利用环戊烷羧酸和半刚性不对称羧酸构筑的配位聚合物合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现如今,利用含有多配位点的有机配体与金属离子以自组装的方式合成了大量的多功能的配位聚合物(CPs),而这些配位聚合物所拥有的结构和性能很大程度上依赖于有机桥连配体的本性以及中心金属离子单元的特性。截至目前,由于构象丰富、配位点较多的原因,含有多个羧酸基团的环烷烃羧酸类配体已被大量的用来构筑配位聚合物,而这些配位聚合物已被证明在光学、磁学以及催化领域有着良好的应用前景。在本论文研究中,选取了拥有十种立体构象的环烷烃羧酸配体1,2,3,4-环戊烷四甲酸,为了研究在配位反应过程中1,2,3,4-环戊烷四甲酸的构象转换行为,选取了不同的金属离子以及不同的辅助配体,在水热条件下合成了四例新的“砖墙式”配位聚合物,并通过单晶X-射线衍射分析、傅里叶红外光谱分析(FTIR)、元素分析(EA)、热重分析(TGA)和粉末X-射线衍射分析(PXRD)将所合成配合物的结构进行了系统表征,并对配合物所拥有的性质(热稳定性、荧光特性以及分子磁性)做了详细的测试和深入的研究,并对环戊烷四甲酸在最终所合成出的配合物中所展示的构象和起始反应物所展示的构象进行比较,研究表明在利用构象丰富的有机配体在构筑配位聚合物过程中,温度对于构象转换起着决定性作用。
     除此之外,由于围绕中心非金属原子所发生的扭动,使得基于半刚性V形对称羧酸所构筑的配位聚合物的研究引起了大家越来越多的关注,而这些所构筑的配位聚合物被证明在荧光、磁性、催化以及吸附方面有着良好的特性。相比较V形半刚性对称羧酸,基于半刚性不对称羧酸的研究却相对较少。和半刚性对称羧酸相比,半刚性不对称羧酸同样因为中心非金属原子的原因会发生一定的扭转,而且由于其围绕中心非金属原子的两部分基团的不对称,使得合成出来的结构呈现出不可预知性。截至目前为止,利用此类半刚性不对称羧酸配体所构筑的配位聚合物已被证明拥有迷人的结构和良好的荧光、磁学性能等特性。在本论文的后续研究中,选取了两例含有O为中心非金属原子的半刚性不对称羧酸配体3-(4’-羧基苯氧基)邻苯二甲酸(4-H3cpta)和3-(3’-羧基苯氧基)邻苯二甲酸(3-H3cpta)作为研究对象。为进一步研究这两类半刚性不对称羧酸配体的配位行为以及在组装配合物的过程中各影响因素分别对不同方面的影响,分两部分对其配位行为进行研究:
     a)同时利用两个半刚性不对称羧酸作为第一配体,并选取了不同类型的含氮配体,比如柱状的桥连含氮配体或封端配体等作为第二配体,在不同金属参与组装条件下,合成了六例结构多样的配位聚合物:{Cd3(2,2'-bpy)2(3-cpta)2·H20}n(5)、{Cd(bpa)0.5(3-cpta)·[NH2(CH3)2]}n(6)、{Mn3(2,2'-bpy)2(3-cpta)2·H20}n(7)、{Mn(bpa)0.5(3-cpta)(H2O)2·2H20}n(8)、{Zn3(1,10-phen)2(3-cpta)2(H20)2·2H20}n(9)和{Zn3(dpa)2(4-cpta)2}(10)。所合成的配位聚合物具有不同的空间维数、拓扑结构以及性能,其中配合物5和7为首例基于此类配体所合成的手性层状结构;配合物6主体框架为一个二维的阴离子框架结构,通过晶格中的二甲胺阳离子将电荷中和,使得整体框架显示电中性;配合物8在与配合物6选取同种有机配体和反应溶剂条件下,却展示了一个三维的框架结构;配合物9和配合物10,在所选取的第二配体为同种类型的前提下,仅是所选取第一配体中羧酸基团的位置不同,就使的配合物的空间维数发生比较大的变化。研究结果表明,金属离子、溶剂和取代基位置对于基于此类配体的配位聚合物的构筑有重要的影响。对配合物中5、6、9和10的荧光性质做了研究,此外对配合物7和8的磁学性质也进行了研究。
     b)为了进一步研究在构筑配位聚合物过程中影响因素所影响的方面,在合成体系中选取3-(4’-羧基苯氧基)邻苯二甲酸(4-H3cpta)与Co(Ⅱ)离子和bpe/bpa在水热/溶剂热条件下合成了一系列新的配位聚合物11-13:{Co3(cpta)2(bpe)3(H20)4}n(11)、{Co2(μ2-H2O)(μ3-OH)(Hcpta)(bpe)(H20)·3(DMF)3(H20)}n(12)和{Co3(cpta)2(bpa)4}n(13)。从单晶结构研究上来看,溶剂对于配位聚合物的框架结构起着尤为重要的作用;从最终配位聚合物所展示的性质来讲,第二配体对于配合物的性质影响较大。此外,配合物12中分子与客体分子之间的超分子作用力(氢键作用力和van der Waals作用力)以及分子之间的相互作用力(氢键作用力和π-π作用)对稳定框架结构、增强配合物晶体结构和形成三维超分子网络起着非常重要的作用。同时对配合物11-13的磁学性能进行了研究。
Nowadays, a great deal of coordination polymers based on multitopic organic spacers and metal ions have been self-assemblied. And the structures and properties possessed mainly depend on the natures of the organic bridging ligands and metal centers. Because of abundant conformations and more coordination topics, many coordination polymers based on cycloalkylcarboxylic acids with multi carboxylate groups have been synthesized up to now, which are proven having excellent properties in molecular optics, magnetism and catalysis. In the beginning of this dissertation, cyclopentanetetracarboxylic acid (cis,cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid) has been chosen as researching object. In order to investigate the conformation-transfer behaviors, four new "brick-wall"-shaped coordination polymers have been hydrothermal synthesized, which are structural characterized by Single-Crystal X-Ray Diffraction analyses, Fourier Transform Infrared Sppectroscopy (FTIR), Elemental Analyses (EA), Thermogravimetric Analysis (TGA) and Powder X-Ray Diffraction analyses (PXRD). Besides, the properties are also studied (for example, thermostabilities, fluorescence characteristic and magnetism). The conformation of the cyclopentanetetracarboxylate ligand in the initial reactant and the final coordination polymers are also investigated. The result shows that the temperature plays the most important role during the conformation-transfer when constructing coordination polymers with organic ligands of various conformations.
