硅纳米孔柱阵列及其金/铜复合体系的制备、结构与场发射特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以纳米硅为模板制备纳米材料得到了广泛的研究。以纳米硅为模板组装纳米材料的优势在于:一方面,这种技术可以与硅平面工艺结合,为硅基光电子集成服务,另一方面,利用纳米硅材料表面的形貌和结构特征以及其物理、化学特性,在其上复合其它的纳米材料以期制备出一些性能优良的新材料。因此,纳米硅膜板的表面形貌和结构是制备纳米材料的关键。本文制备了一种新型的纳米硅模板,并以此为模板制备了各种纳米贵金属膜。本文的研究内容如下:
     1.采用水热技术制备了硅纳米孔柱阵列(Silicon Nanoporous Pillar Array,Si-NPA)。Si-NPA是一种新型的硅微米/纳米结构复合体系。它的结构复合性表现为它在微米和纳米两个尺度上形成了三个分明的结构层次,即微米尺度的硅柱所组成的规则阵列、硅柱表面密集分布的纳米孔以及组成孔壁的硅纳米单晶颗粒。
     2.利用浸渍技术在Si-NPA上制备了Au/Si-NPA。分别在新鲜和老化的Si-NPA衬底上制备了Au/Si-NPA。由于两组衬底表面的含氧量的不同,使得在这两种衬底上形成的Au/Si-NPA的表面形貌有所不同。在老化Si-NPA上,由于在柱间低谷区域的含氧量较低,金颗粒主要沉积在这些区域,并聚集形成准周期的纳米金的网络膜;而在新鲜Si-NPA上,由于整个样品的表面氧的含量都很低,因此,金颗粒则是均匀的沉积在整个Si-NPA上。只是在不同的区域沉积金颗粒的尺寸和疏密程度不同。
     3.研究了Si-NPA在制备纳米贵金属薄膜过程中的作用。以Si-NPA为模板通过浸渍技术我们分别制备了Au/Si-NPA、Cu/Si-NPA以及自支撑Au/Si-NPA和纳米金膜。发现制备条件、沉积衬底以及沉积金属的不同,得到的纳米金属薄膜的表面形貌不同。尽管制备的纳米贵金属膜的表面形貌各异,但是,Si-NPA在这些制备过程中都是起着同样的双重作用。首先,Si-NPA具有还原作用。由于Si-NPA存在大量的硅纳米晶粒,使它具有高的表面活性和强的还原性。其次,Si-NPA还具有模板作用。由于Si-NPA具有规则的阵列结构,结构的规则性势必引起表面应力及表面电位分布的规则性,从而使得贵金属在Si-NPA上表面的沉积速度产生选择性。最终形成准周期的、规则的贵金属
Recently, nanostructured silicon as templates in creating other nanomaterials has been widely studied. On the one hand, nanostructured silicon is compatible with conventional silicon microtechnology. So silicon-based nanomaterials fabricated on nanostructured silicon template can be applied in electronic and optical device in future. On the other hand, hiring unique morphology, structure and properties of nanostructured silicon, new specially patterned, structured or functionalized nanomaterials can be prepared on nanostructured silicon. Therefore, the morphology and structure of nanostructured silicon are important to fabricate nanomaterials. In the thesis, a new nanostructured silicon template is reported, and hiring it as template, nanostructured noble metal thin films are obtained through immersion plating method. The main conclusion in the thesis can be summarized as follows:
    1. Si-NPA (silicon nanoporous pillar array) is prepared by hydrothermal etching. Si-NPA is a silicon micro/nanometer structural composite system composed of triple hierarchical structures in micro and nanometer dimension, i. e., regular silicon pillar array, densely distributed nanopores on each silicon pillar, and the crystalline silicon nanoparticals composing the walls of nanopores.
    2. Au/Si-NPA is fabricated on Si-NPA by immersion technique. Morphologies of Au/Si-NPA fabricated on fresh and aged Si-NPA substrates, respectively, are very different due to the difference of quantities containing oxygen on the surface of fresh and aged Si-NPA. On aged Si-NPA surface, large quantities of Au particles are deposited at the valley around the silicon pillars, where the atom ratio of oxygen is relatively low. And regularly, nanostructured Au network is formed. On fresh Si-NPA surface, Au particles are deposited at every site, where the atom ratios of oxygen are low. However, size and compatibility of Au particles at different sites is different.
    3. The function of Si-NPA in preparing nanostructed metal film process is researched. nanostructed metal films including Au/Si-NPA, Cu/Si-NPA, and self-supported
引文
1. S. Furukawa, T. Miyasato, Three-dimensional quantum well effects in ultrafine silicon particles, Jpn. J. Appl. Phys., Part2 27(1988) L2207
    2. L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett., 57(1990) 1046
    3. O. Bisi, Stefano Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surface Science Reports, 38(2000) 1-126
    4. N. Matsumoto, K. Takeda, H. Teramae, M. Fujino, Geometrical and electronic structures of polyacetylene chlorinated via polonged chemical doping, Adv. Chem. Ser., 224(1990)515
    5. K. T. Boon, Doing chemistry on low-dimensional silicon surfaces: silicon nanowires as platforms and templates, Coordination Chemistry Reviews, 246(2003)229-246
    6. T. P. Nguyen, P. Le Rendu, M. Lakehal, P. Joubert, P. Destrukl, Poly(p phenylene winylene)/porous silicon composites, Materials Science and Eengineering, B69-70(2000)177-181
    7. T. Boufadena, N. Chaabena, M. Christophersenb, B. El Jania, GaN growth on porous silicon by MOVPE, Microelectronics Journal, 34(2003) 843-848
    8. R. Hérino, Nanocomposite materials from porous silicon, Materials Science and Eengineering, 1169-70(2000) 70-76
    9. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283(1999)512-514
    10. J. L. Gole, A. Fedorov, P. Hesketh, C. Burda, From nanostructures to porous silicon: sensors and photocatalytic reactors, Phys. Stat. Sol., C1(2004)S188-197
    11. Y. Y. Li, F. Cunin, J. R. Link, et al, Polymer replicas of photonic porous silicon for sensing and drug delivery applications, Science, 299(2003)2045-2047
    12. Z. A. Ansari, K. Hong, C.Lee, Structural and electrical properties of porous silicon??with if-sputtered Cu films, Mater Sci Eng, B90(2002)103-109
    13. C. Baratto, G. Sberveglieri, E. Comini, et al., Gold-catalysed porous silicon for NOx sensing, Sens Actuators, B68(2000)74-80
    14. G. Mertens, T. Roder, H. Matthias, et al., Two- and three-dimensional photonic crystals made of macroporous silicon and liquid crystals, Appl Phys Lett, 83(2003) 3036-3038
    15. Q. W. Chen, D. L. Zhu, C. Zhu, et al, A way to obtain visible blue light emission in porous silicon, Appl Phys Lett, 82(2003) 1018-1020
    16. S. Ghosh, K. Hong, C. Lee, Structural and physical properties of thin copper films deposited on porous silicon, Mater Sci Eng, B96(2002)53-59
    17. A. R. Ramos, E Pászti, E. Kotai, et al., Synthesis of cobalt silicide on porous silicon by high dose ion implantation, Nucl Instru Meth Phys Res, B178(2001) 283-286
    18. I. Coulthard, T. K. Sham, Novel preparation of noble metal nanostructures utilizing porous silicon, Solid State Commun, 105(1998) 751-754
    19. A. E. Pap, K. Kordás, R. Peura, et al, Simultaneous chemical silver and palladium deposition on porous silicon; FESEM, TEM, EDX and XRD investigation, Appl. Surf. Sci., 201(2002) 56-60
    20. T. Tsuboi, T. Sakka, Y. H.Ogata, Metal deposition into a porous silicon layer by immersion plating: influence of halogen ions, J. Appl. Phys., 83(1998) 4501-4506
    21. K. Yu, Y. Zhang, R. Xu, D. Jiang, L. Luo, Q. Li, Z. Zhu, W. Lu, Field emission behavior of cuboid zinc oxide nanorods on zinc-filled porous silicon, Solid State Communications, 133(2005) 43-47
