方形硅纳米孔洞的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅纳米材料特别是一维纳米硅材料由于其在尺寸上的特点,表现出与体材料不同的量子限域效应、小尺寸效应、宏观量子隧道效应和表面效应等特点,并表现出奇特的力学、光学、电学、磁学、热学和化学等性能,已经成为国际半导体材料和纳米领域研究的热点。
     集成电路及光伏器件等基本上都是以硅作为衬底的。因此把硅纳米线、硅纳米孔洞、多孔硅及硅纳米管等一维纳米结构与硅片结合起来,将对硅纳米材料的广泛应用产生深远的影响。
     本文在不采用任何模板和特别技术下,采用金属辅助化学腐蚀法,同时结合硅的各向异性腐蚀制备出了大面积具有同一尺寸的方形硅纳米孔洞结构,对影响方形硅纳米孔洞生长的因素进行了初步探索。
     由于金属银纳米颗粒对硅的腐蚀有重要的辅助催化作用,且分散的金属银纳米颗粒更有利于硅纳米孔洞的生长,所以重点进行了银纳米颗粒形貌的控制研究。通过改变银膜厚度、升温和降温速度、保温时间和保护气氛等退火条件,研究了不同的工艺参数对银纳米颗粒形成的影响,最后得到分散性较好的银纳米颗粒的合成条件为:银膜厚度为8~10nm,以氩气为保护气体,升温速度为100℃/min,降温速度为20℃/min,在退火温度为300℃下对样品进行退火。
     通过改变刻蚀溶液的浓度、反应温度、反应时间等刻蚀条件,研究了不同工艺参数对方形硅纳米孔洞形成的影响。结合金属催化机制和硅的各向异性腐蚀机理解释了方形硅纳米孔洞形成原因。获得了制备方形硅纳米孔洞结构的优化条件:氢氟酸的浓度为2~5Mol/L,双氧水的浓度为0.3~0.4Mol/L,反应温度为50-55℃。
     进行了方形硅纳米孔洞的应用研究。用拉曼光谱仪探测吸附有腺嘌呤分子的方形硅纳米孔洞/银基底的拉曼谱,结果显示方形硅纳米孔洞/银基底具有良好的灵敏性。利用分光光度计测量了具有方形纳米孔结构的硅衬底的积分反射谱,结果显示出其具有优良的减反射性,在250-800nm波段的反射率低至2%。
Silicon nano-materials, especially one-dimensional silicon material because of its characteristics of size show quantum confinement effect, the small size effect, macroscopic quantum tunneling effect and surface effect and other characteristics different with bulk materials, and showed unusual mechanical, optical, electrical, magnetic, thermal and chemical properties, has become researching focus of international semiconductor materials and nano-materials.
     Basically, such as integrated circuits and photovoltaic devices are based on silicon substrate, so silicon nanowires, silicon nanoholes, porous silicon and silicon nanotubes and other one-dimensional silicon nanostructures would be connected with bulk silicon substrate, which is important for extensive use of silicon nanomaterials.
     This paper does not use any template and special technical, large-area and uniform size square silicon nanoholes are produced by combining metal-assisted catalyzed etching with anisotropic etching of silicon. The factors affected the growth of square silicon nanoholes were explored.
     Because Ag nanoparticles has an important auxiliary catalytics on the corrosion of silicon, and dispersed silver nanoparticles is more conducive to the growth of silicon nanoholes, so we concentrated on controlling of the morphology of silver nanoparticles. We changed annealing conditions such as the silver film thickness, heating rate and cooling rate, holding time and protective atmosphere, and studied the influence of different process parameters on the formation of silver nanoparticles. The optimum conditions of synthesis for meeting requirements of Ag nanoparticles is:The thickness of Ag film is 8~10nm, Argon as a shielding gas, heating rate is 100℃/ min, cooling rate is 20℃/min, the annealing temperature is 300℃.
