溶剂热技术合成硫化铁和硫化镍纳米粉体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FeS_2(pyrite)具有合适的带隙宽度(0.95 eV)及高的光吸收系数(λ≤700nm,α≥5×10~5cm~(-1)),目前已成为薄膜太阳能电池的最佳吸收材料之一。但FeS_2(marcasite()0.3 eV)的存在大大影响了FeS_2(pyrite)的性能。具有黄铁矿型结构的硫化镍也是近年来日益引人注目的材料,然而它存在α-Ni_(3+x)S_2、β-Ni_3S_2、Ni_4S_(3+x)、Ni_6S_5、Ni_7S_6、Ni_9S_s、α-NiS、β-NiS、Ni_3S_4及NiS_2等多种物相。因此控制反应过程,合成单一物相的硫化铁和硫化镍纳米晶成为当前研究的热点。本工作采用溶剂热技术,通过调控原料摩尔比、反应温度、反应时间及添加表面活性剂来调控硫化物的物相组成及形貌结构,取得以下主要结果:
     以硝酸铁和硫脲作铁源及硫源、乙二醇作溶剂,利用溶剂热技术合成了Fe3S_4和Fe_(1-x)S纳米晶;在表面活性剂PVP的协助下合成了FeS)2(pyrite)纳米晶,并有效抑制了pyrite其它伴生相尤其是marcasite的形成。通过调控原料的摩尔比、反应温度及反应时间可实现对产物晶相和形貌的有效控制。
     以硝酸镍和硫脲作镍源及硫源、乙二醇作溶剂,采用溶剂热技术制备了Ni_3S_2和α-NiS纳米晶;在表面活性剂PVP协助下合成了立方相NiS_2纳米晶。丙烯酰胺能够调控硫化镍的晶相组成及形貌结构:随丙烯酰胺量的增加,产物从立方相NiS_2实心球转变为六方相α-NiS实心球(丙烯酰胺:硫脲=25:1),最终转变为斜方相β-NiS空心球(丙烯酰胺:硫脲=200:1)。
     利用溶剂热技术尝试性地合成了硫化铁薄膜,该技术反应条件温和、产物纯度高、分散性好,而且物相的形成、粒径大小和形貌均易控制,是合成光电薄膜的一种低成本方法。
FeS_2(pyrite) has been considered as one of the best absorption materials for thin film solar cell due to its suitable band gap (0.95 eV) and high light absorption coefficient (λ≤700nm,α≥5×10~5cm~(-1)). However, the coexistence of FeS_2(marcasite) with a direct band gap (0.3 eV) significantly affects the properties of FeS_2(pyrite). Nickle sulfide with pyrite structure is also an interesting material of research and is currently attracting much attention. However, nickle sulfide has several crystalline phases includingα-Ni_(3+x)S_2,β-Ni_3S_2, Ni_4S_(3+x), Ni_6S_5, Ni_7S_6, Ni_9S_8,α-NiS,β-NiS, Ni_3S_4 and NiS_2. Therefore, it is a challenging and interesting topic of research to synthesize iron sulfide and nickel sulfide with single phase by controlling the reaction process. This thesis focuses on the phase and morphology control of iron sulfide and nickel sulfide via a solvothermal process by changing experimental parameters such as the molar ratio, reaction temperature and reaction time, and by the addition of appropriate surfactants.
     A series of nanocrystalline iron sulfide has been successfully prepared via the reaction of Fe(NO_3)_3·9H_2O with NH_2CSNH_2in ethylene glycol in the temperature range of 200~240°C. Two single phases of Fe3S_4 and Fe_(1-x)S was obtained without surfactant. Using PVP as surfactant, Pyrite FeS_2 was obtained and marcasite FeS_2 was effectively inhibited. We present some results on the influence of reactant molar ratio, reaction temperature and time, and the kind of surfactants on the formation of the single-phase pyrite FeS_2 powder.
