高压SOI LDMOS器件结构设计与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SOI LDMOS器件是基于LDMOS器件的一种新型功率半导体器件。SOI结构具有高速,低功耗,高集成度,抗辐照,易于隔离等优点,并且可以克服体硅材料的缺点,被广泛的应用在高压集成电路和功率集成电路中。高压集成电路在武器装备,电力电子,工业自动化、航空航天和其它高新技术产业有着广泛的应用前景。目前国内外的众多研究人员提出了多种器件结构对SOI LDMOS器件进行改进,主要集中在器件的击穿电压和导通电阻两个方面,从而提高器件的性能。
     本文主要的研究内容是主要是关于SOI LDMOS的击穿电压和比导通电阻两个方面。主要包括两种器件结构:具有浮栅结构的SOI LDMOS (FG SOI LDMOS)和沟槽结构的SOI LDMOS (T SOI LDMOS).具体的研究内容如下:
     (1)研究了具有浮栅结构的SOI LDMOS器件,该器件的结构特点是在器件的场氧化层上分布多个多晶硅栅极,多次利用类场板的结终端技术,调节器件的横向电场分布,提高器件的击穿电压,降低比导通电阻。通过仿真软件Silvaco TCAD的仿真结果表明,在相同的器件尺寸的条件下,通过对浮栅的个数和尺寸优化,得到当浮栅的个数为5,长度为0.5μm时,浮栅结构的SOI LDMOS器件的击穿电压提高了38.9%,比导通电阻降低了20.5%。最后对该器件的自热效应进行了分析。
     (2)研究了具有沟槽结构的SOI LDMOS器件,该器件的结构特点是在栅极边缘的下方,器件的漂移区表面刻蚀出沟槽结构,沟槽的材料为二氧化硅,由于该材料的临界击穿电场比硅的临界击穿电场要高,它可以承受更高的电场强度。沟槽结构的存在,可以在不提高器件的导通电阻的情况下提高器件的击穿电压,从而使器件的性能得到提高。通过仿真软件Silvaco TCAD,得到该器件结构的仿真结果表明,与普通结构的SOI LDMOS器件相比,在相同的器件结构尺寸条件下,通过对沟槽的尺寸进行优化,得到当沟槽的长度为6μm,沟槽的厚度为1.5μm时,沟槽结构的SOI LDMOS器件的击穿电压提高了26.7%,比导通电阻降低了14.3%。最后对该器件的自热效应进行了分析,该器件在一定程度上可以缓解自热效应。
SOI LDMOS device is a new type power semiconductor device which developed on the basis of LDMOS device. The advantages of SOI are high speed performance, low power dissipation, high integration, perfect anti-irradiation, improved isolation and so on. SOI can also overcome the disadvantages of the bulk silicon. SOI devices are widely used in high voltage integrated circuits and power integrated circuits, which have a promising future in weapons and equipments, power electronic, industrial automation, aerospace industry and other high and new technology industries. At present, many device structures are proposed to improve the SOI LDMOS device by many researchers at home and abroad. The breakdown voltage of the new device is increased and the specific on-resistance of the new device is decreased, so the performance of the new SOI LDMOS device structure is improved.
     The main contents of this thesis are about the breakdown voltage and the specific on-resistance of SOI LDMOS device. Two device structures are researched:SOI LDMOS device with floating gates (FG SOI LDMOS) and SOI LDMOS device with oxide trenches (T SOI LDMOS). The contents of the research are as follows:
     (1) In this chapter, SOI LDMOS device with floating gates is researched. The characteristic of this device is in the oxide field, there are some polysilicon gates to modulate the lateral electric field of the device by using the field plate technology, therefore the breakdown voltage of the FG SOI LDMOS device is increased, and the specific on-resistance of the FG SOI LDMOS device is decreased. When the number and the size of the polysilicon gates are optimized, the simulation results by the Silvaco TCAD show that, compared with the normal SOI LDMOS device, the number of polysilicon gates is 5, the lengthen of the polysilicon gates is 0.5μm, the breakdown voltage of FG SOI LDMOS device is increased by 38.9%, the specific on-resistance of FG SOI LDMOS is decreased by 20.5%. Finally, self-heating effect of this device is analysised.