    22.王军林,夏义本,居建华等,金刚石/多孔硅复合材料的性能表征,光学学报,21(6)(2001)753-756
    23. L. Zhang, J. L. Coffer, D. Xu, R. F. Pinizzitti, Surface modification of porous silicon by aluminum isopropoxide and its impact on electroluminescence, J. Electrochem Soc., 143(1996) 1390-1393
    24. S. P. Duttagupta, P. M. Fauchet, X. L. Chen, S. A. Jenekhe, Fabrication and characterization of light emitting porous silicon and polymer nanocomposites,??Mater. Res. Soc. Symp. Proc., 452(1997)473-478
    25. S. P. Sattagupta, X. L. Chen, S. A. Jenekhe, P. M. Fauchet, Microhardness of porous silicon films and composites, Solid State Commun., 101(1997) 33-37
    26. P. Steiner, F. Kozlowski, M. Wielunski, W. Lang, Enhanced blue-light emission from an indium-treated porous silicon device, Jpn. J., Appl. Phys., 33(1994) 6075-6077
    27. D. Xu, G. Guo, L. Gui, et al, Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates, Appl. Phys. Lett., 75(1999) 481
    28. W. Zhu, G. P. Kochanski, S.Jin, et al., Electron field emission from ion-implanted diamond, Appl. Phys. Lett., 67(8) (1995) 1157-1159
    29. V. V. Zhirnobv, et al, Wide band gap materials for field emission devices, J. Vac. Sci. Technol., A15(3) (1997)1733-1738
    30. G. A. J. Amaratunga, S. R. P. Silva, Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes, Appl. Phys. Lett., 68(1996) 2529-2531
    31. A. A. G. Dviskill-Smith, D. G. Hasko, H. Ahmde, The "nanotriode:" A nanoscale field-emission tube, Appl. Phys. Lett., 75(1995) 2845-2847
    32. C. Adessi, M. Devel, Theoretical study of field emission by single-wall carbon nanotubes, Phys. Rev., B 62(20)(2000) R13314-13317
    33. K. Dean, B. Chalamala, The environmental stability of field emission from single-walled carbon nanotubes, Appl. Phys. Lett., 75(1999)3017-3019
    34. Q. H. Wang, T. D. Corrigan, J. Y. Dai, et al., Field emission from nanotube bundle emitters at low fields, Appl. Phys. Lett., 70(1997) 3308-3310
    35. W. B. Choi, D. S. Chung, F. H. Kang, et al., Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75(1999)3129-3131
    36. V. V. Zhirnov, A. B. Voronin, E. I. Givargizov, et al., Emission stability and high current performance of diamond-coated Si emitters, J. Vac. Sci. Technol., B 14(3) (1996)2034-2036
    37. M. Takai, M. Yamashita, H. Wille, S. Yura, et al., Enhanced electron emission??from n-type porous Si field emitter arrays, Appl. Phys. Lett., 66(4) (1995) 422-423
    38. D. Kim, S. J. Kwon, J. D. Lee, Fabrication of silicon field emitters by forming porous silicon, J. Vac. Sci.Technol., B14(3)(1996) 1906-1909
    39. F. Y. Meng, W. K. Wong, N. G. Shang, et al., Multi-tip cones induced by ion-bombardment, Vacuum, 66(2002) 71-76
    40. E. Goglides, S. Grigoropoulos, A. G. Nassiopoulous, Highly anisotropic room-temperature sub-half-micron Si reactive ion etching using fluorine only containing gases, Microelectron. Engng., 27(1995)449-452
    41. W. Chen, H. Ahmed, Fabrication of high aspect ratio silicon pillars of <10 nm diameter, Appl. Phys. Lett., 63(8)(1993)1116-1118
    42. Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Electron field emission from silicon nanowires, Appl. Phys. Lett., 75 (1999) 1700-1702
    43. F. Sáinchez, J. L. Morenza, R. Aguiar, et al., Whiskedike structure growth on silicon exposed to ArF excimer laser irradiation, Appl. Phys. Lett., 69(5) (1996) 620-622
    44. F. Sánchez, J. L. Morenza, R. Aguiar, et al., Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation, Appl. Phys., A66(1)(1998) 83-86
    45. T. H. Her, R. J. Finlay, C. Wu, et al., Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett., A73(12) (1998) 1673-1675
    46. C. Wu, C. H. Crouch, L. Zhao, et al., Near-unity below-band-gap absorption by microstructured silicon, Appl. Phys. Lett., 78(2001)1850-1852
    47. A. J. Pedraza, J. D. Fowlkes, D. H. Lowndes, Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation, Appl. Phys. Lett., 74(1999)2322-2324
    48. A. V. Karabutov, V. D. Frolov, E. N. Loubnin, et al., Low-threshold field electron emission of Si micro-tip arrays produced by laser ablation, Appl. Phys., A76(2003) 413-41649. B. C. Boswell, P. R. Wilshaw, Emission characteristics and morphology of wet etched cathodes in p-type silicon, J. Vac. Sci. Technol., B11(2) (1993) 412-415
    50. A. M. E. Hoeberechts, G. G. P. van Gorkom, P. Johnson, Proc. 1st. Intern. Vac. Microelect. Conf., Williamsburg, VA. June 2-2(1988)13-15
    51. S. E. Jacobson, N. A. Cade, K. A. Lee, Fabrication of sharp field-emission structures using ion-beam milling, Vacuum Microelectronics, 99(1989)5-8
    52. M. J. Colgan, M. J. Brett, Field emission from carbon and silicon films with pillar microstructure, Thin Solid Films, 389(2001)1-4
    53. F. Y. Meng, W. K. Wong, N. G. Shang, et al., Multi-tip cones induced by ion-bombardment, Vacuum, 66(2002) 71-76
    54. Carey J E, Crouch C H, Younkin R, et al., Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon, Proceedings of the 14th International Microelectronics Conference, 2001; 75-80
    55. L. Chen, M. M. El-Gomati, Field emission studies of tungsten-coated silicon-based field emitters, Ultramicroscopy, 79(1999)135-140
    56. Byeong-Kwon Ju, Heung-Woo Park, Yun-Hi Lee, et al., Field emission properties of Mo-coated Si field emitter arrays and formation of molybdemum silicide, 9th Proceedings of the International Vacuum Microelectronics Conference, (1996) 221-225
    57. J. Liu, U. T. Song, A. N. Stepanova, et al., Modification of Si field emitter surfaces by chemical conversion to SiC, J. Vac. Sci. Technol.,B12(1994) 717-721
    58. T. Xie, W. A. Mackie, P. R. Davis, Field emission from ZrC films on Si and Mo single emitters and emitter arrays, J. Vac. Sci Technol., B14(1996) 2090-2092
    59. M. Endo, H. Nakane, H. Adachi, Field emission characteristics of transition-metal nitrides, J. Vac. Sci Technol., B14(1996) 2114-2118
    60. S. Y. Kang, J. H. Lee, Y. H. Song, et al., Emission characteristics of TiN-coated silicon field emitter arrays, J. Vac. Sci Technol., B16(2)(1998)871-874
    61. Y. Saito, S. Kawata, H. Nakane, et al., Emission characteristics of niobium nitride field emitters, Appl. Surf. Sci., 146(1999) 177-181
    62. M. Takai, T. Iriguchi, H. Morimoto, Electron emission from gated silicide field??emitter arrays, J. Vac. Sci. Technol., B16(2)(1998) 790-792