     Two single phases of Ni_3S_2 andα-NiS nanocrystals has been successfully prepared by the reaction of Ni(NO_3)_2·4H_2O with NH_2CSNH_2in ethylene glycol via a solvothermal process in the temperature of 160~220°C. It was found that both the temperature and the molar ratio of nickel nitrate to thiourea put a significant effect on the phase and morphology of nickel sulfide powders. In addition, Single phase cubic NiS_2 was obtained via a PVP-assisted solvothermal route. More interestingly, the phase and morphology of nickel sulfide nanocrystals could be adjusted by the addition of acrylamide as surfactant. With the amount of acrylamide increase, the products transformed from the cubic phase of NiS_2 solid ball into the rhombohedral phase ofα-NiS (acrylamide: thiourea=25:1) solid ball, eventually transformed into hexagonalβ-NiS (acrylamide: thiourea = 200:1) hollow spheres.
     FeS_2 thin film was deposited onto ITO glass substrates via a solvothermal method, which is mild, convenient and easy to handle compared with the conventional coating technique.
引文
[1]张立德,牟季美.纳米材料学,辽宁:辽宁科学技术出版社, 1994.
    [2] Mirkin C, Taton T. Semiconductors meet biology. Nature, 2000, 405: 626-627.
    [3] Hong B H, Bae S C, Lee C W et al. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science, 2001, 294: 348-351.
    [4] Dloczik L, Engelhardt R, Errst K. Hexagonal nanotube ZnS by chemical conversion of monocrystalline ZnO columns. Appl. Phys. Lett., 2001, 78(23): 3687-3689.
    [5] Fievet F, Vincent F F, Lagier J P et al. Controlled nucleation and growth of micro- metre-size copper particles prepared by polyol process. J. Mater. Chem., 1993, 3(6): 627-633.
    [6] Hu J Q, Lu Q Y, Tang K B et al. Low temperature synthesis of nanocrystalline titanium nitride via a benzenel-thermal route. J. AM. Ceram. soc., 2000, 83(2): 430-432.
    [7] Rao C N R, Nath M. Inorganic nanotubes. Dalton Trans., 2003, 1: 1-24.
    [8] Ahmadi T S, Wang Z L, Green T C. Shape controlled synthesis of colloidal platinum. Nanoparticles. Science, 1996, 272: 1924-1926.
    [9] Qian X, Yin J, Feng S. Preparation and characterization of polyvinyl pyrrolidone films containing solver sulfide nanoparticles. J. Mater. Chem., 2001, 11(10): 2504-2506.
    [10] Vollath V, Sickafus K E. Synthesis of ceramics oxides powders by microwave plasma pyrolsis. J. Mater. Sci., 1993, 28(21): 5943-5948.
    [11]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社, 2001.
    [12]陈敬中,刘剑洪.纳米材料科学导论.北京:高等教育出版社, 2006.
    [13]克莱邦德,陈建峰译.纳米材料化学.北京:化学化工出版社, 2004: 9-11.
    [14]陈萌.低维硫化物纳米材料化学制备法的研究[博士学位论文].北京:中国科学技术大学, 2001.
    [15]李泉,曾广赋,席时权.纳米粒子.化学通报, 1995, 6: 29-33.
    [16] Xie Y, Qian Y T, Wang W Z et a1. A Benzene-thermal synthetic route to nanocrystalline GaN. Science, 1996, 272: 1926-1927.
    [17] Li Y D, Duan X F, Qian Y T et a1. Solvothermal Co-reduction Route to the Nanocrystalli- ne III?V Semiconductor InAs. J. Am. Chem. Soc., 1997, 119(33): 7869-7870.
    [18] Li Y D, Qian Y T, Liao H W et al. A Reduction-Pyrolysis-Catalysis Synthesis of Diamond . Science, 1998, 281: 246-247.
    [19]刘新云.纳米材料的应用前景及研究进展.安徽化工, 2002, 5: 27-29.
    [20]李国栋.当代磁性材料和磁学的研究和应用.生物磁学, 2004, 4(3): 26-29.