     (2) In this chapter, SOI LDMOS device with oxide trenches is researched. The characteristic of this device is the oxide trenches are etched under the polysilicon gate edge, in the drift region surface. The material of the trench is silicon dioxide, which has high critical electric field compare with silicon. Therefore, the device with silicon dioxide can bear higher electric field of gate edge. When SOI LDMOS device has oxide trenches, the breakdown voltage of the device is increased, but the specific on-resistance of the device is induced. Therefore, the performance of SOI LDMOS device with oxide trenches is improved. When the lengthen and the depth of the oxide trenches are optimized, the simulation results by the Silvaco TCAD show that, compared with the normal SOI LDMOS device, the lengthen of oxide trenches is 6μm, the depth of oxide trenches is 1.5μm, the breakdown voltage of T SOI LDMOS device is increased by 26.7%, the specific on-resistance of FG SOI LDMOS is decreased by 14.3%. Finally, self-heating effect of this device is analysised, and finds that the self-heating effect of this device is relieved.
引文
[1]Sorin Cristoloveanu. Silicon on insulator technologies and devices:from present to future[J]. Solid-State Electronics.2001,45:1403-1411.
    [2]C. Sorin. Far-future trends in SOI technology:a guess[J]. Journal of High Speed Electronics and System.2002,2(12):137-145.
    [3]E. Arnold. Silicon-on-Insulator devices for high voltage and power IC applications[J]. Electrochem Soc..1985:1983-1988.
    [4]M. M. Pelella, W. Maszara, S. Sundararajan, et al.. Advantages and challenges of high performance CMOS on SOI[C]. IEEE International SOI Conference.2001:1-4.
    [5]Kabayshi K., Yanagigawa H., Mori K., et al.. High voltage SOI CMOS IC technology for driving plasma display panels[C]. ISPSD.1998:141-144.
    [6]J. D. V. wyk F. C. Lee. Power electronics technology-status and future[C]. IEEE Proc. PESC.1999:3-12.
    [7]Charles E. Mullett, PSMA Chair. A 5-year power technology roadmap[C]. IEEE Proc. APEC.2004:11-17.
    [8]Jeffery D. Shepard. Power electronics futures[C]. IEEE Proc. APEC.2004:31-34.
    [9]Bimal K. Bose. Recent advances in power electronic[J]. IEEE Tran. on Power Electronics. 1992,17 (1):2-16.
    [10]P. J. Carlson. Reliability implications in using intelligent power integrated circuits(PICs)[C]. Proceedings of Power Conversion.1989:450-454.
    [11]L. David, Blackburn. Status and trends in power semiconductor devices[C].IEEE IAS Conference.1993:619-624.
    [12]B. J. Baliga. Trends in power discrete devices[C]. Proc. Of ISPSD.1998:5-10.
    [13]Stephen P. Robb, Judy L. Sutor. Recent advance in power integrated circuits with high level integration[C]. Proc. of ISPSD.1994:342-348.
    [14]J.G. Kassakian. Automotive electrical systems the power electronics market of the future[C]. IEEE Proc. APEC.2000:3-9.
    [15]石涌泉.SOI技术的发展及其在航天技术领域的应用[J].微电子学与计算机.1995,2:1-5.
    [16]Y. S. Huang, B. J. Baliga, et al.. Comparision of DI and JI lateral IGBTs[C]. Proc. of ISPSD.1992:40-43.
    [17]Y. S. Huang, S. Sridhar and Baliga. Junction and dielectrically isolated lateral ESTs for power ICs[C]. Proc. of ISPSD.1992:259-263.