    63. Y. J. Yoon, G. B. Kim, H. K. Baik, Effects of phase and thickness of cobalt silicide on field emission properties of silicon emitters, J. Vac. Sci. Technol., B17(2)(1999) 627-631
    64. J. Liu, V. V. Zhirnov, G. J. Wojak, et al., Electron emission from diamond coated silicon field emitters, Appl. Phys. Lett., 65(1994) 2842-2842
    65. E. I Givargizov, V. V. Zhimov, A. N. Stepanova, et al., Field emission characteristics of polycrystalline and single-crystalline diamond grown on Si tips, Appl. Surf. Sci., 94-95(1996) 117-122
    66. N. S. Xu, J. C. She, S. E. Huq, et al., Enhancing electron emission from silicon tip arrays by using thin amorphous diamond coating, Appl. Phys. Lett., 73(25)(1998) 3668-3670
    67. N. S. Xu, Y. Tzeng, R. V. Latham, Similarities in the cold electron-emission characteristics of diamond-coated molybdenum electrodes and polished bulk graphite surfaces, J. Phys. D. Appl. Phy., 26(1993) 1776-1780
    68. A. A. Talin, T. E. Felter, T. A. Friedmann, et al., Electron field emission from amorphous tetrahedrally bonded carbon films, J. Vac. Sci. Technol., A14(3)(1996) 1719-1722
    69. J. Liu, V. V. Zhirnov, A. F. Myers, et al., Field emission characteristics of diamond coated silicon field emitters, J. Vac. Sci. Technol., B13(2)(1995) 422-426
    70. J. Robertson, Amorphous carbon cathodes for field emission display, Thin Solid Films, 296(1997) 61-65
    71. Sang-Hyuk Ahn, Kwang-Ryeol Lee, Kwang Yong Enn, et al., Stabilized field emission behavior of diamond-like carbon-coated Si tips, Surface and Coatings Technology, 120-121(1999)734-739
    72. C.-G. Ko, B.-K. Ju, Y.-H. Lee, et al., Fabrication and characterization of diamond-like carbon coated knife edge field emitter array, Jpn. J. Appl. Phys., 35 (1996) L1305-1307
    73. M.-Y. Jung, D. W. Kim, S. S. Choi, et al., Fabrication of a nanosize Si-tip coated with a thin diamond-like carbon film, Thin Solid Films, 294(1997) 157-15974. X. D. Bai, C. Y. Zhi, S. Lin, et al., High-density uniformly aligned silicon nanotip arrays and their enhanced field emission characteristics, Solid State Communications, 125(2003) 185-188
    75. P. G. Collins, A. Zettl, A simple and robust electron beam source from carbon nanotubes, Appl. Phys. Lett., 69(13)(1996)1969-1971
    76. Kazuhiko Matsumoto, Seizo Linosita, Yoshitaka Gotoh, et al., Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition, Appl. Phys. Lett., 78(4)(2001) 539-540
    77. Minh Pin, Tuyen LTT, Ono T, et al., Carbon nanotube on a Si tip for electron field emitter, Jpn. J. Appl. Phys., Part2 41(12A) (2002) L1409-1411
    78. Y. M. Wong, W. P. Kang, J. L. Davidson, et al., Field emitter using multiwalled carbon nanotubes grown on the silicon tip region by microwave plasma-enhanced chemical vapor deposition, J. Vac. Sci. Technol., B21(1)(2003) 391-394
    79. W. P. Kang, A. Wisitsora-at, J. L. Davidson, et al., Electron emission from silicon tips coated with sol-gel (Ba_(0.67)Sr_(0.33))TiO_3 ferroelectric thin film, J.. Vac. Sci. Technol., B19(3)(2001) 1073-1076
    80. A. A. Evtukh, E. B. Kaganovich, V. G. Litovchenko, et al., Silicon tip arrays with nanocomposite film for electron field emission applications, Mater Sci. Engng., C19(2002)401-405
    81. W. K. Wong, F. Y. Meng, Q. Li, et al., Field-emission properties of multihead silicon cone arrays coated with cesium, Appl. Phys. Lett., 80 (2002) 877-879
    82. Byung Wook Han, Heni Seung Lee, Byung Tae Ahn, Field emission characteristics of CoSi_2/TiN-coated silicon emitter tips, Applied Surface Science, 187(2002) 45-50
    83. M. Hajra, N. N. Chubun, A. G. Chakhovskoi, et al., Field emission characterisation of silicon tip arrays coated with GaN and diamond nanoparticle cluster, Vacuum Microelectronics Conference 2001 IVMC 2001 Proceeding of the 14th International, (2001) p121-122
    84. V. V. Zhirnov, L. Bormatova, E. I. Givargizov, et al., Field emission properties of Au-Si eutectic, Applied Surface Science, 94/95(1996) 144-14785. Kang WP, Wisitsora-at A, Dacidson JL, et al., Effect of annealing temperature on the electron emission characteristics of silicon tips coated with Ba_(0.67)Sr_(0.33)TiO_3 thin film, J. Vae. Sci. Thchnol., B21(1)(2003) 453-457
    86. J. R. Jessing, D. L. Parker, M. H. Weichold, Porous silicon field emission cathode development, J. Vac. Sci. Technol., B14(3)(1996) 1899-1901
    87. I. Kleps, C. Bostan, D. Nicolaescu, et al., Porous silicon field emitters for display applications, Applied Surface Science, 111(1997) 228-232
    88. I. Kleps, D. Nicolaescu, N. Garcia, et al., Investigation of porous silicon morphology for electron emission applications, Ultramicroscopy, 73(1998) 237-245
    89. T. Komoda, Y. Honda, T. Hatai, et al., SID 2000 Digest, 31(2000) 428-431
    90. K.-Y.Lee, K. Fujimoto, S. Ohkura, et al., Study of electron field emission and structural properties of nanostructured carbon thin films deposited by hot-filament-assisted reactive sputtering using methane gas, Vacuum, 66 (2002) 239-243
    91. X. T. Zhou, H. L. Lai, H. Y.Reng, et al., Thin β-SiC nanorods and their field emission properties, Chemical Physics Letters, 318(2000) 58-62
    92. Lee Jan-Sung, Liu Kuo-Shung, Lin I-Nan, Effect of substrate materials on the electron field emission characteristics of chemical vapor deposited diamond films, J. Appl. Phys., 82(7)(1997)3310-3313
    93. K. K. Hirakud, T. Kurata, N.Mutsukura, et al., Field-emission properties of diamond grains grown on textured Fe/Si substrates, J. Appl. Phys., 87(4)(2000) 2026-2030
    94. D. S.Mao, J. Zhao, W.Li, et al., Electron field emission from filtered arc deposited diamond-like carbon films using Au and Ti layers, Diamond and Related Materials, 8(1999) 52-55
    95. S. M.Huang, Z.Sun, C. W. An, et al., Electron field emission from polymer films treated by a pulsed ultraviolet laser, J. Appl. Phys., 90(5)(2001) 2601-2605
    96. Olivier M. Kuttel, U. GrOning, Ch. Emmenegger, et al., Field emission from??diamond, diamond-like and nanostructured carbon films, Carbon, 37(1999)745-72
    97. Lee Cheol Jin, Park Jeunghee, Kang Seung Youl, et al., Growth and field electron emission of vertically aligned multiwalled carbon nanotubes, Chemical Physics Letters, 326(2002)175-180
    98. Y. J. Li, S. P. Lan, B. K. Tay, et al, Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties, Diamond and Related Materials, 10(2001)878-882