     In addition to that mentioned above, coordination polymers with V-shaped semi-rigid symmetry carboxylate ligands have attracted quite attentions because the backbone of the spacers could twist around the center non-metallic atoms, which are proven to have many excellent properties in luminescence, magnetism, catalysis and absorption. Compared to the symmetry ones, the reports about complexes based upon Ⅴ-shaped semi-rigid asymmetry ligands are a little rare, probably because the asymmetry characters of the backbones, which make the final structures unpredictable. Coordination polymers constructed with the semi-rigid asymmetry carboxylate ligands have been proven to have charming architectures and excellent luminescence and magnetic properties. In the following researches of this thesis, two semi-rigid asymmetry carboxylate ligands with oxygen atom as the center non-metallic atoms,3-(3'-carboxyphenoxy)phthalic acid (3-H3cpta) and3-(4'-carboxyphenoxy)phthalic acid (4-H3cpta) are chosen to constructed coordination polymers. The coordinated behaviors and the influence factors during the assembling CPs are also studied in the further researches:
     1. Two semi-rigid asymmetric carboxylic acids are used as the main ligands at the same time, and different types of N-donor ligands are also chosen, such as pillar-bridge linked N-donor ligands and chelate ligands as the auxiliary ligands. After assembling with different metals, six coordination polymers with diverse structures were synthesized, which have different dimensionalities, topological structures and properties:{Cd3(2,2'-bpy)2(3-cpta)2·H2O}n (5)、{Cd(bpa)0.5(3-cpta)·[NH2(CH3)2]}n (6)、{Mn3(2,2'-bpy)2(3-cpta)2·H2O}n (7)、{Mn(bpa)0.5(3-cpta)(H2O)2·2H2O}n (8)、{Zn3(1,10-phen)2(3-cpta)2(H2O)2·2H2O}n(9)和{Zn3(dpa)2(4-cpta)2}(10). Complex5and7are the fist type of chiral layer structure with this type ligands; Complex6is a anionic2D layer structure, which is neutralized by the lattice dimethylamine cation; Complex8and Complex6are synthesized under the same reaction condition but different metal salts, different from Complex6, Complex8is a3D framework. Complex9and10are synthesized with the same auxiliary ligand and solvent but different carboxylate position, which make the final structures quite different. The result of the research shows that solvents, metal ions and positions of the substituents all have the important influences on the CPs with this type organic ligand. Besides, the luminescence properties of Complex5,6,9,10and magnetic properties of Complex7and8are also studied.
     2. In order to study the influence factors during the process of coordination polymers construction aspects,3-(4'-carboxyphenoxy)phthalic acid (4-H3cpta) and Co(II) ion are synthesized with bpe/bpa under hydro/solvothermal reactions, and three new coordination polymers11-13are obtained:{Co3(cpta)2(bpe)3(H2O)4}n (11){Co2(μ2-H2O)(μ3-OH)(Hcpta)(bpe)(H2O)·3(DMF)3(H2O)}n (12)和{Co3(cpta)2(bpa)4}n (13). After the study about the structures of the single crystals, it is shown that solvents play the main effect to the final structures. While the natures of the auxiliary ligands play the important role on the final properties of the complexes. In addition, the supermolecular forces between framework and guest molecules in Complex12(hydrogen bonds and van der waals force) and interaction forces between molecules make the whole structure more stable. The magnetic properties among the three complexes are also studied.
引文
[1]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000:1-16
    [2]McClevety J. A., Meyer T. J. Comprehensive Coordination Chemistry[J]. Angewandte Chemie International Edition,2004,3(10):3875-3876
    [3]宋银柱,王耕霖.配位化学[M].北京:北京大学出版社,1982,30-31
    [4]Couck S., Denayer J. F. M., Baron G. V., et al. An Amine-Functionalized MIL-53 Metal-Organic with Large Separation Power for CO2 and CH4[J]. Journal of American Chemical Society,2009,131(18):6326-6327
    [5]Hoskins B. F., Robson R. Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments[J]. Journal of American Chemical Society, 1989,111(15):5962-5964
    [6]Batten S. R., Neville S. M., Turner D. R. Coordination Polymers:Design, Analysis and Application[M]. England:The Royal Society of Chemistry,2009:16-25
    [7]Duchamp D. J., Marsh R. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid) [J]. Acta Crystallographica Section B:Structural Science.1969,25:5-19
    [8]Dunitz D. J. In Perspectives in Supramolecular Chemistry-the Crystal as a Supramolecular Entity[M]. Germany:Wiley,1996:12-15
    [9]Desiraju G R. Crystal Structures of Polynuclear Aromatic Hydrocarbons. Classification, Rationalization and Production from Molecular Structure[J]. Acta Crystallographica Section B:Structural Science.1969,25:115-119
    [10]Etter M. C. Encoding and Decoding Hydrogen-Bonds Patterns of Organic Compounds[J]. Accounts of Chemical Research,1990,23(4):120-126
    [11]洪茂椿,陈荣,梁文.21世纪的无机化学[M].北京:科学出版社,2005:78-99
    [12]Zaworotko M. J. Molecules to Crystals, Crystals to Molecules... and Back Again?[J]. Crystal Growth & Design,2007,7(1):4-9
    [13]Robin A. Y, Fromm K. M. Coordination Polymer Networks with O-and N-donors:What They Are, Why and How They Are Made[J]. Coordination Chemietry Reviews,2006, 250:2127-2157
    [14]Janiak C. Engineering Coordination Polymers Towards Applications [J]. Dalton Transactions,2003,14:2781-2804
    [15]Robson R. Design and Its Limitations in the Construction of Bi- and Poly-nuclear Coordination Complexes and Coordination Polymers (aka MOFs):A Personal View[J]. Dalton Transactions,2008,38:5113-5131
    [16]朱莉娜,廖代正.先进材料的设计-网络拓扑方法[J]. Chinese Journal of Structural Chemistry,2003,22:125-132
    [17]Sharma C. V. K. Designing Advanced Materials As Simple As Assembling Blocks [J]. Journal of Chemical Education,2001,78:617-622
    [18]Dai F. N., He H. Y., Sun D. F. Polymorphism in High-Crystalline-Stability Metal-Organic Nanotubes[J]. Inorganic Chemistry,2009,48(11):4613-4615