     We changed etching conditions such as the etching solution concentration, reaction temperature and reaction time, and discussed the influence of different process parameters on the formation of square silicon nanoholes. We explain the the formation of square silicon nanoholes with metal catalytic mechanism and the mechanism of anisotropic etching of silicon. After continuous exploration the best conditions of fabricating square silicon nanoholes is:The concentration of hydrofluoric acid is controlled in 2~5 Mol/L, concentration of hydrogen peroxide is 0.3~0.4 Mol/L, reaction temperature is 50~55℃.
     The application of square silicon nanoholes is studied. We fabricated square silicon nanoholes/Ag as SERS substrate by immersion plating siliveron square silicon nanoholes. The enhanced Raman spectrum of adenine molecules adsorbed on square silicon nanoholes/Ag substrate is detected by Raman spectroscopy. The results showed that silver/square holes in nano-silicon substrate has a good sensitivity and has potential applications in the field of molecular detection; The integral reflection spectrum of square silicon nanoholes is measured by spectrophotometer. The results show that it has good reflection of the reduction, the low reflectance is about 2% in 250-800nm.
引文
[1]The International Technology Roadmap for Semieonductors (ITRS) Semiconduetor Industry Association(SIA),San Jose,CA,1999
    [2]Iijima S. Helieal mieroutbules of grpahitic carbon[J]. Nature,1991,354:56-58
    [3]X.F Duna,Y. Hunag,Y. Cui et al. Indimu phosphide nnaowires as building blocks for nnaoscale electronic and optoelectronic devices[J]. Nuatre,2001,409:66-69
    [4]牛俊杰.一维硅纳米材料的制备与性能研究[D].[博士学位论文].南京:浙江大学,2005
    [5]刘志红.硅及硅化物纳米结构的制备与性能研究[D].[博士学位论文].南京:浙江大学,2008
    [6]王宪芬.纳米硅的合成、表征以及光学性能研究[D].[硕士学位论文].济南:山东大学,2009
    [7]班惠昭.硅纳米线的修饰及氧化锌纳米棒的合成与表征[D].[硕士学位论文].芜湖:安徽师范大学,2007
    [8]汪彬.湿法化学刻蚀法制备硅纳米线[D].[硕十士学位论文].长春:东北师范大学,2010
    [9]谢芹.一维无机纳米材料的液相合成、表征及性质[D].[博士学位论文].合肥:中国科技大学,2006
    [10]L.T Canham. Silicon quantum wire arry fabrieation by electroehemical and chemical dissolution of wafers[J]. Applied Physics Letters,1990,57:1046-1048
    [11]X. Li, P.W Bohn. Metal-assisted chemical etching in HF/H2O2 produces porous s ilicon[J]. Applied Physics Letters,2000,76(16):2572-2574
    [12]K.Q Peng, Y.J Yan, S.P.Gao and J.Zhu. Synthesis of Large-Area Silicon Nanowi re Arrays via Self-Assembling Nanoelectrochemistry[J]. Advanced Materials,2002, 14(16):1164-167
    [13]K.Q Peng, Y.J Ya, S.P Gao et al. Dendrite-assisted growth of silicon nanowires i nelectroless metal deposition[J]. Advanced Functional Materials,2003,13(2):12 7-132
    [14]K.Q Peng, Z.P Huang, J.Zhu et al. Fabrication of large-area silicon nanowire p-n junction diode arrays [J]. Advanced Materials,2004,16(1):3026-3035
    [15]K.Q Peng, J. Zhu. Morphological selection of electroless metal deposits on silico n in aqueous fluoride solution[J]. Electrochimical Acta,2004,49(16):2563-2568
    [16]K.Q Peng, H. Fang, J.J Hu et al. Metal-Particle-Induced, Highly Localized Site-S pecific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueou s FluorideSolution[J]. Chemistry-A European Journal,2006,12(30):7942-7947