    [21] Vega-Villa K R, Takemoto J K, Yanez J A et al. Clinical toxicities of nanocarrier systems. Adv. Drug. Deliv. Rev., 2008, 60(8): 929-938.
    [22]周国强,陈春英,李玉锋等.纳米材料生物效应研究进展.生物化学与生物物理进展. 2008, 35(9): 998-1006.
    [23] Sheldrich W S, Wachhold M. Solventothermal Synthesis of Solid-State Chalcogenidomet- alates. Angew. Chem. Int. Ed. Engl., 1997, 36(3): 206-224.
    [24] Bottcher P. Tellurium-Rich Tellurides. Angew. Chem. Int. Ed. Engl., 1988, 27(6): 759- 772.
    [25] Abboudi M, Mosset A. Synthesis of d Transition Metal Sulfides from amorphous Dithio- Ox amide Complexes. J. Solid. Chem. 1994, 109(1): 70-73.
    [26] Singhal G R, Botto I, Brown L D et al. Colle Formation of Transition Metal Sulfides by the Decomposition of Their Dithiolato Complexes. J. Solid State Chem., 1994, 109(1): 106-171.
    [27] Pecoraro T A, Chianelli R R. Hydrodesulfurization catalysis by transition metal sul- fides. J. Catal., 1981, 67(2): 430-445.
    [28] Atul K V, Thomas B, Rauchfuss et al. Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur. Sans Explosion Inorg. Chem., 1995, 34(11): 3072-3078.
    [29] Hu Y, Chen J F, Chen W M et al. Synthesis of Nickel Sulfide Submicrometer-Sized Hollow Spheres Using aγ-Irradiation Route. Adv. Funct. Mater., 2004, 14(4): 383-386.
    [30]卞国柱,殷亚东,伏义路等.γ-辐照法制硫化镍纳米非晶及其晶化.物理化学学报, 2000, 1 (16): 55-59.
    [31] Gary L M, Zhang S C, Jayanthi G V. Powder synthesis by spray pyralsis. J. Am. Ceram. Soc, 1993, 76(11): 2707-2726.
    [32] Kaito C, Saito Y, Fujita K. Studies on the structure and morphology of ultrafine par- ticles of metallic sulfides. J. Crystal. Growth, 1989, 94(4): 967-977.
    [33] Han S C, Kim K W, Ahn H J et al. Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries. J. Alloys. Comp., 2003, 361(1-2): 247-251.
    [34] Wan J, Chen X Y, Wang Z H et al. Synthesis of uniform PbS nanorod bundles via a surfactant-assisted interface reaction route. Mater. Chem. Phys., 2004, 88(1): 217-220.
    [35] Jean J H, Wang H R. Dispersion of aqueous barium titanate suspensions with ammonnium salt of poly (methacrylicacid). J. Am. Ceram. Soc., 1998, 81(6): 1589-1599.
    [36] Hackley V A. Colloidal processing of silicon nitride with poly(acrylic acid): adsor- ption and electrostatic interactions. J. Am. Ceram. Soc., 1997, 80(9): 2315-2323.
    [37] Sheldrick S W, Wachold M. Solvothermal synthesis of solid-state chalcogenidomet alates. Angew. Chem. Int. Ed., 1997, 36(3): 206-224.
    [38]张元广,刘奕,郭范等.水热法生长棒状MnOOH和MnO_2晶体.人工晶体学报, 2006, 35(4): 705-709.
    [39] Zang Y G, Liu Y, Guo F et al. Single-crystal growth of MnOOH and Beta MnO_2 microrods at lower temperature. Solid State Commun., 2005, 134(8): 523-527.
    [40]张卫民,张玉,董光明等.水热-热解法制备具有一维结构的Co_3O_4多晶.高等学校化学学报, 2006, 10: 1791-1794.
    [41] Heath J R. The chemistry of size and order on the nanometer scale. Science, 1995, 270: 1315-1360.