    1. L. Zhang, J. L. Coffer, D. Xu, R. F. Pinizzitti, Surface modification of porous silicon by aluminum isopropoxide and its impact on electroluminescence, J. Electrochem. Soc., 143(4)(1996)1390-1393
    2. X.H. Sun, H. Y. Peng, Y. H. Tang, et al., Surface reactivity of Si nanowires, J.. Appl. Phys., 89(2000)6396
    3. C.P. Li, X. H. Sun, N. B. Wong, et al., Silicon Nanowires Wrapped with Au Film, J. Phys. Chem., BI06 (2002) 6980
    4. K.H. Park, J. S. Ha, W. S. Yun, et al., Room temperature observation of single electron tunneling effect in self-assembled metal quantum dots on a semiconductor substrate, Appl. Phys. Lett., 71(11) (1997) 1469-1471
    5. L. Dozsa, E. Horvath, G. Molnar, A. L. Toth, et al., Characteristics of FeSi2 quantum dots on silicon, European Physical Journal-Applied Physics, 27(1-3)(2004)85-88
    6. P. Zhang, P. S. Kim, T. K. Sham, XANES studies of CdS nano-structures on porous silicon Journal of electron spectroscopy and related phenomena 119(2001)229-233
    7. S.I. Stupp. V. Lebonhear, K. Walker, et al., Supramolecular materials: self-organized nanostructures, Science, 276(1997)384-389
    8. I. Coulthard, T. K. Sham, Novel preparation of noble metal nanostructures utilizing porous silicon, Solid State Commun, 105(1998)751-754
    9. A.E. Pap, K. Kordás, R. Peura, et al, Simultaneous chemical silver and palladium deposition on porous silicon; FESEM, TEM, EDX and XRD investigation, Appl. Surf. Sci., 201(2002)56-60
    10. T. Tsuboi, T. Sakka, Y. H.Ogata, Metal deposition into a porous silicon layer by immersion plating: influence of halogen ions, J. Appl. Phys., 83(1998)4501-4506
    11. Z. A. Ansari, K. Hong, C. Lee, Structural and electrical properties of porous silicon with d-sputtered Cu films, Mater. Sci. Eng., B90(2002)103-109
    12. C. Baratto, G. Sberveglieri, E. Comini, et al., Gold-catalysed porous silicon for NO_x sensing, Sens. Actuators, B68(2000)74-80
    13. S. Fan, M. G. Chapline, N. R. Franklin, et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283(1999)512-514
    14. S. Ghosh, K. Hong, C. Lee, Structural and physical properties of thin copper films deposited on porous silicon, Mater. Sci. Eng., B96(2002)53-59
    15. A. R. Ramos, F. Pászti, E. Kotai, et al., Synthesis of cobalt silicide on porous silicon by high dose ion implantation, Nucl Instru. And Meth. in Phys. Res., B178(2001)283-286
    16. O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep., 38(2000)1-126
    17. X. J. Li, X. Hu, Y. Jia, et al., Tunable superstructures in hydrothermally etched iron-passivated porous silicon, Appl. Phys. Lett., 75 (1999) 2906-2908
    18. Y. H. Zhang, X. J. Li, L. Zheng, et al., Nondegrading photoluminescence in porous silicon, Phys. Rev. Lett., 81(1998)1710-1713
    19. X. J. Li, D. L. Zhu, Q. W. Chen, et al., Strong-and nondegrading-luminescent porous silicon prepared by hydrothermal etching, Appl. Phys. Lett., 74(1999)389-391
    20. S. Warren, A. Reitzle, A. Kazimirov, J. C. Ziegler, O. Bunk, L. X. Cao, F. U. Renner, D. M. Kolb, M. J. Bedzyk, J. Zegenhagen, A structrure study of the electroless deposition of Au on Si(111):H, Surface Science, 496 (2002) 287-298
    21. Hiroto Miyake, Shen Ye, Masatoshi Osawa, Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry,Electrochemistry Communications, 4(2002)973-977
    22. S.-Q. Wang, J.W. Mayer, Thermally induced reactions of thin Ti and Nb films with SiO_2 substrates, J. Appl. Phys., 67(1990)2932
    23. Q. Wan, T. H. Wang, C. L. Lin Self-assembled Au-Si nanocones: synthesis and electron field emission characteristics, Applied Surface Science, 221(2004)38-42
    24. G. Oskam, J. G. Long, A. Natarajan, and P. C. Searson, Electrochemical deposition of metals onto silicon, at. Phys., D31(1998)1812
    25. B. C. Chung, G. A. Marshall, C. W. Pearce, and K. P. Yanders, The prevention of Si pitting in hydrofluoric acid cleaning by additions of hydrochloric acid, J. Electrochem. Soc., 144(1997)652
    26. G. J. Norga, M. Platero, K. A. Black, A. J. Reddy, J. Michel, and L. C. Kimerling, Mechanism of copper deposition on silicon from dilute hydrofluoric acid solution, J. Electrochem. Soc., 144(1997)2081
    27. T. Ohmi, T. Imaoka, T. Kekehiko, T. Kezuka, J. Takano, and M. Kogure, Degregation and removal of metallic impurity at interface of silicon and fluorine etchant, J. Electrochem. Soc., 140(1993)811
    28. R. Sirnivasan and I. I. Suni, Kinetic analysis of Au deposition from aqueous HF onto Si(111) by surface second harmonic generation, J. Electrochem. Soc., 146(1999)507
    29. P. Gorostiza, P. Diaz. E Sanz, and J. R. Morante, Different behavior in the deposition of plenum form HF solutions on n- and p- type (100) Si substrates, J. Electrochem. Soc., 144(1997)4119
    30. H. Morinaga, M. Suyama, and T. Ohmi, Mechanism of metallic particles growth and metal-induced pittings on Si wafer surface in wet chemical processing, J. Electrochem. Soc., 141(1994)2834
    31. X. Cheng, G. Li, E. A. Kneer, B. Vermeire, H. G. Parks, and S. Raghavan, Electrochemical impedance spectroscopy of copper deposition on silicon from dilute hydrofluoric acid solutions, J. Electrochem. SOC., 145(1998)352
    32. L. A. Nagahara, T. Ohmori, K. Hashimoto, and A. Fujishima, The influence of hydrofluoric acid concentration on electroless copper deposition onto silicon, J.Electroanal. Chem., 333 (1992) 363
    33. C. Li, E. A. Kneer, B. Vermeire, H. G. Parks, and S. Raghavan, A comparative electrochemical study of copper deposition onto silicon from dilute and buffered hydrofluoric acids, J. Electrochem. Soc., 145(1998)241
    34. F. R. Fan, T. V. Fan, T. V. Shea, and A. Bard, Semiconductor electrodes LIV, J. Electrochem. Soc., 131(1984)828
    35. O. M. R. Chayan, J. J. Chen, and H. Y. Chien, Copper deposition on Hf etched silicon surface: Morphological and kinetic studies, d. Electrochem. Soc., 143(1996)92
    36. S. J. Silverman and D. R. Benn, Junction delineation in silicon by gold chemiplating, J. Electrochem. Soc., 105(3)(1958) 170
    37. S. T. Ahn and W. A. Tiler, A stain technique for the study of two-dimensional dopant diffusion in silicon, J. Electrochem. Soc., 135(1988)2370
    38. H. Sugimura and N. Nakagiri, Scanning probe anodization: Patterning of hydrogen-terminated silicon surfaces for the nanofabrication of gold structures by electroless plating, J.. Vac. Sci. Technol., B13(5)(1995)1933