    [18]Y. Hiraoka, S. Matsumoto, et al.. Application of the thin-film SOI Power MOSFET fabricated by sub-um rule COMS/SOI process for the DC-DC converter[C]. Proc. of ISPSD. 1998:145-148.
    [19]B. K. Celler. Frontiers of silicon-on-insulator[J]. Journal of Applied Physics.2003,93(9): 4955-4978.
    [20]Makoto Yoshimi. Current status and future directions of SOI technology[J]. Solid-State Electronics.2002,46:951-958.
    [21]Z. Y. Cheng, M. T. Currie, C. W. Leitz. SiGe-On-Insulator(SGOI):substrate preparation and MOSFET fabrication for electron mobility evaluation[C]. IEEE International SOI Conference.2001:13-14.
    [22]F. Y. Huang, M. A. Chu, M. O. Tanner, et al.. High-quality strain-relaxed SiGe alloy grown on implanted silicon-on-insulator substrate[J]. Applied Physics Letters.2000,76(19): 2680-2682.
    [23]Taoka, Noriyuki Sakai, Akira, et al.. Control of misfit dislocations in strain-relaxed SiGe buffer layers on SOI substrates[J]. Thin Solid Films.2006,508 (1):147-151.
    [24]Tezuka, Tsutomu. Strain analysis in ultrathin SiGe-on-insulator layers formed from strained Si-on-insulator substrates by Ge-condensation process[J]. Applied Physics Letters. 2007,90(18):181-189.
    [25]M. Ishimaru, R. M. Dickerson. Scanning transmission electron microscopy-energy dispersive X-ray/electron energy loss spectroscopy studies on SiC-on-insulator structures [J]. Journal of Electrochem Soc.2000,147(5):1979-1981.
    [26]D. Cioccio L., L. Tiec Y, Letertre F. Silicon carbide on insulator formation using the Smart Cut process[J]. Electronics Letters.1996,32(12):1144-1145.
    [27]G. S. Chung, K. S. Kim. Heteroepitaxy of polycrystalline 3C-SiC film on SOI substrate using AIN buffer layer[J]. Electronics Letter.2007,3(15):832-834.
    [28]I. Aberg, C. N. Chleirigh,J. L. Hoyt. Ultrathin-body strained-Si and SiGe heterostructure-on-insulator MOSFETs[J]. IEEE Transactions on Electron Devices.2006, 53(5):1021-1029.
    [29]T. Mizuno, S. Takagi, N. Sugiyama, et al.. Electron and hole mobility enhancement in strained-Si MOSFET's on SiGe-on-insulator substrates fabricated by SIMOX technology[J]. IEEE Electron Device Letters.2000,21(5):230-232.
    [30]U. K. Mishra, P. Parikh, P. Chavarkar. GaAs on insulator (GOI) for low power applications[J]. Frontiers in Electronics, WOFE.1997:21-25.
    [31]G. S. Chung, S. Kawahito, M. Ishida, et al.. Movel pressure sensors with multilayer SOI structure[J]. Electronics Letters.1990,26(12):775-777.
    [32]M. Zhu, Q. Lin, X. H. Liu, et al.. Reduction of self-heating effect in SOI MOSFET by forming a new buried layer structure[J]. Nuclear Science and Techniques.2003,14(2): 119-123.
    [33]Y. S. Huang, B. J. Baliga. Extension of resurf Principle to dielectrically isolated power devices[C]. ISPSD.1991:27-30.
    [34]R. P. Zhingg, I. Weijland, H. V. Zwol, et al..850V DMOS-switch in silicon-on-insulator with specific Ron 13O·mm2[C]. IEEE International SOI Conference.2000:62-63.
    [35]R. Sunkavalli, A. Tama, B. J. Baliga. Step drift doping profile for high voltage DI lateral power devices [C]. IEEE International SOI Conference.1995:139-140.
    [36]J. Luo, G. Cao, S. N. E. Madathil, et al.. A high performance RF LDMOSFET in thin film SOI technology with step drift profile[J]. Solid-State Electronics.2003,47:1937-1941.