    [42] Chen Q W, Qian Y T, Chen Z Y et al. Hydrothermal epitaxy of highly oriented TiO2 Thin films on silicon. Appl. Phys. Lett., 1996, 66(13): 1608-1610.
    [43] Moriceau P, Lebouteiller A, Bordes E et al. A new concept related to selectivity in mild oxidation catalysis of hydrocarbons: the optical basicity of catalyst oxygen. Phys. Chem. Chem. Phys., 1999, 1(24): 5735-5744.
    [44] Ziese M. Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys., 2002, 65(2): 143-249.
    [45] Vanmaekelcergh D, Liljeroth P. Electron-conducting quantum dot solics: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev., 2005, 34(4): 299-312.
    [46]徐敏龙.金属氧化物气敏传感器(I).传感技术学报, 1995, 4: 59-64.
    [47] Rapopor L, Bilik Y, Feldman Y et al. Hollow nanoparticles of WS_2 as potential solid-state lubricants. Nature, 1997, 387: 791-793.
    [48] Chowalla M, amaratunga G. The films of fullerene-like MoS_2 nanoparticles with ultra-low friction and wear. Nature, 2000, 407: 164-167.
    [49] Winter M, Besenhard J O, Spahr M E et al. Insertion Electrode Materials for Rechargea- ble Lithium Batteries Insertion electrode materials for rechargeable lithium batteries. Adv. Mater., 1998, 10(10): 725-763.
    [50] Bhargava R N, Gallagher D, Hong X et al. Optical properties of manganese-doped nano- crystals of ZnS. Phys. Rev. Lett., 1994, 72(3): 416-419.
    [51] Monroy E, Omnes R, Calm E et al. Wide-band gap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol., 2003, 18(4): R33-R51.
    [52] Park W, King J S, Neff C W et al. ZnS-based photonic crystals. Phys. Status. Solidi B, 2002, 229(2): 949-960.
    [53] Deng H, Chen C, Peng Q et al. Formation of transition-metal sulfide microspheres for microtubes. Mater. Chem. Phys., 2006, 100(2-3): 224-229.
    [54] Gu F, Li C Z, Wang S F et al. Solution-phase synthesis of spherical zinc sulfide nanostructures. Langmuir, 2006, 22(3): 1329-1332.
    [55] Hu Z S, Li L Y, Zhan X D et al. Solvothermal synthesis of hollow ZnS spheres. J. Colloid Interf. Sci., 2006, 294(2): 328-333.
    [56] Liu H J, Ni Y H, Han M et al. A facile template-free route for synthesis of hollow hexagonal ZnS nano-and submicro-spheres. Nastotechnology, 2005, 16(12): 2908-2912.
    [57] Zhou G T, Wang X C, Yu J C et al. A low-temperature and mild solvothermal route to the synthesis of wurtzite-type ZnS with singlerctystalline nanoplate-like morphology. Cryst. Growth Des., 2005, 5(5): 1761-1765.
    [58] Chen M, Xie Y, Chen H et al. Templated Synthesis of CdS/PAN Composite, Nanowires under ambient Conditions. J. Colloid Interf. Sci., 2000, 229(1): 217-221.
    [59] Li Y D, Liao H W, Fan Y et al. A solvothermal synthetic route to CdE(E=S, Se) semico- nductor nanocrystalline. Mater. Chem. Phys., 1999, 58(1): 87-89.
    [60] Gao F, Li Q Y, Xie S H et al. A Simple Route for the Synthesis of Multi-armed CdS Nanorod Based Materials. Adv. Mater., 2002, 14(21): 1537-1540.
    [61] Chu H B, Li X M, Chen G D et al. Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Cryst. Growth Des., 2005, 5(5): 1801-1806.
    [62] Wang D B, Yua D B, Mo M S et al. Hydrothermal preparation of one-dimensional assemblies of PbS nanoparticles. Solid State Commun., 2003, 125(9): 475-479.