    39. C. Y. Mak, B. Miller, L. C. Feldman, B. E. Weir, G. S. Higashi, E. A. Fitzgerald, T. Boone, C. J. Doherty, and R. B. van Dover, Selective electroless copper metallization of palladium silicide on silicon substrates, Appl. Phys. Lett., 59(26) (1991)3449
    40. P. M. Hoffmann, A. Radisic, and P. C. Searson, Growth kinetics for copper deposition on Si (100) from pyrophosphate solution, J. Electrochem. Soc., 147(7)(2000)2576
    41. K. Morisawa, M Ishida, S. Yae, and Y. Nakato, Electrochemical metal deposition on atomically nearly-fiat silicon surfaces accompanied by nano-hole formation, Electrochim. Acta., 44(1999)3725
    42. M. Jeske, J. W. Schultze, M. (?), H. Münder, Electrodeposition of metals into porous silicon, Thin Solid Films, 255(1995)63-66
    43. J. Hilliard, D. Andsager, L. Abu Hassan, Hasan M. Nayfeh, and M. H. Nayfeh D, Infrared spectroscopy and secondary ion mass spectrometry of luminescent,nonluminescent, and metal quenched porous silicon, J. Appl. Phys., 76(4) (1994) 2423-2428
    44. F. A. Harraz, T. Sakka, Y. H.Ogata, Immersion plating of copper using (CF_3SO_3)_2Cu onto porous silicon from organic solutions, Electrochim. Acta., 46 (2001)2805-2810
    45. J. Sasano, R. Murota, Y. Yamauchi, T. Sakka, Y. H.Ogata, Re-dissolution of copper deposited onto porous silicon in immersion plating, J. Electroanal. Chem., 559(2003)125-130
    46. A. Inberg, E. Ginsburg, Y. Shacham-Diamand, N. Croitoru, A. Seidman, Electroless and sputtered silver-tungsten thin films for microelectronics applications, Microelectronic Engineering, 65(2003) 197-207
    47. F. Ronkel, Schuitze JW, R. Arens-Fisher, Thin Solid Film, 276(1995) 40
    48. C. Renaux, V. Scheuren, D. Flandre, New experiments on the electrodeposition of iron in porous silicon, Microelectronics Reliability, 40(2000)877-879
    1. Z. Zhang, X. H. Fan, L. Xu, Lee, et al., Morphology and growth mechanism study of self-assembled silicon synthesized by thermal evaporation, Chem. Phys. Lett., 337(2001) 18
    2. A. A. Evtukh, Influence of surface morphology of the polycrystalline silicon on field electron emission, Thin Solid Films, 337(1999)261
    3. K. L. Jensen, Y. Y. Lan, D. McGregor, Analysis of a photon assisted field emission device, Appl. Phys. Lett., 77(2000)585
    4. M. Hidenori, M. Kentaro, Y. Kuniyoshi, Electron emission from silicon planar emitters, J. Vac. Sci. Technol., B21(4)(2003) 1612
    5. T. Utsumi, Vacuum microelectronics: what's new and exciting, IEEE Trans. Electron Devices, 38(1991)2276
    6. A. V. Karabutor, V. D. Frolov, E. N.Loubnin, et al., Low-threshold field electron emission of Si micro-tip arrays produced by laser ablation, Appl. Phys., A76(2003)4137. V. Zorba, I. Alexandrou, I. Zergioti, et al., Laser microstruturing of Si surfaces for low-threshold field-electron emission, Thin Solid Film, 492(2004)453-454
    8. S. E.Huq, G. H.Grayer, S. W.Moon, et al., Fabrication and characterisation of ultra sharp silicon field emitters, Material Science and Engineering, B51(1998) 150
    9. S. Kazuaki, T.Michiharu, I.Yasuhiko, et al., Field electron emission device using silicon nanoprotrusions, J. Vac. Sci. Technol., B20(3)(2002) 787
    10. G. Sotgiu, L. Schirone, Microstructured silicon surface for field emission devices, Applied Surface Science, 240(2005)424
    11. F. Y. Meng, W. K. Wong, N. G. Shang, et al., Multi-tip cones induced by ion-bombardment, Vacuum, 66(2002)71
    12. M. Lu, M.-K. Li, L.-B. Kong, et al., Synthesis and characterization of well-aligned quantum silicon nanowires arrays, Composites, B35(2004)179
    13. I. Makoto, K. Takeshi, F. Masato, et al., A Si nano-micro-wire array on a Si(111) substrate and field emission devies applications, Superlattices and Microstructures, 34(2003)576
    14. Y. H. Tang, X. H. Sun, F. C. K. Au, et al., Microstructure and field-emission characteristecs of boron-doped Si nanoparticle chairs, Appl. Phys. Lett., 75(11) (2001)1673
    15. K. Yu, Y. Zhang, L. Luo, et al., Efficient field emission from electrochemcally fabricated sillicon nanocrystallite films, Physica, B348(2004)391
    16. K. Yu, W.-M. Wang, Z.-Q. Zhu, et al., Field emission from silicon nanocrystallite films with compact aligment uniform orientation, Chin. Phys. Lett., 21(1)(2004) 203
    17. I. Kleps, D. Nicolaescu, C. Lungu, et al., Porous silicon field emitters for display applications, Appl. Surf. Sci., 111(1997)186
    18. D. Nicolaecu, V. Filip, P. R.Wilshaw, Modeling of the field emission microtriode with emitter covered with porous silicon, Appl. Surf Sci., 94/95(1996)79
    19. N. Koshida, X.Sheng, T. Komoda, Quasiballistic electron emission from porous silicon diodes, Appl. Surf. Sci., 146(1999) 37120. V. A. Brodvoy, V. F.Bibik, V. A. Skryshevsky, Autoelectronic emission of porous silicon, Appl. Surf. Sci., 172(2001)144
    21. V. Baranauskas, M. Fontana, Z. J. Guo, et al., Field-emission properties of macroporous silicon grown at high anodization voltages, J. Appl. Phys., 97(2005) 014912
    22. W. K. Yue, D. L. Park, M. H. Weichold, Porous silicon electron-emitting source, Tech. Dig. Int. Electron Devices Meet, (1990) 167
    23. M. Takai, M. Yamashita, H. Wille, et al., Enhanced electron emission from n-type porous Si field emitter arrays, Appl. Phys. Lett., 66(1995) 422
    24. E. Boswell, T. Y. Seong, P. R. Wilshaw, Studies of porous silicon field emitters, J. Vac. Sci. Technol., B13(1994) 437
    25. J. R. Jessing, D. L. Park, M. H. Weichold, Porous silicon field emission cathode devolopment, J. Vac. Sci. Technol., B14(1996) 1899
    26. W. J. Bintz, N. E. McGruer, SiO_2-induced silicon emitter emisson instability, J. Vac. Sci. Technol., B12(1994) 697
    27. Q. -A. Huang, Sin, K. O. Johnny, M. C. Poon, An interpretation of SiO_2-induced emission instability in silicon field emitter, Appl. Surf Sci., 136(1998)36
    28. D. Temple, D. Palmer, J. Mancusi, Measured performance of silicon field emitter arrays in gaseous ambients, et al., IVMC 98, Tech. Dig. 11th Int. Vac. Microelectronics Conf. Asheville, USA. (1998)99-100
    29. Q. Li, J. F. Xu, H. B.Song, et al., Instability and reliability of silicon field emission array, J. Vac. Sci. Technol., B14(1996) 1889
    30. K.-Y. Lee, S. Honda, M. Katayama, et al., Synthesis of conical Si array on Si(100) for a field electron emitter by plasma-enhanced chemical vapor deposition, Thin Solid Films, 464-465(2004)194-198