    [19]Xi X., Liu Y., Cui Y. Homochiral silver-based coordination polymers exhibiting temperature-dependent photoluminescence behavior[J]. Inorganic Chemistry,2014,53(5): 2352-2354
    [20]Du L. Y, Shi W. J., Hou L., Wang Y. Y, Shi Q. Z., Zhu Z. H., Solvent or Temperature Induced Diverse Coordination Polymers of Silver(I) Sulfate and Bipyrazole Systems: Syntheses, Crystal Structures, Luminescence, and Sorption Properties [J].2013,52(24): 14018-14027
    [21]Luan X. J., Wang Y. Y, Li D. S., et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions[J]. Angewandte Chemie International Edition,2005,44(25):3864-3867
    [22]Luan X. J., Cai X. H., Wang Y. Y, et al. An Investigation of the Self-Assembly of Neutral, Interlaced, Triple-Stranded Molecular Braids[J]. Chemistry-A European Journal,2006,12: 6281-6289
    [23]Yang G. P., Hou L., Wang Y. Y, et al. Molecular braids in metal-organic frameworks[J]. Chemistry Society Review,2012,41(21):6992-7000
    [24]Liu J. Q., Wang Y. Y, Shi Q. Z., et al. Interplay of Coordinative and Supramolecular Interactions in Formation of a Series of Metal-Organic Complexes Bearing Diverse Dimensionalities[J]. Dalton Transactions,2009,5365-5378
    [25]Joarder B., Chaudhari A. K., Ghosh S. K. A Homochiral Luminescent 2D Porous Coordination Polymer with Collagen-Type Triple Helices Showing Selective Guest Inclusion[J]. Inorganic Chemistry,2012,51 (8),4644-4649
    [26]Shan X. C, Yuan D. Q., Hong M. C. et al. A Multi-Metal-Cluster MOF with Cu4I4 and Cu6S6 as Functional Groups Exhibiting Dual Emission with both Thermochromic and Near-infrared Characters[J]. Chemical Science,2013,4(4):1494-1489
    [27]Hou L., Wang Y Y., Shi Q. Z., et al. A rod packing microporous metal-organic framework:unprecedented ukv topology, high sorption selectivity and affinity for CO2[J]. Chemical Communication,2011,47:5464-5466
    [28]Wu H., Yang J., Su Z. M., et al. An Exceptional 54-Fold Interpenetrated Coordination Polymer with 103-srs Network Topology [J]. Journal of American Chemistry Society. 2011,133:11406-11409
    [29]Liu J. Q., Wang Y. Y, Shi Q. Z., et al. Generation of a 4-Crossing [2]-Catenane Motif by the 2D→2D Parallel Interpenetration of Pairs of (4,4) Sheets[J]. CrystEngComm,2008, 10:1123-1125
    [30]Yang G. P., Ma L. F., Wang Y. Y., et al. Investigation on the prime factors influencing the formation of entangled metal-organic frameworks [J]. CrystEngComm,2013,15: 2561-2578
    [31]Du M., Li C. P., Fang S. M., et al. Design and construction of coordination polymers with mixed-ligand synthetic strategy[J]. Coordination Chemistry Reviews,2013,257: 1282-1305
    [32]Chen X. D., Du M., Mak T. C. W. Controlled generation of heterochiral or homochiral coordination polymer:helical conformational polymorphs and argentophilicity-induced spontaneous resolution[J]. Chemical Communication,2005,4417-4419
    [33]Du M., Li C. P., Wang G. C., et al. Destruction and reconstruction of the robust [Cu2(OOCR)4] unit during crystal structure transformations between two coordination polymers[J]. Chemical Communications,2011,47(28):8088-8090
    [34]Chen X. D., Zhao X. H., Du M., et al. A 3D Copper(II) Coordination Framework Showing Different Kinetic and Thermodynamic Crystal Transformations through Removal of Guest Water Cubes[J]. Chemistry-A European Journal,2009,15(47): 12974-12977
    [35]Du M., Zhao X. J., Batten S. R., et al. Direction of topological isomers of silver(I) coordination polymers induced by solvent, and selective anion-exchange of a class of PtS-type host frameworks[J]. Chemical Communication,2005,4836-4838
    [36]Du M., Wang X. G, Zhao X. J., et al. Solvent-directed layered Co(II) coordination polymers with unusual solid-state properties:from a nanoporous framework to the dense polythreading 3-D aggregation[J]. CrystEngComm,2006,8:788-793
    [37]Yang Y. Y, Guo W, Du M. Solvent-controlled assemblies, structures, and properties of two Hg(Ⅱ) coordination polymers with a multidentate N-donor tecton 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole[J]. Inorganic Chemistry Communication, 2010,13:1195-1198
    [38]Chen S. C., Zhang Z. H., Du M.. et al. Solvent-Controlled Assembly of Manganese(II) Tetrachloroterephthalates with 1D Chain,2D Layer, and 3D Coordination Architectures[J]. Crystal Growth & Design,2008,8(9):3437-3445
    [39]Loudon G M., Organic Chemistry[M], New York:Oxford University Press,4th edn, 2002
    [40]Bondi A. van der Waals Volumes and Radii[J]. the Journal of Physical Chemistry,1964, 68:441-451
    [41]Li C. P., Du M. Role of solvents in coordination supramolecular systems[J]. Chemical Communication,2011,47:5958-5972
    [42]Li C. P., Wu J. M., Du M. Exceptional Crystallization Diversity and Solid-State Conversions of Cdll Coordination Frameworks with 5-Bromonicotinate Directed by Solvent Media[J]. Chemistry-A European Journal,2012,18:12437-12445
    [43]Long L. S. pH effect on the assembly of metal-organic architectures [J]. CrystEngComm, 2010,12:1354-1365
    [44]Go Y. B., Wang X. Q., Anokhina E. V., et al. Influence of the Reaction Temperature and pH on the Coordination Modes of the 1,4-Benzenedicarboxylate (BDC) Ligand:A Case Study of the NiII(BDC)/2,2'-Bipyridine System[J]. Inorganic Chemistry,2005,44(23): 8265-8271
    [45]Fang R. Q., Zhang X. M. Diversity of Coordination Architecture of Metal 4,5-Dicarboxyimidazole[J]. Inorganic Chemistry,2006,45(12):4801^810
    [46]Pan L., Frydel T., Sander M. B., et al. The Effect of pH on the Dimensionality of Coordination Polymers[J]. Inorganic Chemistry,2001,40(6):1271-1283
    [47]Fan J., Zhu H. F., Okamura T., et al. Three-dimensional Photoluminescent Pillared Metal-Organic Framework with 4.82 Topological Channels Obtained from the Assembly of Cadmium(II) Acetate and Trimellitic Salt[J]. New Journal of Chemistry,2003,27: 1409-1411
    [48]Nagarkar S. S., Chaudhari A. K., Ghosh S. K. Role of Temperature on Framework Dimensionality:Supramolecular Isomers of Zn3(RCOO)s Based Metal Organic Frameworks[J]. Crystal Growth & Design,2012,12:572-576
