. 14, 593 (1978)
    3. S. Krause, M. Anc, and P. Roitman, MRS Bull. 23, 25 (1998)
    4. S. Nakashima, T. Katayama, Y. Miyamura, A. Matsuzaki, M. Imai, K. Izumi, and N. Ohwada, Proc. IEEE Int. SOI Conf. (Institute of Electrical and Electronics Engineers, Nantucket, MA, 1994) P71
    5. Cynthia A. Desmond-Colinge and U. Gosele, MRS Bull. 23, 30 (1998)
    6. M. Bruel, Nucl. Instrum. Methods Phys. Res. 108, 313 (1996)
    7. Q-Y. Tong, L-J. Huang, Y-L. Chao, A. Ploessl, and U. Gosele, Proc. 1998 IEEE Int. SO1 Conf. (1998) P 143
    8. P.J.H. Denteneer, C.G.Van der Walle, and S. T. Pantelides, Phys. Rev. B 39,10809 (1989)
    9. J.T. Borenstein, J. W. Corbett, and S. J. Pearton, J. Appl. Phys. 73, 2751 (1993)
    10. G. Hess, P. Parkinson, B. Gong, Z. Xu, D. Lira et al., Appl. Phys. Lett., 71, 2184(1997)
    11. R. W. Bower, L. Leboeuf and Y. A. Li, Il Nuovo Cimento 19, D, N. 12, 1871(1997)
    12. A. D. Marwick, G. S. Oehrlein, and M. Wittmer, Appl. Phys. Lett., 59, 198(1991)
    13. X. Z. Duo, W. L. Liu, S. Xing, M. Zhang, X. R Fu, C. L. Lin, P. G. Hu, S X Wang and L M Wang, J. Phys. D:Appl. Phys. 34, 5 (2001)
    14. J.B.Lin, S.S.K.lyer, C.M.Hu et al, Appl.Phys. Lett., 67, 2361 (1995)
    15. J.B.Liu, S.S.K.lycr, J.Min el al, Proc. IEEE International SOI Conference,Oct. 1995, Tucson, Arizona, 1995:167
    
    
    16. X.Lu, S.S.K.Iyer, J.B.Liu et al, Appl.Phys. Lett., 70, 1748 (1997)
    17. P.K.Chu, Mat. Res. Soc.Symp. Proc. 438, 333 (1997)
    18. X.Lu, S.S.K.Iyer C.Hu et al, Appl.Phys.Lett., 71, 2767 (1997)
    19. J. T. Borenstein, J. W. Corbett, and S. J. Pearton, J. Appl. Phys. 73, 2751 (1993)
    20. M. Bruel, Nucl. Instrum. Methods Phys. Res. 108, 313 (1996)
    21.金曾孙等,特种功能构料学术讨论会论文集,四川,成都,1998.8
    22. Stefan Bengtsson, et al. Jpn. J. Appl. Phys. 35, 4175 (1996)
    23. P. L. F. Hemment, Semiconductor-on-Insulator and Thin Film Transistor Technology, Chiang, Geis and Pfeiffer Eds., (North-Holland), MRS Symposium Proceedings, 53,207 (1986)
    24. L. Nesbit, G. Slusser, R. Frenette and R. Halbach, J. Electrochemical Society, 90-6, 199 (1990)
    25. Burggraaf, Pieter, Solid State Technology, 41, 34 (1998)
    26. P. G. M. Baltus, A. G. Wagemans, R. Dekker et al. IEEE J. Solid State Circuits 33, 2074 (1998)
    27. Peter G. M. Baltus, Proceeding of the IEEE 88, 1546 (2000)
    28. Christophe Serre, et al. J. Micromech. Microeng. 10, 152 (2000)
    29. E.Hugonnard-Bruycrc, J. L. Cantin et al. Microelectronic Engingeering 48, 277 (1999)
    30. E.Hugonnard-Bruyere, V. Lauer, G. Guillot, and C. Jaussaud, Mater. Sci. and Engin. B 61-62,382 (1999)
    31. C.Serre, A. Romano-Rodriguez, et al. Sensors and Actuators 74, 169 (1999)
    32. L.D.Cioccio, Y. L.Tiee, F. Letertre, C. Jaussaud and M. Bruel., Electronic Letters 32, 1144 (1996)
    33. Yukari Ishikawa, T. Saito, N. Shibata, S. Fukatsu, Nuclear Instruments and Methods in Physics Research B147, 43(1999)
    34. L.J.Huang, J. O. Chu, D. F. Canaperi, et al. Appl. Phys. Lett., 78(2001)1267
    35. J.P.Colinge, MRS Bull. 23, 16 (1998)
    36. A.J.Auberton-Herve, J.M.Lamure, and T.Barge et al., Semiconductor International Oct. (1995)
    