    [17]K.Q Peng, J.Zhu. Simultaneous gold deposition and formation of silicon nanowire arrays[J]. Journal of Electroanalytical Chemistry,2003,558:35-39
    [18]K.Q Peng, Y. Wu, H. Fang et al. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays[J]. Angewandte Chemie-Inte rnational Edition,2005,44(18):2737-2742
    [19]K.Q Peng, J.J Hu, YJ Yan, et al. Fabrication of Single-Crystalline Silicon Nanow iresby Scratching a Silicon Surface with Catalytic Metal Particles[J]. Advanced Fu nctional Materials,2006,16(3):387-394
    [20]M.L Zhang, K.Q Peng, X. Fan et al. Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching[J]. Journal of Physical Chemistry C,2008,112(12):4444-4450
    [21]Z.P Huang, H. Fang, J. Zhu. Fabrication of Silicon Nanowire Arrays with Contro lied Diameter,Length, and Density[J]. Advanced Materials,2007,19(5):744-748
    [22]K.Q Peng, X. Wang, X..L Wu et al. Fabrication and photovoltaic property ofor dered macroporous silicon [J]. Applied Physics Letters,2009,95(14):3026-3035
    [23]N. Megouda, T. Hadjersi, G. Piret etal. Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution[J]. Applied Surface Sciense,2009,255(12):6210-6216
    [24]K. Tsujino, M. Matsumura. Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst[J]. Advanced Materials,2005,17(8):1045-1048
    [25]K. Tsujino, M. Matsumura. Helical Nanoholes Bored in Silicon by Wet Chemical Etching Using Platinum Nanoparticles as Catalyst[J]. Electrochemical and Solid-State Letters,2005,8(12):C193-C195
    [26]S. Bauer, J.G Brunner, H. Jha et al. Ordered nanopore boring in silicon: Metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching[J]. Electrochemical Communications,2010,12(4):565-569
    [27]H. Liu, D. Biegelsen,N. Johnson et al. Self-limiting oxidation of Si nanowires [J]. Journal of Vacuum Science&Technology B,1993,11:2532-2536
    [28]H. Liu,D. Biegelsen,F. Ponce et al. Selflimiting oxidation for fabricating sub-5 nm silicon nanowires[J]. Applied Physics Letters,1994,64:1383-1389
    [29]H. Namatsu,Y. Takahashi,M. Nagase et al. Fabrication of thickness-controlled silicon nanowires and their characteristics[J]. Journal of Vacuum Science&Technology B,1995,13(6):2166-2169
    [30]H. Namatsu,M. Nagase, K. Kurihara et al. Fabrication of one-dimensional silicon nanowire structures with a self-aligned point contact[J]. Japanese Journal of Applied Physics Pan 2-Letters,1996,35(9B):LI148~L1150
    [31]H. Namatsu,S. Horiguchi,M. Nagase et al. Fabrication of one—dimensional nanowire structures utilizing crystallographic orientation in silicon and their conductance characteristics[J]. Journal of Vacuum Science&Technology B,1997,15(5):1688-1696
    [32]H. Namatsu,K. Kurihara, M. Nagase et al. Fabrication of 2-nm-wide silicon quantum wires through a combination of a partially-shifted resist pattern and orientation-dependent etching[J]. Applied Physics Letters,1997,70(5):619-621
    [33]Y. Yin, B. Gates, Y. Xia et al. A soft lithography approach to the fabrication of nanostructures of single crystalline silicon with well-defined dimensions and shapes[J]. Advanced Materials,2000,12(19):1426-1430