    31. T. Takayuki, I. Kouji, Sung-G.R., et al., Fabrication of nitrongen-doped diamond field emitter utilizing porous silicon and molding thchnique, Jpn. J. Appl. Phys., 39(2000) L56
    32. I. W. Rangelow, St. Biehl, High aspect ratio silicon tips field emitter array, Microelectronic Engineering, 57(2001)61333. L. Chen, M. M. El-Gomati, Field emission studies of tungsten-coated silicon-based field emitters, Ultramicroscopy, 79(1999)135
    34. B. W. Han, H. S. Lee, B. T. Ahn, Field emission characteristics of CoSi_2/TiN-coated silicon emitter tips, Appl. Surf. Sci., 187(2002) 45
    35. J. J. Li, W. T. Zheng, C. Z. Gu, et al., Electron field emission from silicon tip arrays coated by magnetron sputtering carbon nitride film, Solid State Communications, 132(2004)253
    36. S.Fan, M. G. Chapline, N. R. Franklin et al., Self-oriented regular array of cabon nanotubes and their field emission properties, Science, 283(1999)512
    37. P. N. Minh, L. T. T. Tuyen, T.Ono, et al., Slective growth of cabon nanotubes on Si microfabricated tips and application for electron field emitters, J. Vac. Sci. Technol., B21(4)(2003)1705
    38. M. Lu, M. K. Li, Z. J. Zhang, et al., Synthesis of cabon nanotubes/Si nanowires core-sheath structure arrays and their field emssion properties, Appl. Surf. Sci., 218(2003)195
    39. K. Seeger, R.E. Palmer, Fabrication of silicon cones and pillars using rough metal films as plasma etching masks, Appl. Phys. Lett., 74(1999) 1627
    40. M. Y. Jung, D. W. Kim, S.S. Choi, Fabrication of Sub-10nm Si-tip Array Coated with Si_3N_4 Thin Film For Potential NSOM and Liquid Metal Ion Source Applications, Microelectron. Eng., 53(2000) 399
    41. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett., 76(2000)2071.
    42. Kazuhiko Matsumoto, Seizo Kinosita, Yoshitaka Gotoh, Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition, Appl. Phys. Lett., 78(4) (2001) 539-540
    43. Y. M. Wong, W. P. Kang, J. L. Davidson, et al., Field emitter using multiwalled carbon nanotubes grown on the silicon tip region by microwave plasma-enhanced chemical vapor deposition, J. Vac. Sci. Technol., B21(1)(2003)391-394
    44. P. R. Schwoebel and I. Brodie, Surface-Science aspects of vacuum??microelectronics, J. Vac. Sci. Technol., B13(4)(1995)1391-1394
    45. R. H. Fowler, L. W. Nordhein, Electron Emission in Intense Electric Fields, Proc. R. Soc. London, A119(1928)173
    46. E. L. Murphy, R. H. Good, et al., Thermionic emission, field emission, and the transition region, Phys. Rev., 102(1956)1464
    47. K. L. Jensen, Exchange-correlation, dipole, and image charge potentials for electron sources: Temperature and field variation of the barrier height, J. Appl. Phys., 85(1999)2667
    48. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., B136(1964) 864
    49. N. D. Lang, A. Yacoby, Y. Lmry, Theory of a single-atom point source for electrons, Phys. Rev. Lett., 63(1989)1499
    50. Y. Gohda, Y. Nakamura, K. Watanabe, et al., Self-Consistent Density Functional Calculation of Field Emission Currents from Metals, Phys. Rev. Lett., 85(2000) 1750
    51. Waters Richard, Zeghbreck Bart Van, On field emission from a semiconducting substrate, Appl. Phys. Lett., 75(1999) 2410
    52.梁翠果,周清,赵守珍,赵力斌,赵泽发,于宝霞,谢宝森,功函数对场致发射稳定性的影响,真空科学与技术,14(2)(1994)123-128
    53. E. I. Givargizov, V. V. Zhirnov, A. N. Stepanova, et al., Field emission characteristics of polycrystalline and single-crystalline diamond grown on Si tips, Appl. Surf. Sci., 94-95(1996)117-122
    54. N. S. Xu, J. C. She, S. E. Huq, et al., Enhancing electron emission from silicon tip arrays by using thin amorphous diamond coating, Appl. Phys. Lett., 73(25) (1998)3668-3670
    55. K. Yu, Y. Zhang, L. Luo, et al., Efficient field emission from electrochemically fabricated silicon nanocrystallite films, Physica, B348(2004) 391-396.
    56. K. L. Ng, J. Yuan, J. T. Cheung, K. W. Cheah, Electron field emission characteristics of electrochemical etched Si tip array, Solid State Communications, 123(2002)205-20757. O. Bisio, S. Ossicini, L. Pavesi, Porous silicon: quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep., 38(2000)1-126
    58. D. S. Xu, G. Guo, L. Gui, et al., Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates, Appl. Phys. Lett., 75(4) (1999)481
    59. V. Baranauskas, M. Fontana, Zha Jing Guo, H. J. Ceragioli, and A. C. Peterlevitz Field-emission properties of macroporous silicon grown at high anodization voltages, J. Appl. Phys., 97(2005)014912-1~4
    60. F. C. K. Au, K. W. Wong, Y. H. Tang,Y. F. Zhange, I. Bello, S. T. Lee, Electron field emission from silicon nanowires, Appl. Phys.Lett.,75(1999) 1700
    61. G. Sotgiua, L. Schirone, Microstructured silicon surfaces for field emission devices, Applied Surface Science, 240(2005) 424-431
    62. K.e Yu, Yongsheng Zhang, Laiqiang Luo, Weiming Wang, Ziqiang Zhu, Qiong Li, Jianzhong Zhou, Guangda Yang, Wei Lu, Efficient field emission from electrochemically fabricated silicon nanocrystallite films, Physica, B348(2004) 391-396
    63. M. Lu, M. K. Li, Z. J. Zhang, H. L. Li, Synthesis of carbon nanotubes/Si nanowires core-sheath structure arrays and their field emission properties, Applied Surface Science, 218(2003) 195-201
    64. J. C. She, N. S. Xu, S. E. Huq, et al., Silicon tip arrays with ultrathin amorphous diamond apexes. Appl. Phys. Lett., 81(22)(2002)4257
    65. Y. H. Zhang, X. J. Li, L. Zheng, et al., Nondegrading photoluminescence in porous silicon, Phys.Rew. Lett., 81(8)(1998) 1710
    66. X. J. Li, D. L. Zhu, Q. W. Chen, et al., Strong- and nondegrading-luminescent porous silicon prepared by hydrothermal etching, Appl. Phys. Lett., 74(3)(1999) 389
    67. Q. W. Chen, X. Li, Y. Zhang, Improvement mechanism of photoluminescence in iron-passivated porous silicon, Chemical Physics Letters, 343(2001)507
    68.王成伟 纳米有序阵列复合结构的制备及其场致电子发射特性研究 博士学??位论文(兰州大学)(2001)69-71
    69. S.-Y. Kang, J. H. Lee, Y.-H. Song, et al., Emission characteristics of TiN-cated silicon field emitter arrays, J. Vac. Sci. Technol., B16(2)(1998)871
    70. B.-K. Ju, H.-W. Park, Y.-H. Lee, et al., Field emission properties of Mo-coated Si field emitter arrays and formation of Molybdenum silicide, 9th Inter. Vacuum Microelectronics Conference, St. Petersburg(1996) 221