    
    37. W.A.Krull and J.C.Lee, Proceedings IEEE SOS/SOI Technology Workshop, P69, 1998
    38. W. P. Maszara, Proc. Of the 4th international symposium on SOI technology and devices, edited by D. Schmidt, the Electrochemical Society, 90, 199, 1990
    39. A.Uhlir, Bell System Tech. J., 36, 333(1956)
    40. K.Imai, Solid State Electron., 24, 59(1981)
    41. L. T. Canham, Appl. Phys. Lett. 57, 1046(1990)
    42. V. Lehmann and H. Foll, J. Electrochem. Soc, 137, 653 (1990)
    43. Hou X Y,Fan H L,Xu L.Pulsed anodic etching:An effective motrod of preparing light-emitting porous silicon. Appl Phys Lett, 68, 2323(1996)
    44. Cullis A G,Canham L T,Calcott P D J.The structural and luminescence properties of porous silicon. J Appl Phys, 82, 909 (1997)
    45. M.I.J.Beale, N.G.Chew, M.J.Uren, A. G. Cullis, and J. D. Benjamin, Appl. Phys. Lett., 46, 86 (1985)
    46.黄宜平,郑大卫,李爱珍等,半导体学报,16,19(1995)
    47. L.T.Canham, Appl. Phys. Lett., 1046 (1990)
    48. T.L.Lin, S.C.Chen, Y.C.Kao, K.L.Wang, S.Iyer, Appl. Phys. Lett. 48, 793 (1986)
    49.郭芳侠,李永放,马丽珍,钞曦旭,陕西师范大学学报(自然科学版),28,42(2000)
    50. M.I.J.Beale, G. Chew, A.G.Cullis, D.B.Gasson, R.W.Hardeman et al., J. Vac. Sci. Technol., B 3, 732 (1985)
    51. T.Yonehara, K. Sakaguchi and N. Sato, Appl. Phys. Lett., 64, 2108 (1994)
    52. Miller D A B, Nature, 378,:238(1995)
    53. Hirschman K D,Tsybeskov L,Duttoagupta S P et al. Nature, 384, 338 (1996)
    54.张丽珠等,半导休学报,13,3,(1994)
    55.章肖融等,物理学报,42,11(1993)
    56. Koichi et al. Jpn. J. Appl. Phys., 32,408 (1993)
    57. Strvens, Appl. Phys. LEU., 63, 9 (1993)
    58. C. Tsai, et al., Appl. Phys. Lett., 60, 1700 (1992)
    59. L. M. Peter, D. J. Blackwood, and S. Pons, Phys. Rex,. Lett., 62,308 (1989).
    60. F. Yan, X. M. Bao, X. W. Wu and H. L. Chen, Appl. Phys. Left., 67, 3471 (1995)
    
    
    61. T.Gao, S. Tong, X.Q.Zheng, X.L.Wu, L. M. Wang and X. M.Bao, Appl. Phys. Lett., 72,3312 (1998)
    62. F. Q.Liu, L.S.Liao, G.H.Wang, G.X.Cheng and X.M.Bao, Phys. Rev. Lett., 76, 604(1996)
    63. T.Dejima, R.Saito, S.Yugo, H.Isshiki, T.Kimura, Appl. Phys. Lett., 84, 1036, (1998)
    64. U.Hmmerich, F. Namavar, A. M. Cremins-Costa, K. L. Bray, Appl. Phys. Lett., 68, 1951 (1996)
    65. F.Namavar, F.Lu, C.H.Perry, A.Cremins, N.M.Kalkhoran, R. A.. Scorer, J.Appl. Phys., 77, 4813 (1995)
    66. A. M.Dorofeev, N.V.Gaponenko, V.P.Bondarenko, E.E.Bachilo, N.M.Kazuchits, et al., J. Appl. Phys., 77, 2679 (1995)
    67. L. Gu, Z. Xiong, G. Chen, Z.Xiao, D.Gong, X. Hou and X. Wang, Adv. Mater., 13, 1402 (2001)
    68 G.G.Shahidi, IBM J. Res. & Dev., 46, 121 (2002)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700