    [37]S. D. Zhang, J. K. O. Sin, T. M. L. Laim, et al.. Numerical model of linear doping profiles for high-voltage thin-film SOI devices[J]. IEEE Transactions on Electron Devices. 1999,46(5):1036-1041.
    [38]S. K. Chung. An analytical model for breakdown voltage of surface implanted SOI RESURF LDMOS[J]. IEEE Transactions on Electron Devices.2000,47(5):1006-1009.
    [39]I. J. Kim, S. MatSumoto, T. Sakai, et al.. Breakdown voltage improvement for thin-film SOI power MOSFET's by a buried oxide step structure[J]. IEEE Electron device letter.1994, 15(5):148.
    [40]Baoxing Duan, Bo Zhang, Zhaoji Li. New Thin-Film power MOSFETS With a Buried Oxide Double Step Structure[J]. IEEE Electron Device Letters.2006,27(5):377-379.
    [41]G. P. V. Pathirana, F. Udrea, R. Ng, et al..3D-RESURF SOI LDMOSFET for RF power amplifiers[C]. Procs. IEEE ISPSD.2003:278-281.
    [42]R. Ng, F. Udrea, K. Sheng, et al.. Lateral unbalanced super junction(USJ)/3D-RESURF for high breakdown voltage on SOI[C]. Procs, IEEE ISPSD.2001:395-398.
    [43]N. Yasuhara, A. Nakagawa, K. Furukawa. SOI device structure implementing 650V high voltage output devices on VLSIs[C]. Procs, IEEE IEDM.1991:141-144.
    [44]H. Funaki, Y. Yamaguchi, K. Hirayama, et al.. New 1200V MOSFET structure on SOI with SIPOS shielding layer[C]. Procs. IEEE ISPSD.1998:25-28.
    [45]P. Ratnam. Novel silicon-in-Insulator MOSFET for high-voltage integrated circuits[J]. Electronics Letter.1989,25(8):536-537.
    [46]F. Udrea, A. Popescu. Breakdown analysis in JI, SOI and partial SOI power structures[C]. IEEE International SOI Conference.1997:102-103.
    [47]罗小蓉,李肇基,张波,等.屏蔽槽SOI高压器件新结构和耐压机理[C].半导体学报.2005,26(11):2154-2158.
    [48]Xiaorong Luo, Yuangang Wang, Hao Deng, et al.. Novel low-k dielectric buried-layer high-voltage LDMOS on partial SOI[J]. IEEE Electron Device Letters.2010,57(2):535-538.
    [49]Lijuan Wu, Shengdong Hu, Bo Zhang, et al.. A new SOI high voltage device based on E-MIMOS substrate[J]. Journal of Semiconductors.2010,31(4):1-6.
    [50]Taijun Wang, Xiaorong Luo. The breakdown characteristics of a new SOI high voltage device with sandwich buried oxide layer[C]. ICCCAS.2009,6:608-610.
    [51]S. M. Sze, G. Gibbons. Effect of junction curvature on breakdown voltage in semiconductors[J]. Solid-State Electronics.1966,9:831-845.
    [52]R. A. Kokosa, R. L. Davies. Avalanche breakdown of diffused silicon p-n junctions[J]. IEEE Trans, Electron Devices.1966,13:874-881.
    [53]O. Leistiko, Jr, A. S. Grove. Breakdown voltage of planar silicon junction[J]. Solid-State Electronics.1966,9:847-852.
    [54]段宝兴.横向高压器件电场调制效应及新器件研究[D].成都:电子科技大学,2007:4-9.
    [55]J. A. Apples, M. G. Collet, P. A. H. Hart, et al.. Thin layer high-voltage Devices(RESURF devices)[J]. Philips Journal of Research.1979,1(1):1-13.
    [56]Christopher Boguslaw Kocon. Accumulation Device with Charge Balance Structure and Method of Forming the Same[P]. United States Patent Application Publication,Appl. No.:11/140,249 Pub. No.:US 2006/0011962 A1.