    71. B. Gunther, F. Kaldasch, G. Muller, et al., Uniformity and stability of field emisson from bare and metal costed Si tip arrays, J. Vac. Technol., B21(1)(2003) 427
    72. Q. -A. Huang, Instability of field emission from silicon covered with thin oxide due to electron trapping, J. Appl. Phys., 79(1996)3703
    1. Z. Zhang, X. H. Fan, L. Xu, Lee, et al., Morphology and growth mechamism study of self-assembled silicon systhesized by thermal evaporation, Chem. Phys. Lett., 337(2001)18
    2. A. A. Evtukh, Influence of surface morphology of the polycrystalline silicon on field electron emission, Thin Solid Films, 337(1999) 261
    3. K. L. Jensen, Y. Y. Lan, D. McGregor, Analysis of a photon assisted field emission device, Appl. Phys. Lett., 77(2000) 585
    4. M. Hidenori, M. Kentaro, Y. Kuniyoshi, Electron emission from silicon planar emitters, J. Vac. Sci. Technol., B21(4)(2003) 1612
    5. I. Kleps, D. Nicolaescu, C. Lungu, et al., Porous silicon field emitters for display applications, Appl. Surf. Sci., 111(1997) 186
    6. D. Nicolaecu, V. Filip, P. R. Wilshaw, Modeling of the field emission microtriode with emitter covered with porous silicon, Appl. Surf Sci., 94/95(1996) 79
    7. N. Koshida, X. Sheng, T. Komoda, Quasiballistic electron emission from porous silicon diodes, Appl. Surf. Sci., 146(1999) 371
    8. V. A. Brodvoy, V. F. Bibik, V. A. Skryshevsky, Autoelectronic emission of porous silicon, Appl. Surf. Sci., 172(2001) 1449. V. Baranauskas, M. Fontana, Z. J. Guo, et al., Field-emission properties of macroporous silicon grown at high anodization voltages, J. Appl. Phys., 97(2005) 014912
    10. L. Chen, M. M. El-Gomati, Field emission studies of tungsten-coated silicon-based field emitters, Ultramicroscopy, 79(1999)135-140
    11. Byeong-Kwon Ju, Heung-Woo Park, Yun-Hi Lee, et al., 9th Proceedings of the International Vacuum Microelectronics Conference, (1996) 221-225
    12. Ishikawa Junzo, et al., Influence of cathode material on emission characteristics of field emitters for microelectronics devices, J. Vac. Sci. Technol., 1311(2)(1993) 403-406
    13. Ishikawa Junzo, Hiroshi Tsuji, Kazunori Inoue, et al., Estimation of metal-deposited field emitters for the microvacuum tube, Jpn. J. Appl. Phys., 32(3A)(1993)342-345
    14. X. T. Zhou, H. L. Lai, H. Y. Peng, Frederick C. K. Au, L. S. Liao, N. Wang, I. Bello, C. S. Lee, S. T. Lee, Thin β-SiC nanorods and their field emission properties, Chemical Physics Letters, 318(2000) 58
    15. M. J. Colgan, M. J. Brett., Field emission from carbon and silicon films with pillar microstructure, Thin Solid Film, 389(2001)1
    16. Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora-at, K. L. Soh, T. Fisher, LiQ, J. F. Xu, Field emitter using multiwalled carbon nanotubes grown on the silicon tip region by microwave plasma-enhanced chemical vapor deposition, J. Vac. Sci. Technol., B21(1)(2003)391
    17. Q. Wan, T. H. Wang, C. L. Lin Self-assembled Au-Si nanocones: synthesis and electron field emission characteristics, Applied Surface Science, 221(2004)38-42
    18. R. Wachter, A. Cordery, S. Proffitt, J. S. Foord, Influence of film deposition parameters on the field emission properties of diamond-like carbon films, Diamond and Related Materials, 7(1998) 687
    19. F. Y. Chuang, C. Y. Sun, H. F. Cheng, W. C. Wang, I. N. Lin, Effect of morphology on electron emission characteristics of pulsed laser deposited diamond-like films, Appl. Surf. Sci., 113-114(1997)25920. Dean KA and B. R. Chalamala, Current saturation mechanisms in carbon nanotube field emitters, Appl. Phys. Lett., 76 (2000) 375
    21. K. A. Dean, P. V. Aliment and B. R. Chalamala, Three behavioral states observed in field emission from single-walled carbon nanotubes, J. Vac. Sci. Technol., B17(1999) 1959
    1. T.P. Nguyen, P. Le Rendu, M. Lakehal, E Joubert, P. Destrukl, Poly (p phenylene winylene)/porous silicon composites, Materials Science and Eengineering, B69-70 (2000) 177-181
    2. T. Boufadena, N. Chaabena, M. Christophersenb, B. El Jania, GaN growth on porous silicon by MOVPE, Microelectronics Journal, 34 (2003) 843-848
    3. R. Hérino, Nanocomposite materials from porous silicon, Materials Science and Eengineering, B69-70 (2000) 70-76
    4. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283 (1999) 512-514
    5. J.L. Gole, A. Fedorov, P. Hesketh, C. Burda, From nanostructures to porous silicon: sensors and photocatalytic reactors, Phys. Stat. Sol., C1 (2004) S 188-197
    6. Y.Y. Li, E Cunin, J. R. Link, et al, Polymer replicas of photonic porous silicon for sensing and drug delivery applications, Science, 299 (2003) 2045-2047
    7. Z. A. Ansari, K. Hong, C.Lee, Structural and electrical properties of porous silicon with rf-sputtered Cu films, Mater Sci Eng, B90 (2002) 103-109
    8. C. Baratto, G. Sberveglieri, E. Comini, et al., Gold-catalysed porous silicon for NOx sensing, Sens Actuators, B68 (2000) 74-80
    9. G. Mertens, T. Roder, H. Matthias, et al., Two- and three-dimensional photonic crystals made of macroporous silicon and liquid crystals, Appl Phys Lett, 83(2003) 3036-3038
    10. Q. W. Chen, D. L. Zhu, C. Zhu, et al, A way to obtain visible blue light emission in porous silicon, Appl Phys Lett, 82 (2003) 1018-102011. S. Ghosh, K. Hong, C. Lee, Structural and physical properties of thin copper films deposited on porous silicon, Mater Sci Eng, B96 (2002) 53-59
    12. A. R. Ramos, F. Pázti, E. Kotai, et al., Synthesis of cobalt silicide on porous silicon by high dose ion implantation, Nucl Instru Meth Phys Res, B178 (2001) 283-286
    13. A. Coulthard, T. K. Sham, Novel preparation of noble metal nanostructures utilizing porous silicon, SolidState Commun, 105 (1998) 751-754
    14. E. Pap, K. Kordás, R. Peura, et al, Simultaneous chemical silver and palladium deposition on porous silicon; FESEM, TEM, EDX and XRD investigation, Appl. Surf. Sci., 201 (2002) 56-60
    15. T. Tsuboi, T. Sakka, Y. H.Ogata, Metal deposition into a porous silicon layer by immersion plating: influence of halogen ions, J. Appl. Phys., 83 (1998) 4501-4506
    16.王林军,夏义本,居建华等,金刚石膜/多孔硅复合材料的性能表征,光学学报,21(6)(2001)7532756
    17.徐东升,郭国霖,桂琳琳等,以多孔硅为模板制备取向碳纳米管,中国科学,B30(4)(2000)2892293
    18.谢欣云,刘卫丽,门传玲等,多孔硅外延转移技术制备以氮化硅为绝缘埋层的SOI新结构,半导体学报,24(2)(2003)1892193
    19. F. Namavar, H.P. Marusha, N.M. Kalkhoran, Visible electroluminescence from porous silicon np heterojunction diodes, AppL Phys. Lett., 60 (1992) 2514-2516