    [34]R. Juhasz,N. Elfstrom,J. Lirmros et al. Controlled Fabrication of Silicon Nanowires by Electron Beam Lithography and Electrochemical Size Reduction[J]. NanoLetter, 2005,5(2):275-280
    [35]S. Kumar, J.V Ramana, C. David et al. Ion beam analysis of porous silicon layer s[J]. Nuclear Instruments & Methods In Physics Research Section B-Beam Interac tions With Materials and Atoms,2001,179(1):113-120
    [36]D. Biswajit. Formation of porous silicon through the nanosized pores of an anodized alumina template[J]. Applied Physics Letters,2003,83(14):2904-2906
    [37]H. Asoh, A. Oide, S. Ono. Fabrication of self-ordered nanohole arrays on Si by localized anodization and subsequent chemical etching[J]. Applied Surface Science, 2005,252(5):1688-1673
    [38]J.Zou, X.Y. Qi, L.W.Tan et al. Large-scale ordering of porous Si using anodic al uminum oxide grown by directed self-assembly[J]. Applied Physics Letters,2006, 89(9):1-3
    [39]L. Shimizu, L. Xie, J. Nishikawa et al. Synthesis of vertical high—density epitax ial Si(100) nanowire arrays on a si(100)substrate using all anodic aluminum oxide template[J]. Advanced Materials,2007,19(7):917-920
    [40]N. Melosh,A. Boukai,F. Diana et al. Ultrahigh-density nanowire lattices and circuits [J]. Science,2003,300(5616):112-115
    [41]A. Uhlir. Electrolytic shaping of germanium and silicon[J]. Bell System Technical Journal,1956,35:333-347
    [42]张萍,娄利飞,柴常春等.双槽电化学腐蚀法制备多孔硅的研究[J].压电与声光,2009,29(6):740-742
    [43]P. Kleimann, J. Linnros, S. Petersson. Formation of wide and deep pores in silicon by electrochemical etching[J]. Materials Science & Engineering B (Solid-State Materials for Advanced Technology),2000, B69-70,29-33
    [44]K. Kordas, J. Remes, S. Beke et al. Manufacturing of porous silicon; porosity an d thickness dependence on electrolyte composition[J]. Applied Surface Science,20 01,178(1-4):190-193
    [45]A. Vyatkin, V. Starkov, V. Tzeitlin etal. Random and ordered macropore formation in p-type silicon [J]. Journal of the Electrochemical Socity,2002,149(1):G70-G76
    [46]X. Badel,R.T Rajendra Kumar,P. Kleimann etal. Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon[J]. Superlattices and Microstructures,2004,36(1-2):245-253
    [47]F.A Harraz, K. Kamada, K. Kobayashi etal. Random macropore formation in p-type silicon in HF-containing organic solutions-Host matrix for metal deposition [J]. Journal of the Electrochemical Socity,2005,152(4):C213-C220
    [48]杨娟玉,卢世刚,阚素荣等.电化学法制备硅纳米线[J].无机化学学报,2009,25(4):756-760
    [49]J.Y Lee, W.K Han, J.H Lee. Effect of ultrasonic frequency on electrochemical Si etching in porous Si layer transfer process for thin film solar cell fabrication[J]. Solar Energy Materials and Solar Cells,2011,95(1):77-80
    [50]H. Koyama,T. Nakagawa,T. Ozaki,N. Koshida. Post-anodization filtered illumination of Porous silicon in HF solutions: An effective method to improve luminescence properties[J]. Applied Physics Letters,1994,65(13):1656-1658
    [51]T. Nakagawa,H. Koyama,N. Koshida. Control of strueture and optical anisotropy in porous Si by magnetic-field assisted anodization[J]. Applied Physics Letters,1996, 69(21):3206-3208
    [52]Y.M Huang. Positron irradiation:A technique of modifying the photoluminescent str uetures of porous silicon[J]. Applied Physics Letters,1997,71(26):3850-3852