    [63] Wang D B, Yu D B, Shao M W et al. Dendritic growth of PbS crystals with different mo- rphologies. J. Crystal Growth, 2003, 257(3-4): 384-389.
    [64] Ge J P, Wang J, Zhang H X et al. Orthogonal PbS Nanowire Arrays and Networks and Their Raman Scattering Behavior. Chem. Eur. J., 2005, 11(6): 1889-1894.
    [65] Zhang H, Zuo M, Tan S et al. Carbothermal reduction /sulfidation synthesis and stru- ctural characterization of PbS nanobelts and nanowires. Nastotechnology, 2006, 17(12): 2931.
    [66] Wu C, Shi J B, Chen C J et al. Synthesis and optical properties of oniered 30 nm PbS nanowire arrays fabricated into sulfuric anodic alumina membrane. Mater. Lett., 2006, 60(1): 29-30.
    [67] Yong K T, Sahoo Y, Choudhury K R et al. Control of the morphology and size of PbS nanowires using gold nanoparticles. Chem. Mater., 2006, 18(25): 5965-5972.
    [68] Hai B, Tang K B, Wang C et al. Synthesis of SnS2 nanocrystals via a solvothermal process. J. Crystal Growth., 2001, 225(1): 92-95.
    [69] Yang Q, Tang K B, Wang C et al. The Synthesis of SnS2 nanoflakes from Tetrabutyltin Precursor. J. Solid State Chem., 2002, 164(1): 106-109.
    [70] Chen X H, Fan R. Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenide. Chem. Mater., 2001, 13(3): 802-804.
    [71] Tian Y M, Zhao X, Shen L C et al. Synthesis of amorphous MoS_2 nanospheres by hydrothermal reaction. Mater. Lett., 2006, 60(4): 527-529.
    [72] Meng Z Y. Hydrothermal Synthesis of MoS_2 and Its Pressure-Related Crystallization. J Solid State Chem, 2001, 159(1): 170-175.
    [73] Li C, Yang X G. Growth of crystalline Sb_2S_3 nanorods by hydrothermal method. J. Crystal Growth, 2003, 255(3-4): 342-344.
    [74] Li J Y. HydrothermaI synthesis of M_2S_3(M=Sb,Bi) bulk single crystals and nanorods. Mater. Chem. Phys., 2004, 87(2-3): 420-423.
    [75] Kar S, Chaudhuri S. Solvothermal synthesis of nanocrystalline FeS_2 with different morphologies. Chem. Phys. Lett., 2004, 398(1-3): 22-26.
    [76]陈艳华,郑毓峰,张校刚等. PH值对溶剂热合成FeS_2粉体的影响.物理化学学报, 2005, 21(4): 419-424.
    [77]吴荣,郑毓峰,张校刚等.晶种法水热合成FeS_2纳米晶.无机材料学报, 2004, 19(4): 917-920.
    [78]吴荣,郑毓峰,张校刚等. EDTA辅助水热合成FeS_2/NiSe_2复合纳米晶及其薄膜光电性质.物理学报, 2004, 53(10): 3494-3497.
    [79]张浩,刘军,王立秋等.溶剂热结晶FeS_2及其光吸收特性.人工晶体学报, 2009, 38: 79-82.
    [80] Qian X F, Xie Y, Qian Y T et al. Solvothermal synthesis and morphological control of nano-crystalline FeS_2. Mater. Lett., 2001, 48(2): 109-111.
    [81] Nath M, Choudhury A, Kundu A et al. Synthesis and Characterization of Magnetic Iron Sulfide Nanowires. Adv. Mater., 2003, 15(24): 2098-2101.
    [82]段鹤.溶胶-凝胶水热法结合电泳技术(EPD)制备FeS_2薄膜的研究.新疆:新疆大学硕士毕业论文, 2004.