    20. D.G. Anderson, N. Anwar, B.J. Aylett, et al, Chemical vapor-deposition of metals and metal silicides on the internal surfaces of porous silicon, J. Organomet. Chem., 437 (1992) C7-C12
    21. F. Ronkel, J.W. Schultze, R. Arens-Fischer, Electrical contact to porous silicon by electrodeposition of iron, Thin Solid Films, 276 (1996) 40
    22. P. Steiner, F. Kozlowski, W. Lang, Electroluminescence from porous silicon after metal deposition into the pores, Thin Solid Films, 255 (1995) 49
    23. M. Jeske, J.W. Schultze, H. H. Münder, Porous silicon: base material for nanoteclmologies, Electrochim. Acta, 40 (1995) 143524. M. Jeske, J.W. Schultze, M. (?), H. Münder, Electrodeposition of metals into porous silicon, Thin Solid Films, 255(1995)63
    25. D. Andsager, J. Hilliard, L.H. AbuHassan, M. Plisch, M.H. Nayfeh, Quenching of porous silicon photoluminescence by deposition of metal adsorbates, d. Appl. Phys., 74(1993)4783
    26. D. Andsager, J. Hilliard, M.H. Nayfeh, Behavior of porous silicon emission spectra during quenching by immersion in metal ion solutions, Appl. Phys. Left., 64(1994)1141
    27. J. Hilliard, D. Andsager, L.H. AbuHassan, H.M. Nayfeh, M.H. Nayfeh, Infrared spectroscopy and secondary ion mass spectrometry of luminescent, nonluminescent, and metal quenched porous silicon, J. Appl. Phys., 76(1994) 2423
    28. J.E. Hilliard, H.M. Nayfeh, M.H. Nayfeh, Re-establishment of photoluminescence in Cu quenched porous silicon by acid treatment, d. Appl. Phys., 77(1995)4130
    29. J.A. Glass, E.A. Wovchko Jr., J.T. Yates, Reaction of methanol with porous silicon, Surf. Sci., 338(1995)125
    30. I. Coulthard, T. K. Sham, Morphology of porous silicon layers: image of active sites from reductive deposition of copper onto the surface, Appl. Surf. Sci., 126(1998)287
    31. Tsuboi Takashi, Sakka Tetsuo, Ogata Yukio H, Effect dopant type on immersion plating into porous silicon layer, Applied Surface Science, 147(1999)6-13
    32. Bisi, S. Ossicini, L.Pavesi, Porous silicon: quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep., 38(2000)1-126
    33. E A. Harraz, T. Sakka, Y.H.Ogata, Immersion plating of copper using (CF_3SO_3)_2Cu onto porous silicon from organic solutions, Electrochim. Acta., 46(2001)2805-2810
    34. J. Sasano, R. Murota, Y. Yamauchi, et al., Re-dissolution of copper deposited onto porous silicon in immersion plating, J. Electroanal. Chem., 559(2003)125-130
    35. A. Inberg, E. Ginsburg, Y. Shacham-Diamand, N. Croitoru, A. Seidman, Electroless and sputtered silver-tungsten thin films for microelectronics applications, Microelectronic Engineering, 65(2003)197-207
    36. G. Z. Ran, W. C. Qin, Z. C. Ma, et al., Nucl. Instr. and Meth. in Phys. Res., B173 (2001) 299
    37. A.A. Voevedin, J. J. Hu, J. G. Jones, et al., Growth and structural characterization of yttria-stabilized zirconia-gold nanocomposite films with improved toughness, Thin Solid Films, 401(2001)187
    38. D.Son, J. Jeong, D. Kwon, Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film, Thin Solid Films, 437(2003)182
    39. G.(?), G. L. Molnár, Z. Pászti, et al., Electronic structure of gold nanoparticles deposited on SiOx/Si(100), Mater. Sci. Eng., C19(2002)95
    40. J. Park, H. H. Choi, K. Siebein, et al., Two-step evaporation process for formation of aligned zinc oxide nanowires, J. Crystal Growth, 258(2003)342
    41. A. Galdikas, S. (?), C. Mattogno, et al., Stability and oxidation of the sandwich type gas sensors based on thin metal films, Sens. Actuators, B48(1998)376
    42. G. G. Qin, G. F. Bai, A. P. Li, et al., A comparative study of electroluminescence from nanosize Si particle embedded silicon oxide films and that from nanosize Ge particle embedded silicon oxide films, Thin Solid Films, 338(1999)131
    43. K. H. Park, J. Kim, J. S. Ha, et al., Field emission induced fabrication of nanostructures on Au thin films using a noncontact mode atomic force microscope, J. Vac. Sci. Technol., B21(2003)1357
    44. T. Gao, J. C. Fan, G. W. Meng, et al., Thin Au film with highly ordered arrays of hemispherical dots, Thin Solid Films, 401(2001)102
    45. J. Y. Luo, K. S. Liu, J. S. Lee, et al., The influence of film-to-substrate characteristics on the electron field emission behavior of the diamond films, Diamond and Relat. Mater., 2-5(1998)704
    46. W. Tang, K. Xu, P. Wang, et al., Surface roughness and resistivity of Au film onSi-(111) substrate, Microelectronic Engineering, 66 (2003) 445
    47. Hiroto Miyake, Shen Ye, Masatoshi Osawa, Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry, Electrochemistry Communications, 4 (2002) 973-977
    48. L. Armelao, G. Granozzi, E. Tondello, et al, Nanocrystalline α-Fe_2O_3 sol-gel thin films: a microstructural study, J. Non-Cryst. Solids, 193 (1995) 435
    49. Z. Yamani, A. Alaql, J. Therrien, et al., Revival of interband crystalline reflectance from nanocrystallites in porous silicon by immersion plating, Appl Phys. Lett., 74 (1999) 3483
    50. S. Dhar, S. Chakraborti, Electroless nickel plated contacts on porous silicon, Appl. Phys. Lett., 68 (1996) 1392
    51. Kuiqing Peng, Jing Zhu Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution, Electrochimica Acta, 49 (2004) 2563-2568
    52. F. W. Kern, Jr., M. Mitsushi, I. Kawanabe, M. Miyashita, R. W. Rosenberg and T. Ohmi, in Proceedings of the 37th Ann. Tech. Mtg., lntitute of Environmental Sciences, San Diego CA (1991)
    53. L.A. Nagahara, T. Ohmori, K. Hashimoto and A. Fujishima, Effects of HF solution in the electroless deposition process on silicon surfaces, J. Vac. Sci. Technol., A (1993) 763
    54. L. Mouche, F. Tardifand J. Derrien, Mechanisms of metallic impurity deposition on silicon substrates dipped in cleaning solution, J. Electrochem. Soc., 142 (1995) 2395
    55. Y. Ye, C. C. Ahn, C. Witham, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, AppL Phys. Lett., 74 (1999) 2307
    56. P. Chen, X. Wu, J. Lin, et aL, High H_2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures, Science, 285 (1999)91
    57. R. P.Yang, Hydrogen storage by alkali-doped carbon nanotubes-revisited, Carbon, 38 (2000) 623
    58. D. H. Yoo, G. H. Rue, H. W. Moses, et al, Study of nitrogen adsorbed on open-ended nanotube bundles, J. Phys. Chem., B107 (2003) 1540-1542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700