    [53]X.Y Hou, H.L Fan,L. Xu et al. Pulsed anodic etching:An effective method of pre paring lihgt-emitting porous silicon[J]. Applied Physics Letters,1996,68(17):2323-2325
    [54]L.V Belyakov, D.NGoryachev,O.M. Sreseli. Fast photoluminescence of pulse-anod ized silicon[J]. Technology Physical Letters,1996,22:97
    [55]李新建,杨晓辉,富笑男.铁钝化多孔硅形成过程中的形貌演化和腐蚀机理[J].科学技术与工程,2004,4(2):61-64
    [56]X.J Li,X. Hu,Y. Jia. Tunable supersrtuetures in hydrothermally etched iron-passivated porous silicon[J]. Applied Physics Letters,1999,75(19):2906-2908
    [57]X.J Li,D.L Zhu,Q.W Chen et al. Strong and nondegrading-luminescent Porous silicon prepared by hydrothermal etehing[J]. Applied Physics Letters.,1999,74(3):389-391
    [58]Y.H Zhang, X.J Li, L. Zheng et al. Nondegrading Photoluminescence in Porous S ilicon[J]. Physical Review Letters,1998,81(8):1710-1713
    [59]Q.W Chen,J.S Zhu, X.J Li et al. Photoluminescence in Porous silicon obtained b y hydrothermal etching[J]. Physies Letters A,1996,220(4-5):293-296
    [60]李新建.发光强度强且不衰减、峰位不蓝移的新型铁钝化多孔硅[D].博士学位论文].合肥:中国科技大学,1999
    [61]朱利兵.多孔硅的无酸水热法制备及发光研究[D].[硕十学位论文].长沙:湖南大学,2006
    [62]徐大余.多孔硅的制务及共光致发光性能研究[D].[硕十学位论文].长沙:中南大学,2008
    [63]贾金涛.多孔硅的制备及稳定化研究[D].[硕十学位论文].南京:南京大学,2007
    [64]M.I.J Beale,J.D.Benjmain,M.J.Uern et al. An Experimental and theoreticals tudyof t he formation and micorstructure of porous silicon[J]. Journal of Crystal Growth,19 85,73(3):622-636
    [65]R.L Smith,S.D Collins. Porous silicon formation mechanisms[J]. Journal of Applied Physics,1992,71 (8):RI-R22
    [66]T.A Witten, L.M Sander. Diffusion-limited aggregation[J]. Physical Review B,198 3,27(9):5686-5689
    [67]V. Lehmann, H. Foll. Formation mechanism and properties of electrochemically etched trenches in n-type silicon[J]. Journal of the Electrochemical Society,1990, 137(2):653-659
    [68]V. Lehmann, U. Gosele. Porous silicon formation:A quantum wire effect[J]. Applied Physics Letters,1991,58(8):856-864
    [69]V. Lehmann, U. Gosele. Porous silicon:Quantum sponge structures grown via a sel-adjusting etching proeess[J]. Advanced Materials,1992,4(2):114-116
    [70]V. Lehmann. The physics of macropore formation in low doped n-type silicon [J]. Journal of the Electrochemical Society,1993,140(10):2836-2843
    [71]V. Lehmann, R. Stengl, A. Luigart. On the morphology and the electrochemical formation mechanism of mesoporous silicon [J]. Materials Science and Engineering B, 2000,69(70):11-22
    [72]V.S Lin, K. Motesharei, K.P Dancil et al. A porous silicon-based optical interferometric biosensor[J]. Science,1997,278(5339):840-843
    [73]K.Q Peng, X. Wang, S.T Lee. Gas sensing properties of single crystalline porous silicon nanowires[J]. Applied Physics Letters,2009,95(24):1-3
    [74]万丽娟.硅纳米线阵列的制备及其在生化传感器中的应用[D].[硕士学位论文].上海:华东师范大学,2010
    [75]姜涛.多孔硅的湿度传感器特性研究[D].[硕士学位论文].上海:华东师范大学,2007
    [76]H.Elhouichet, M.Oueslati, Photoluminescence properties of porous silicon nanocomposites[J]. Materials science and engineering B-Solid state materials for advanced technology,2001,79(1):27-30