    [49]Forster P. M., Burbank A. R., Livage C., et al. The role of temperature in the synthesis of hybrid inorganic-organic materials:the example of cobalt succinates[J]. Chemical Communications,2004,368-369
    [50]Deng H. X., O'Keeffe M., Yaghi O. M., et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science.336(6084):1018-1023
    [51]Chen B. L., Ma S. Qian., Zapata F., et al. Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules[J]. Inorganic Chemistry,2007,46(4):1233-1236
    [52]MacGillivray L. R., Subramanian S., Zaworotko M. J. Interwoven two-and three-dimensional coordination polymers through self-assembly of CuI cations with linear bidentate ligands[J]. Journal of Chemical Society, Chemical Communication,1994, 1325-1326
    [53]Blake A. J., Champness N. R., Chung S. S. M., et al. Control of interpenetrating copper(Ⅰ) adamantoid networks:Synthesis and structure of {[Cu(bpe)2]BF4}[J]. Chemical Communication,1997,1005-1007
    [54]Blake J., Champness N. R., Khlobystov A. N., et al. Crystal engineering:the effects of π-π interactions in copper(Ⅰ) and silver(Ⅰ) complexes of 2,7-diazapyrene [J]. Chemical Communication,1997,1339-1340
    [55]Carlucci L., Ciani G., Proserpio D. M., et al. Interpenetrating diamondoid frameworks of silver(Ⅰ) cations linked by N,N'-bidentate molecular rods[J]. Journal of American Chemical Society, Chemical Communication,1994,2755-2756
    [56]Rowsell J. L. C., Yaghi O. M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks[J]. Journal of American Chemical Society,2006, 128(4):1304-1315
    [57]Nouar F., Eubank J. F., Bousquet T., et al. Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks[J]. Journal of American Chemical Society,2008,130(6):1833-1835
    [58]Fletchera A. J., Thomasa K. M., Rosseinsky M. J. Flexibility in Metal-Organic Framework Materials:Impact on Sorption Properties[J]. Journal of Solid State Chemistry, 2005,178:2491-2510
    [59]Chen X. Y., Zhao B., Shi W., et al. Microporous Metal-Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node[J]. Chemistry of Materials,2005,17(11):2866-2874
    [60]Wang Y., Cheng P., Chen J., et al. A Heterometallic Porous Material for Hydrogen Adsorption[J]. Inorganic Chemistry,2007,46(11):4530-4534
    [61]Eddaoudi M., Kim J., Rosi N., et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J] Science,295:469-472
    [62]Sun Y. J., Zhang L. Z., Cheng P., et al. Kinetic Study of the Effects of Inhibitors on the Catalyzed Dehydration of HCO"3 by Copper(II) Complexes [TpPh]CuX (X-= OH-, N3-, NCS")[J]. Inorganic Chemistry,2003,42(2):508-515
    [63]Wang X. L., Qin C., Wang E. B., et al. Self-Assembly of Nanometer-Scale [Cu24I10L12]14+ Cages and Ball-Shaped Keggin Clusters into a (4,12)-Connected 3D Framework with Photoluminescent and Electrochemical Properties [J]. Angewandte Chemie International Edition,2006,45(44):7411-7414
    [64]Duan L. M., Xie F. T., Chen X. Y., et al. Syntheses, Structures, and Magnetic Properties of Three Novel Metal-Malate-Bipyridine Coordination Polymers with Layered and Pillared Topology[J]. Crystal Growth & Design,2006,6(5):1101-1106
    [65]Shi J. M., Sun Y. M., Zhang X., et al. Magnetic Study on a Two-Dimensional Coordination Polymer with Mixed Bridging Ligands[J]. Journal of Physical Chemistry A, 2006,110(24):7677-7681
    [66]Li Y. G, Hao N., Wang E. B., et al. A Novel Three-Dimensional Metal-Organic Framework Constructed from Two-Dimensional Interpenetrating Layers Based on Trinuclear Cobalt Clusters:[Co3(btec)(C2O4)(H2O)2]n[J].European Journal of Inorganic Chemistry,2003,2567-2571
    [67]Batten S. R., Hoskins B. F., Robson R., et al., An Alternative to Interpenetration Whereby Nets with Large Windows May Achieve Satisfactory Space Filling[J]. Chemical Communications,2000,1095-1096
    [68]Xu H. B., Wang B. W, Pan F., et al. Stringing Oxo-Centered Trinuclear [MnⅢ30] Units into Single-Chain Magnets with Formate or Azide Linkers[J]. Angewandte Chemie International Edition,2007,46(1):1-6
    [69]Yi T, Ho-Chol C., Gao S., et al. Tuning of the Spin States in Trinuclear Cobalt Compounds of Pyridazine bythe Second Simple Bridging Ligand[J]. European Journal of Inorganic Chemistry,2006,1381-1387
    [70]Zhang X. M., Zhao Y. F., Zhang W. X., et al. A Tetrazolate-and Cyano-Bridged Homometallic Mixed-Valence Copper(Ⅰ,Ⅱ) Molecular Ferrimagnet[J]. Advanced Materials,2007,19:2843-2846
    [71]Wang H. S., Zhao B., Zhai, B., et al. Syntheses, Structures, and Photoluminescence of One-Dimensional Lanthanide Coordination Polymers with 2,4,6-Pyridinetricarboxylic Acid[J]. Crystal Growth & Design,2007,7(9):1851-1857
    [72]Wang Y., Yi L., Yang X., et al. Synthesis, Crystal Structure, and Characterization of New Tetranuclear Ag(I) Complexes with Triazole Bridges [J]. Inorganic Chemistry,2006, 45(15):5822-5829
    [73]Zhao B., Chen X. Y., Cheng P., et al. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J]. Journal of American Chemical Society,2004,126(47): 15394-15395
    [74]Wang X. L., Qin C., Wang E. B., et al. Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chemistry European Journal,2006,12:2680-2691
    [75]Froster P. M., Cheetham A. K. Open-Framework Nickel Succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]-2H2O:A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity [J]. Angewandte Chemie International Edition,2002,41(3): 457-459
    [76]Ciurtin D. M., Pschirer N. G, Smith M. D., et al. Two Luminescent Coordination Polymers with a Triple-Helix Structure:HgX2(C31H24N2)-CH2Cl2 (X=C1 and Br)[J]. Chemistry of Materials,2001,13(9):2743-2745
    [77]Tadokoro M., Yasuzuka S., Nakamura M., et al. A High-Conductivity Crystal Containing a Copper(I) Coordination Polymer Bridged by the Organic Acceptor TANC [J]. Angewandte Chemie International Edition,2006,45(31):5144-5147
    [78]Kawakami D., Yamashita M., Matsunaga S., et al. Halogen-Bridged PtII/PtIV Mixed-Valence Ladder Compounds[J]. Angewandte Chemie International Edition,2006,45(43): 7214-7217
    [79]Wang Y T., Fan H. H., Wang H. Z., et al. A Solvothermally in situ Generated Mixed-ligand Approach for NLO-Active Metal-Organic Framework Materials [J]. Inorganic Chemistry,2005,44(12):4148-4150