    [83] Yermakov Y I, Startsev A N, Burmistrov V A et al. Sulphide catalysts on silica as a support. i. effect of the preparation technique of (Ni,W)/Si0_2 and (Ni,Mo)/Si0_2 cata- lysts on their activity in thiophen hydrogenolysis. Appl. Catal., 1984, 11(1): 1-13.
    [84] Tanaka K I, Okuhara T. Regulation of Intermediates on Sulfided Nickel and MoS_2 Catalysts. Catal. Rev. Sci. Eng., 1977, 15(1): 249-292.
    [85] Wang J, Chew S Y, Wexler D et al. Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery. Electrochem. Commun., 2007, 9(8): 1877-1880.
    [86] Sartale S D, Lokhande C D. Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method. Mater. Chem. Phys., 2001, 72(1): 101-104.
    [87] Welters W J J, Vorbeck G, Zandbergen H W et al. HDS Activity and Characterization of Zeolite-Supported Nickel Sulfide Catalysts. J. Catal., 1994, 150(1): 155-169.
    [88] Pramanik P, Biswas S. Deposition of nickel chalcogenide thin films by solution growth techniques. J. Solid State Chem., 1986, 65(1): 145-147.
    [89] Han S C, Kim W, Ahn H J et al. Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries. J. Alloys Compd., 2003, 361(1-2): 247-251.
    [90] Ghezelbash A, Sigman M B, Korgel B A et al. Solvothermal Synthesis of Nickel Sulfide Nanorods and Triangular Nanoprisms. Nano. Lett., 2004, 4(4): 537-542.
    [91] Chen N, Zhang W Q, Yu W C et al. Synthesis of nanocrystalline NiS with different morphologies. Mater. Lett., 2002, 55(4): 230-233.
    [92] Shen G, Chen D, Tang K et al.Phase-controlled synthesis and characterization of nickel sulfides nanorods J. Solid State Chem., 2003, 173(1): 227-231.
    [93] Chen D, Gao L. Novel morphologies of nickel sulfides: nanotubes and nanoneedles derived from rolled nanosheets in a w/o microemulsion. J. Crystal Growth, 2005, 262(1-4): 554-560.
    [94] Liu X. Hydrothermal synthesis and characterization of nickel and cobalt sulfides nanocrystallines. Mater. Sci. Eng. B, 2005, 119(1): 19-24.
    [95] Hu Y, Chen J, Chen W et al. Synthesis of Novel Nickel Sulfide Submicrometer Hollow Spheres. Adv. Mater., 2003, 15(9): 726-729.
    [96] Khiew P S, Huang N M, Radiman S et al. Synthesis of NiS nanoparticles using a sugar- ester nonionic water-in-oil microemulsion. Mater. Lett., 2004, 58(5): 762-767.
    [97] Jiang X, Xie Y, Lu J et al. Synthesis of Novel Nickel Sulfide Layer-Rolled Structures. Adv. Mater., 2001, 13(16): 1278-1281.
    [98] Barnard A S, Russo S P. Shape and thermodynamic stability of pyrite FeS_2 nanocrystals and nanorods. J. Phys. Chem. C, 2007, 111(31): 11742-11746.
    [99] Ennaoui A, Fiechter S, Pettenkofer C et al. Iron disulfide for solar energy conversion. Solar Energy Mater.& Solar Cells, 1993, 29(4): 289-370.
    [100] Soumitra K, Subhadra C. Synthesis of highly oriented iron sulfide nanowires through solvothermal process. Mater. Lett., 2005, 59(2-3): 289-292.
    [101] Nakamura S, Yamamoto A. Electrodeposition of pyrite (FeS_2) thin films for photovo- ltaic cells. Solar Energy Mater. & Solar Cells, 2001, 65(1-4): 79-85.
    [102] Willeke G, Blenk O, Kloc C et al. Preparation and electrical transport properties of pyrite (FeS_2) single crystals. J. Alloys Comp., 1992, 178(1-2): 181-191.
    [103] Meng L, Liu M S. Thin pyrite (FeS_2) films prepared by thermal-sulfurating iron films at various temperatures. Mater. Sci. Eng. B, 1999, 60(3): 168-172.