    [77]M. Balarin, O. Gamulin, M. Ivanda et al. Structural, optical and electrical characte rization of porous silicon prepared on thin silicon epitaxial layer[J]. Journal of M olecular Structure,2009,924(206):285-290
    [78]S.H Xu, L.W Wang. Study on the thermal isolation properties of porous silicon photonic crystal[J]. Applied Physics A-Materials Science & Processing, 2010,98(1):67-73
    [79]F. Namavar, H.P Maruska, N.M Kalkhoran. Visble electroluminescence from porous silicon np heterojunction diodes[J]. Applied Physics Letters,1992,60(20):2514-2516
    [80]J. Linnros, N.Lalic. High quantum efficiency for a porous silicon light emitting diode under pulsed operation[J]. Applied Physics Letters,1995,66(22):3048-3050
    [81]T. Oguro, H. Koyama, T. Ozaki et al. Mechanism of the visible electroluminesc ence from metal/porous silicon/n-Si dexices[J]. Journal of Applied Physics,1997,81 (3):1407-1412
    [82]谢欣云,刘卫丽,门传玲等.多孔硅外延转移技术制备以氮化硅为绝缘埋层的SOI新结构[J].半导体学报,2003,24(2):189-193
    [83]G. Kopitkovas. Solar cells with porous silicon: modification of surface-recombinati on velocity[J]. Applied Physics A-Materials Science & Processing,2001,73(4):49 5-501
    [84]H. Fang, X.D. Li, S. Song et al. Fabrication of slantingly-aligned silicon nanowir e arrays for solar cell applications[J].Nanotechnology,2008,19(25):
    [85]K.Q. Peng, X. Wang, X.L. Wu et al. Platinum Nanoparticle Decorated Silicon Na nowires for Efficient Solar Energy Conversion[J]. Nano Letter,2009,9(11):3704-3 709
    [86]X. Wang, K.Q. Peng, X.L. Wu. Single crystalline ordered silicon wire/Pt nanopart iclehybrids for solar energy harvesting[J]. Electrochemistry Comunications,2010,12 (4):509-512
    [87]K.Q. Peng, X. Wang, L. Li et al. High-Performance Silicon Nanohole Solar Cell s, Journal of the American Chemical Society,2010,132(20):6872-6873
    [88]L. Remache, E. Fourmond, A. Mahdjoub et al. Design of porous silicon/PECVD SiOx antireflection coatings for silicon solar cells[J]. Materials Science & Engineeri ng,2011,176(1):45-48
    [89]K.Q Peng, Y. Xu, Y. Wu et al. Aligned Single-Crystalline Si Nanowire Arrays f or Photovoltaic Applications[J]..Small,2005,1(11):3026-3035
    [90]冯异,赵军武,高芬.多孔阳极氧化铝模板合成纳米点阵列的研究进展[J].半导体光电,2006,27(2):108-113
    [91]张凤珍.极端电化学条件下电沉积银枝晶生长[D].[硕十学位论文].河北:河北师范大学,2006
    [92]晋传贵,姜山,陈刚.化学还原法制备银纳米颗粒[J].安徽工业大学学报,2008,25(2):120-122
    [93]王森.一种银纳米颗粒阵列模板及其制备方法[P].中国,发明专利,CN101172573A,2008年5月7日
    [94]K.Q Peng, A.J Lu, R.Q Zhang et al. Motility of Metal Nanoparticles in Silico nandInduced Anisotropic Silicon Etching[J]. Advanced Functional Materials,2008, 18(9):3026-3035
    [95]W.F. Paxton, K.C. Kistler, C.C. Olmeda et al. Catalytic Nanomotors: Autonomou s Movement of Striped Nanorods[J]. Journal of American Chemical Society,2004, 126(41):13424-13431
    [96]N. Mano, A. Heller. Bioelectrochemical Propulsion[J]. Journal of American Che mical Society,2005,127(33):11574-11575
    [97]M. Fleischmann, P. J. endra, A. McQuillan. Raman spectra of pyridine adsorbed ata silver electrode[J]. Chemical Physics Letters,1974,26(2):163-166
    [98]J. A. Creighton, C. G. Blatchford, M. G. Albrecht. Plasma Resonance Enhancemen t of Raman Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of S ize Comparable to the Excitation Wavelength, Journal of the Chemical Society,19 79,75:790-798