    [80]Hou H., Wei Y, Song Y, et al. Metal Ions Play Different Roles in the Third-Order Nonlinear Optical Properties of d10 Metal-Organic Clusters[J]. Angewandte Chemie International Edition,2005,44(37):6067-6074
    [81]张志强,郑军卫.国际氢经济竞争发展态势及我国的对策[J].中国科学院院刊,2006,21(5):418-422
    [82]Rowsell J. L. C., Yaghi O. M. Strategies for Hydrogen Storage in Metal-Organic Frameworks [J]. Angewandte Chemie International Edition in English,2005,44(30): 4670-4679
    [83]Forster P. M., Eckert J., Heiken B. D., et al. Adsorption of Molecular Hydrogen on Coordinatively Unsaturated Ni(II) Sites in a Nanoporous Hybrid Material [J]. Journal of American Chemical Society,2006,128(51):16846-16850
    [84]Sumida K., Rogow D. L., Long J. R., et al. Carbon Dioxide Capture in Metal-Organic Frameworks[J]. Chemical Reviews,2011,112(2):724-781
    [85]Yoon M., Srirambalaji R., Kim, K. Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis[J]. Chemical Reviews,2011,112(2):1196-1231
    [86]Suh M. P., Park H. J., Lim D. W., et al. Hydrogen Storage in Metal-Organic Frameworks [J]. Chemical Reviews,2011,112(2):782-835
    [87]Murray L. J., Dinca M., Long J. R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews,38(5):1294-1314
    [88]Li J. R., Kuppler R. J., Zhou H. C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chemical Society Reviews,38(5):1477-1504
    [89]Ma L. Q., Abney C., Lin W. B. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chemical Society Reviews,38(5):1248-1256
    [90]Gramm F., Baerlocher C. B., McCusker L.B., et al. Complex Zeolite Structure Solved by Combining Powder Diffraction and Electron Micropscopy[J]. Nature,2006,444:79-81
    [91]Bon V., Senkovska I., Kaskel, S., et al. In situ observation of gating phenomena in the flexible porous coordination polymer Zn2(BPnDC)2(bpy) (SNU-9) in a combined diffraction and gas adsorption experiment[J]. Inorganic Chemistry,2014,53(3):1513-1520
    [92]Nugent P., Belmabkhout Y, Zaworotko M. J., et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO separation[J]. Nature,2013,495(7439): 80-84
    [93]Horike S., Shimomura S., Kitagawa S. Soft porous crystals [J]. Nature Chemistry,2009, 1(9):695-704
    [94]Yang H. Q., Xu Z. H., Wright I., et al. Progress in carbon dioxide separation and capture: A review[J]. Journal of Environmental Sciences,2008,20(1):14-27
    [95]Chu S. Carbon Capture and Sequestration[J]. Science,2009,325:1599
    [96]Pachauri R. K., Reisinger A. IPCC Fourth Assessment Report, Intergovernmental Panel on Climate Change,2007
    [97]Furukawa H., Kim J., Yaghi O. M., et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424-428
    [98]Yan Z., Ruiz E., Tong M. L., et al. Spin-Crossover Behavior in Two New Supramolecular Isomers[J]. Inorganic Chemistry,2014,53(1):201-208
    [99]Liu J. Q., Wang Y. Y, Shi Q. Z., et al. An Unusual 3D Entangled Co(Ⅱ) Coordination Polymer Directed by Ferromagnetic Molecular Building Block[J]. Inorganic Chemistry, 2010,49 (22):10422-10426
    [100]Hou L., Shi W. J., Wang Y. Y., et al. Trinuclear-based Copper(Ⅰ) Pyrazolate Polymers: Effect of Trimer π-Acid...Halide/Pseudohalide Interactions on the Supramolecular Structure and Phosphorescence [J]. Inorganic Chemistry,2011,50:261-270
    [101]Uemura T., Yanai N., Kitagawa S. Polymerization Reactions in Porous Coordination Polymers[J]. Chemical Society Reviews,2009,38:1228-1236
    [102]Zacher D., Shekhah O., Woll C., et al. Thin Films of Metal-Organic Frameworks [J]. Chemical Society Reviews,2009,38:1418-1429
    [103]Liu X. G. Zinc Oxide Nano-and Micro-fabrication from Coordination-Polymer Templates[J]. Angewandte Chemie International Edition,2009,48(1):2-6
    [104]Liu T. F., Lu J., Cao R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands[J]. CrystEngComm,2010,12:660-670
    [105]Kitagawa S., Kitaura R., Noro S. Functional Porous Coordination Polymers[J]. Angewandte Chemie International Edition,2004,43:2334-2375
    [106]Bi W., Cao R., Sun D., et al. Isomer separation, conformation control of flexible cyclohexanedicarboxylate ligand in cadmium complexes[J]. Chemical Communications, 2004,2104-2105
    [107]Wang J., Zhang Y. H., Tong M. L. Two new 3D metal-organic frameworks of nanoscale cages constructed by Cd(II) and conformationally-flexible cyclohexanehexacarboxylate[J]. Chemical Communications,2006,3166-3168
    [108]Yao R. X., Hao Z. M., Zhang X. M., et al. Enantiomers of conformation flexible cyclopentane-1,2,3,4-tetracarboxylate in metal-organic frameworks [J]. CrystEngComm, 2010,12:4416-4423
    [109]Pan L., Sander M. B., Huang X., et al. Microporous Metal-Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage [J]. Journal of American Chemical Society,2004,126:1308-1309
    [110]Harbuzaru B. V., Corma A., Rey F., et al. Metal-Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and their Use as Sensors [J]. Angewandte Chemie International Edition,2008,47:1080-1083
    [111]Luo F., Yang Y. T., Che Y. X., et al. An Unusual Metal-Organic Framework showing both Rotaxane and Catenane-like motifs[J]. CrystEngComm,2008,10:981-982
    [112]Li W., Jia H. P., Ju Z. F., et al. A series of Manganese-Carboxylate Coordination Polymers exhibiting diverse Magnetic Properties[J]. Dalton Transactions,2008,5350-5357
    [113]Wang S. J., Tian Y. W., Sun Y. G., et al. Solvent-regulated assemblies of 1D lanthanide coordination polymers with the tricarboxylate ligand[J].43(9):3462-3470
    [114]Zou G. D., Li J. R., Huang X. Y, et al. A 3D Hybrid Praseodymium-Antimony-Oxochloride Compound:Single-Crystal-to-Single-Crystal Transformation and Photocatalytic Properties[J]. Chemistry-A European Journal,19(45): 15396-15403
    [115]Wang H., Yin F. Y, Sun Z. M., et al. Rational Assembly of Co/Cd-MOFs Featuring Topological Variation[J]. Crystal Growth & Design,2014,14(1):147-156
    [116]Rao C. N. R., Natarajan S., Vaidhyanathan R. Metal Carboxylates with Open Architectures[J]. Angewandte Chemie International Edition,2004,43(12):1466-1496.