    [57]陈星弼.p-n+结有场板时表面电场分布的简单表示式[J].电子学报.1986,14(1):36.
    [58]肖小虎,高珊,等.功率LDMOS中的场极板设计[J].电子技术.2010,05:79-81.
    [59]Gao S, Chen J N, et al. Analytical Model for Surface Electrical Field of Double RESURF LDMOS with Field Plate[J]. IEEE Electron Device Lett..2006,10:1324-1326.
    [60]I. Cortes, F. Morancho, et al. Optimisation of low voltage field plate ldmos transistors [J]. IEEE Electron Device Lett..2009,2:475-478.
    [61]B. J. Baliga. Semiconductors for high-voltage, vertical channel FET's[J]. Journal of Applied Physics.1982,53:1759-1764.
    [62]B. J. Baliga. Prospects for SiC power devices[C]. Int. Conf. on Silicon Carbide and Related Material, Kyoto, Japan.1995:3-4.
    [63]A. Raman, D. G. Walker, T. S. Fisher. Simulation of nonequilibrium thermal effects in power LDMOS transistors[J]. Solid-State Electronics.2003,47:1256-1273.
    [64]李家贵,李德昌.SOI LDMOS晶体管的自加热效应[J].电子科技.2009,22(4):72-74.
    [65]张新,高勇,刘梦新,等.实现高温工作的SOI器件埋层结构研究[J].兵器材料科学与工程.2006,29(5):23-27.
    [66]Mahender Kumar, Yue Tan, Johnny K. O. Sin, Jun Cai. An SOI LDMOS/CMOS/BJT technology for integrated power amplifiers used in wireless transceiver applications [J]. IEEE Electron Device Letters.2001,22(3):136-138.
    [67]S. Merchant, et al.. Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistor[C]. Proc.5th Int. Symp. on Power Semiconductor Devices and ICs, ISPSD, Monterey, CA, USA.1993,124-128.
    [68]M. Zitouni, et al.. Anew concept for the lateral DMOS transistor for smart power ICs[C]. Proc.11th, Symp. on Power Semiconductor Devices and ICs, ISPSD, Toronto, Canada.1999, 73-76.
    [69]J. He, X. Zhang, Y. Y. Wang. Linearly varying surface-implanted nlayer used for improving trade-off between breakdown voltage and on-resistance of RESURF LDMOS transistor [J]. Microelectron.2001,32,969-971.
    [70]Won-So Son, Young-Ho Sohn, Sie-youn Choi. SOI RESURF LDMOS transistor using trench filled with oxide[J]. Electronics Letters.2003,39,1760-1761.
    [71]I. Cortes et al.. Static and dynamic electrical performances of STI thin-SOI power LDMOS transistors [J]. Semicond. Sci Technol.2008,23(9),1-7.
    [72]I. Cortes, P. Fernandez-Martinez, D. Flores, et al.. Analysis of low voltage super-junction LDMOS structures on thin-SOI sustrates[J]. Semicond. Sci. Technol.2007,23,1-6.
    [73]G. Toulon, I. Cortes, F. Morancho. Analysis and Optimization of LUDMOS Transistors on a 0.18μm SOI CMOS Technology[C]. Mixed Design of Integrated Circuits and Systems. 2009,549-554.
    [74]I. Cortes, G. Toulon, F. Morancho, et al.. Analysis and optimization of safe-operating-area of LUDMOS transistors based on 0.18μm SOI CMOS technology[J]. Semicond. Sci. Technol. 2010,25,1-7.
    [75]郑陶雷,罗晋生.薄膜SOI LDMOS自加热效应的表征及相关因素探究[J].电力电子技术.2000,2:51-53.
    [76]林青,谢欣云,朱鸣等.SOI的自加热效应与SOI新结构的研究[J].功能材料与器件学报.2002,8(2):205-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700