    [99]D. Thierry, C.Leygraf, Enhanced Raman Scattering of 1,2,4—Triazole and Imidazo le Adsorbed on Microlithographically Prepared Copper Surfaces, Journal of the Ele ctrochemical Society,1986,133,2236
    [100]K. C. Lee, S. S. Chen, The Roughness Dependence of SERS of Crystal Violet A dsorbed on Silver Surface, Optics Communications.,1988,67(2):119-123
    [101]Q. Xue, Q. P. Dai, S. G Jiang, Chemica Reactions of Imidazole with Metallic Silv er Studied by the Use of SERS, Journal of the American Chemical Society,1988, 110(8):2393-2395
    [102]S. Nie, S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surfa ce-Enhanced Raman Scattering, Science,1997,275(5303):1102-1106
    [103]K. Kneipp, Y. Wang, H. Kneipp, et al., Single Molecule Detection Using Surface Enhance Raman Scattering(SERS), Physical Review Letters,1997,78(9):1667-16 70
    [104]M. T. Pham, W. Matz, H. Seifarth. Surface roughness with nanometer-scale Agpa rticles generated by ion implantation[J]. Analytica Chimica Acta,1997,350(1-2): 209-220
    [105]L. B. Xu, W. L. Zhou, M. E. Kozlov et al. Metal sphere photonic crystals by nanomol ding[J]. Journal of the American Chemical Society,2001,123(4):763-764
    [106]Y. MO, I. Morke, P. Wachter. Surface Enhanced Raman Scattering of Pyridine o n Silver Surfaces of Different Roughness[J]. Surface Science,1983,133(1):L45 2~L458
    [107]T. H. Wood, M. V. Klein. Raman Scattering from Carbon Monoxide Adsorbed on evaporated Silver Films [J]. Journal of Vacuum Science and Technology,1979,16(2): 459
    [108]D. S. Knight, R. Weimer, Applied Physics Letters,1990,56,1320
    [109]S. Chan, S. Kwon, T. W. Koo et al. Surface-enhanced Raman Scattering of Sma 11 Molecules from Silver-Coated Silicon Nanopores[J]. Advanced Materials,2003, 15(19):1595-1598
    [110]A. K. Kalkan, S. J. Fonash. Laser-activated Surface-enhanced Raman scattering s ubstrates capable of single molecule detection[J]. Applied Physics Letters,2006,89, 233103
    [111]H. Lin, J. Mock, D. Smith et al. Surface-enhanced Raman Scattering from Silver-Plated Silicon[J]. Journal of Physics Chemistry B,2004,108(31):11654-11659
    [112]冯飞.银/硅纳米孔柱阵列的表面增强拉曼散射效应研究[D].[硕士学位论文].郑 州:郑州大学,2009
    [113]A. Campion, P. Kambhampati. Surface-enhanced Raman scattering[J]. Chemical Society Reviews,1998,27:241-250
    [114]M. Moskovits. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics,1985, 57(3):783-826
    [115]A. Kudelski, J. Bukowska. Temporal Evolution of Raman Intensities on Surface-Enhanced Raman Scattering Active Copper and Gold Electrodes at Negative Potentials[J]. Surface Science,1996,10(2):335-339
    [116]J. R. Lombardi, R. L. Birke, L. A. Sanchez et al. The Effect of Molecular Structure on Voltage Induced Shifts of Charge Transfer Excitation in Surface Enhanced Raman Scattering[J]. Chemical Physics Letters,1984,104(2-3):240-247
    [117]周国华.硅太阳能电池背表面钝化研究[D].[硕士学位论文].无锡:江南大学,2008
    [118]吴江宏,胡社军,王忆等.单晶硅太阳电池表面绒面制备及其性质研究[J].化工技术与开发,2010,39(8):
    [119]莫春东.单晶硅太阳能电池的表面结构及其制作方法[P].中国,发明专利,CN1507075A,2004年6月23日
    [120]许海军.基于硅纳米孔柱阵列的CdS/Si异质结阵列的光学和电学性能研究[D].[博十学位论文].郑州:郑州大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700