    [117]Blake A. J., Champness N. R., Schroder M., et al. Inorganic crystal engineering using self-assembly of tailored building-blocks [J]. Coordination Chemistry Review,1999, 183(1):117-138.
    [118]Moulton B., Zaworotko M. J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chemistry Review, 2001,101(6):1629-1658.
    [119]Eddaoudi M., Chen B. L., Yaghi O. M., et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Accounts of Chemical Research,2001,34(4):319-330
    [120]Kitagawa S., Kitaura R., Noro S. Functional Porous Coordination Polymers[J]. Angewandte Chemie International Edition,2004,43(18):2334-2375.
    [121]Evans O. R., Lin W. B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J]. Accounts of Chemical Research,2002,35(7): 511-522
    [122]Rosi N. L., Eddaoudi M., Yaghi O. M., et al. Advances in the chemistry of metal-organic frameworks [J]. CrystEngComm,2002,4(68):401-404
    [123]Braun M. E., Steffek C. D., Yaghi O. M., et al.1,4-Benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal-organic frameworks[J]. Chemical Communication,2001,2532-2533
    [124]Chui S. S. Y., Lo S. M. F., Williams I. D., et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283:1148-1150.
    [125]Kepert C. J., Rosseinsky M. J. A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate:quadruple interpenetration of the (10,3)-a network[J]. Chemical Communication,1998,31-32.
    [126]Cheng D. P., Khan M. A., Houser R. P. Novel Sandwich Coordination Polymers Composed of CobaltⅡ),1,2,4,5-Benzenetetracarboxylato Ligands, and Homopiperazonium Cations[J]. Crystal Growth & Design,2002,2(5):415-420.
    [127]Schaate A., Klingelhofer S., Wiebcke M., et al. Two Zinc(II) Coordination Polymers Constructed with Rigid 1,4-Benzenedicarboxylate and Flexible 1,4-Bis(imidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene Linkers:From Interpenetrating Layers to Templated 3D Frameworks[J]. Crystal Growth & Design,2008,8(9):3200-3205
    [128]Mahata P., Ramya K. V., Natarajan S. Pillaring of CdCl2-Like Layers in Lanthanide Metal-Organic Frameworks:Synthesis, Structure, and Photophysical Properties [J]. Chemistry-European Journal,2008,14(19):5839-5850
    [129]Wen L. L., Duan C. Y, Meng Q. J., et al. 1D Helix,2D Brick-Wall and Herringbone, and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide[J]. Inorganic Chemistry,2005,44(20):7161-7170
    [130]Zhang J., Khaskin E., Vedernikov A. N., et al. Catalytic aerobic oxidation of substituted 8-methylquinolines in Pdn-2,6-pyridinedicarboxylic acid systems[J]. Chemical Communications,2008,31:3625-3627
    [131]Burrows A. D., Mahon M. F., Wong C. T. F. Complexes as metalloligands in network formation:synthesis and characterisation of a mixed-metal coordination network containing palladium and zinc[J]. CrystEngComm,2008,10:487-489
    [132]Sheldrick G M. SHELXS, University of Gottingen, Germang,1997
    [133]Sheldrick G. M. SHELXL, Program for the Refinement of Crystal Structures, University of G6ttingen, Germang,1997
    [134]Addison A. W., Rao T. N., Verschoor G. C., et al. Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds containing Nitrogen-Sulphur Donor Ligands the Crystal and Molecular Structure of Aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]Copper(Ⅱ) Perchlorate[J]. J. Chem. Soc. Dalton Transaction,1984,1349-1356
    [135]Hou, L., Shi Q. Z., Wang Y. Y., et al. A polar tetrazolyl-carboxyl microporous Zn(II)-MOF:sorption and luminescent properties. Dalton Transaction,2013,42(10): 3653-3659
    [136]Wu, Y. P., Li, D. S., et al. Isomeric phenylenediacetates as modular tectons for a series of ZnⅡ/CdⅡ coordination polymers incorporating flexible bis(imidazole) co-ligands. CrystEngComm,2012,14(14):4745-4755
    [137]Zhang, Y. N., Shi Q. Z., Wang Y Y, et al. Syntheses and Crystal Structures of a Series of Zn(II)/Cd(II) Coordination Polymers Constructed from a Flexible 6,6 '-Dithiodinicotinic Acid. Crystal Growth & Design,2011,11(5):1531-1541
    [138]Chen X. L., Gou L., Hu H. M., et al. New Example of Metal Coordination Architectures of 4,4'-Sulfonyldibenzoic Acid:Synthesis, Crystal Structure and Luminescence [J]. European Journal of Inorganic Chemistry,2008,239-250
    [139]Zhang L., Zhang J., Yao Y G., et al. Breaking the Mirror:pH-Controlled Chirality Generation from a meso-Ligand to a Racemic Ligand[J]. Chemistry-A European Journal, 2009,15,989-1000
    [140]Carlucci L., Ciani G, Proserpio D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. CoordinationChemical Reviews,2003, 246:247-289
    [141]Yaghi O. M., O'Keeffe M., Kim J., et al. Reticular synthesis and the design of new materials[J]. Nature,2003,423:705-714
    [142]Bradshaw D., Claridge J. B., Rosseinsky M. J., et al. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials [J]. Accounts of Chemical Research, 2005,38:273-282
    [143]Jiang H. L., Makal T. A., Zhou H. C., Interpenetration control in metal-organic frameworks for functional applications[J]. Coordination Chemistry Reviews,256(16): 2232-2249
    [144]Li J. R., Kuppler R. J., Zhou H. C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chemical Society Reviews.2009,38(5):1477-1504.