    [104] Guidotti R A, Reinhardt F W, Dai J X. Characterization of plasma-sprayed pyrite electrolyte composite cathodes for thermal batteries. J. New. Mat. Electrochem. Syst., 2002, 5: 273-279.
    [105] Meester B, Reijnen L, Goossens A et al. Synthesis of pyrite (FeS_2) thin films by low pressure MOCVD. Chem. Vap. Deposition, 2000, 6(3): 121-128.
    [106] Yamamoto A, Nakamura M, Seki A et al. Nakamura Pyrite (FeS_2) thin films prepared by spray method using FeSO_4 and (NH_4)_2Sx. Solar Energy Mater.& Solar Cells, 2003, 75(3): 451-456.
    [107] Yang X H, Wang X, Zhang Z D et al. Facile solvothermal synthesis of single-crystalline Bi_2S_3 nanorods on a large scale. Mater. Chem. Phys., 2006, 95(1): 154-157.
    [108] Tang H, Yu J G, Zhao X F et al. Solvothermal synthesis of novel dendrite-like SnS particles in a mixed solvent of ethylenediamine and dodecanethiol. J. Alloys Comp., 2008, 460(1-2): 513-518.
    [109] Zhu G Q, Liu P, Zhou J P et al. Effect of mixed solvent on the morphologies of nanostructured Bi_2S_3 prepared by solvothermal synthesis. Mater. Lett., 2008, 62(15): 2335-2338.
    [110] Wu R, Zheng Y F, Zhang X G et al. Hydrothermal/ synthesis and crystal structure of pyrite. J. Cryst. Growth, 2004, 266(4): 523-527.
    [111]郑林林,冯守爱,高峰等.无机材料化学学报, 2009, 24(1): 61-64.
    [112] Sun Y, Yin Y, Mayers B T et al. Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater., 2002, 14(11): 4736-4745.
    [113] Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semico- nductor nanocrystals. Adv. Mater., 2003, 15(5):459-463.
    [114] Yu D P, Bai Z G, Ding Y et al. Nanoscale silicon wires synthesized using simple phy- sical evaporation. Appl. Phys. Lett., 1998, 72(26): 3458-3460.
    [115] Wan Q, Li Q H, Chen Y I et al. Fabrication and ethanol sensing characteristics of ZnO nanwire gas sensors. Appl. Phys. Lett., 2004, 84(18): 3654-3656.
    [116] Han J T, Huang Y H, Huang W et al. Solvothermal synthesis and magnetic properties of pyrite Co_(1-x)Fe_xS_2 With various morphologies. J. Mater. Lett., 2006, 60(15): 1805- 1808.
    [117]陈艳华,郑毓峰,张校刚等.黄铁矿型FeS_2纳米晶的溶剂热合成.中国科学, 2005, 35(1): 20-30.
    [118] Meng Z Y, Peng Y Y, Xu L Q et al. Solvothermal-reduction route to nanocrystallineα-andβ-NiS. Mater. Lett., 2002, 53(3): 165-167.
    [119] Oledzka M, Lencka M M, Pinceloup P et al. Influence of Precursor on Microstructure and Phase Composition of Epitaxial Hydrothermal PbZr_(0.7)Ti_(0.3)O_3 Films. Chem. Mater., 2003, 15(5): 1090–1098.
    [120] Gouzinis A, Tsapatsis M. On the Preferred Orientation and Microstructural Manipu- lation of Molecular Sieve Films Prepared by Secondary Growth. Chem. Mater., 1998, 10(9): 2497–2504.
    [121] Li S, Demmelmaier C, Itkis M et al. Micropatterned Oriented Zeolite Monolayer Films by Direct In Situ Crystallization. Chem. Mater., 2003, 15(14): 2687–2689.
    [122] Lai Z P, Bonilla G, Diaz I et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science, 2003, 300: 456-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700