    [145]Kurmoo M., Magnetic metal-organic frameworks [J]. Chemical Society Reviews, 2009,38(5):1353-1379.
    [146]Lee J. Y, Farha O. K., Hupp J. T., et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews,2009,38(5):1450-1459.
    [147]Ma L. Q., Abney C., Lin W. B., et al. Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chemical Society Reviews,2009,38(5):1248-1256
    [148]Allendorf M. D., Bauer C. A., Houk R. J. T., et al. Luminescent metal-organic frameworks[J]. Chemical Society Reviews,2009,38(5):1330-1352.
    [149]Wang H., Wang Y. Y, Yang G. P., et al. A series of intriguing metal-organic frameworks with 3,3',4,4'-benzophenonetetracarboxylic acid:structural adjustment and pH-dependence[J]. CrystEngComm.,2008,10:1583-1594
    [150]Ma L. F., Wang L. Y, Lu D. H., et al. Structural Variation from 1D to 3D:Effects of Temperature and pH Value on the Construction of Co(II)-H2tbip/bpp Mixed Ligands System[J]. Crystal Growth & Design,2009,9(4):1741-1749
    [151]Tian A., Ying J., Peng J., et al. Tuning the Dimensionality of the Coordination Polymer Based on Polyoxometalate by Changing the Spacer Length of Ligands[J]. Crystal Growth & Design,2008,8(10):3717-3724
    [152]Carlucci L., Ciani G, Gudenberg D. W. V, et al. Self-assembly of a three-dimensional network from two-dimensionallayers via metallic spacers:the (3,4)-connected frame of [Ag3(hmt)2][ClO4]3·2H2O (hmt=hexamethylenetetramine)[J]. Chemical Communications,1997,631-632
    [153]Suenaga Y, Yan S. G., Wu L. P., et al. Self-assembly of Copper(Ⅰ) and Silver(Ⅰ) Complexes with Square-grid and Channel Structures[J]. Dalton Transactions,1998, 1121-1125
    [154]Zhang W. H., Wang Y Y, Lermontova E. K., et al. Interaction of 1,3-Adamantanediacetic Acid (H2ADA) and Ditopic Pyridyl Subunits with Cobalt Nitrate under Hydrothermal Conditions:pH Influence, Crystal Structures, and Their Properties[J]. Crystal Growth & Design,2010,10(1):76-84
    [155]Li B., Huang W. R., Mak T. C. W., et al. Silver(i)-organic frameworks assembled with flexible supramolecular synthons with a pendant ethynide arm attached to the heteroaryl skeleton[J]. CrystEngComm,16(4):723-730
    [156]Fang Q. R., Zhu G. S., Jin Z., et al. A Multifunctional Metal-Organic Open Framework with a bcu Topology Constructed from Undencanuclear Clusters [J]. Angewandte Chemie International Edition,2006,45:6126-6130
    [157]Zhang Y. B., Zhang W. X., Chen X. M., et al. Assembly of Metal-Organic Frameworks with Helical Layer:From 2D Parallel Interpenetrated Layer to 3D Self-Penetration Network[J]. Crystal Growth& Design,2009,9(2):660-662
    [158]Sun C. Y., Gao S., Jin L. P., et al. Hydrothermal Syntheses, Architectures and Magnetic Properties of Six Novel Mnll Coordination Polymers with Mixed Ligands[J]. European Journal of Inorganic Chemistry,2006,2411-2412.
    [159]Wang X., Zhai Q. G, Hu M. C., et al. Synthesis, Crystal Structures, and Solid-State Luminescent Properties of Diverse Ln-Pyridine-3,5-Dicarboxylate Coordination Polymers Modulated by the Ancillary Ligand [J]. Crystal Growth & Design,2014,14(1): 177-188.
    [160]Wang H. L., Sun D. F., Jiang J. Z., et al. Synthesis, crystal structures, and luminescent properties of Cd(Ⅱ) coordination polymers assembled from asymmetric semi-rigid Ⅴ-shaped multicarboxylate ligands[J]. CrystEngComm,2011,13:279-286.
    [161]Yang W., Wang H. L., Jiang J. Z., et al. Self-Assembled Zn(Ⅱ) Coordination Complexes Based on Mixed V-Shaped Asymmetric Multicarboxylate and N-Donor Ligands[J]. Crystal Growth & Design,2013,13(11):4695-4704
    [162]Chen J., Wang Y. Y., Shi Q. Z., et al. The nature of the metal ions influenced formation of coordination polymers based on asymmetric semi-rigid 3-(4'-carboxyphenoxy)phthalic acid with N-heterocyclic ligands[J]. Inorganica Chimica Acta 2013,400:7-12
    [163]Chen J., Wang Y. Y., Shi Q. Z., et al. Distinctly selective reactions of based on acetate lead(II) and hydrophilic 3-(4'-carboxyphenoxy)phthalic acid[J]. Inorganic Chemistry Communications 2013,36:14-17
    [164]Chen J. Shi Q. Z., Wang Y. Y., et al. Fluorescence intensity decay of silver(I) coordination compound assembled from 4-(2',3'-dicarboxylphenoxy)benzoic acid with decarboxylation-2'via in situ[J]. Inorganic Chemistry Communications 2012,24:73-76
    [165]Sheldrick G. M. Program for the Refinement of Crystal Structures[M]. SHELXL-97; University of Gottingen:Germany,1997
    [166]Wu Q. G, Esteghamatian M., Hu N. X., et al. Synthesis, Structure, and Electroluminescence of BR2q (R=Et, Ph,2-Naphthyl and q=8-Hydroxyquinolato)[J]. Chemistry of Materials,2000,12(1):79-83
    [167]Santis G. De., Fabbrizzi L., Licchelli M., et al. Molecular Recognition of Carboxylate Ions Based on the Metal-Ligand Interaction and Signaled through Fluorescence Quenching[J]. Angewandte Chemie International Edition,1996,35:202-204
    [168]Buna U. H. F. Poly(aryleneethynylene)s:Syntheses, Properties, Structures, and Applications[J]. Chemical Reviews,2000,100(4):1605-1644
    [169]Yu G, Yin S., Liu Y, et al. Structures, Electronic States, and Electroluminescent Properties of a Zinc(II) 2-(2-Hydroxyphenyl)benzothiazolate Complex[J]. Journal of the American Chemical Society,2003,125(48):14816-14824
    [170]Chen W., Wang J. Y, Chen C., et al. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates[J]. Inorganic Chemistry, 2003,42(4):944-946
    [171]Zheng S. L., Zhang J. P., Chen X. M., et al. Syntheses, Structures, Photoluminescence, and Theoretical Studies of a Novel Class of d10 Metal Complexes of 1H-[1,10]phenanthrolin-2-one[J]. European Chemistry of Journal,2003,9:3888-3896
    [172]Menage S., Vitols S. E., Bergarat P., Codjovi E., Kahn O., Girerd J. J., Guillot M., Solans X., Calvet T., Structure of the Linear Trinuclear Complex MnⅡ3CH3CO2)6(bpy)2. Determination of the J Electron-Exchange Parameter through Magnetic Susceptibility and High-Field Magnetization Measurements [J].1991,30(12):2666-2671
    [173]Dechambenoit P., Long J. R. Microporous magnets[J]. Chemical Society Reviews, 2011,40:3249-3265
    [174]Jiang H. L., Xu Q., Porous metal-organic frameworks as platforms for functional applications[J]. Chemical Communications,2011,47:3351-3370
    [175]Metal Organic Frameworks:Applications from Catalysis to Gas Storage, ed. D. Farrusseng, Wiley, Weinheim,2011
    [176]Lin Z. J., Liu T. F., Cao R., et al. Designed 4,8-Connected Metal-Organic Frameworks Based on Tetrapodal Octacarboxylate Ligands[J]. Crystal Growth & Design, 2011,11:4284-4287
    [177]Zhang M., Pu Z. J., Yuan L. M., et al. Chiral recognition of a 3D chiral nanoporous metal-organic framework[J]. Chemical Communication,49(45):5201 -5203
    [178]Lu Z. Z., Zhang R., Zheng H. G, et al. Solvatochromic Behavior of a Nanotubular Metal-Organic Framework for Sensing Small Molecules [J]. Journal of the American Chemical Society,2011,133(12):4172-4177
    [179]Eryazici I., Farha O. K., Hupp J. T., et al. Luminescent infinite coordination polymer materials from metal-terpyridine ligation[J]. Dalton Transaction,2011,40(36):9189- 9193
    [180]Lucky M. V., Sivakumar S., Natarajan S., et al. Lanthanide Luminescent Coordination Polymer Constructed from Unsymmetrical Dinuclear Building Blocks Based on 4-((1H-Benzo[d]imidazol-1-yl)methyl)benzoic Acid[J]. Crystal Growth & Design,2011,11(3):857-864
    [181]Batten S. R., Neville S. M., Turner D. R., Coordination Polymers:Design, Analysis and Application, Springer, New York,2010
    [182]Nouar F., Eckert J., Eddaoudi M., et al. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform:lithium and magnesium ion-exchange and H(2)-(rho-ZMOF) interaction studies[J]. Journal of the American Chemical Society,2009, 131(8):2864-2870
    [183]Deng H. X., O'Keeffe M., Yaghi O. M., et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks [J]. Science,2012,336(6084):1018-1023
    [184]Li D. S., Wu Y. P., Du M., et al. Co5/Co8-Cluster-Based Coordination Polymers Showing High-Connected Self-Penetrating Networks:Syntheses, Crystal Structures, and Magnetic Properties [J]. Inorganic Chemistry,2013,52(14):8091-8098
    [185]Li D. S., Wu Y. P., Wang Y. Y, et al. Unique 3D self-penetrating CoⅡ and NiⅡ coordination frameworks with a new (44.610.8) network topology[J]. Dalton Transaction, 2010,39(48):11522-11525
    [186]Zhang X. M., Hydro(solvo)thermal n situ ligand syntheses[J]. CoordinationChemical Reviews,2005,249(11-12):1201-1219
    [187]Moulton B., Zaworoto M. J., From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chemical Reviews, 2001,101(6):1629-1658.
    [188]Li H., Eddaoudi M., O. M. Yaghi, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276-279
    [189]Ferey G., Serre C., Millange F., et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science,2005,309:2040-2042
    [190]Li D. S., Wu Y P., Zhao J., et al. Metal-organic frameworks based upon non-zeotype 4-connected topology[J]. Coordination Chemistry Reviews,2014,261:1-27
    [191]Eddaoudi M., Rosi N., Yaghi O. M., et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science, 2002,295(5554):469-472
    [192]Serre C., Millange F., Ferey G, et al. Hydrothermal Synthesis, Structure Determination, and Thermal Behavior of New Three-Dimensional Europium Terephthalates:MIL-51LT,HT and MIL-52 or Eu2n(OH)x(H2O)y(O2C-C6H4-CO2)z (n=Ⅲ, Ⅲ, Ⅱ; x=4,0,0; y=2,0,0; z=1,1,2)[J]. Chemistry of Materials,2002,14(5):2409-2415
    [193]Chun H., Jung H., Kim D. K., et al. Efficient Hydrogen Sorption in 8-Connected MOFs Based on Trinuclear Pinwheel Motifs[J]. Inorganic Chemistry,2008,47(12):5355-5359
    [194]Xu L., Choi E. Y., Kwon Y. U., Ionothermal Syntheses of Six Three-Dimensional Zinc Metal-Organic Frameworks with 1-Alkyl-3-methylimidazolium Bromide Ionic Liquids as Solvents[J]. Inorganic Chemistry,2007,46(25):10670-10680
    [195]Ye J. W., Wang J., Wang Y, et al. Construction of 2-D lanthanide coordination frameworks:syntheses, structures and luminescent property[J]. CrystEngComm,2007, 9(6):515-523
    [196]Bradshaw D., Prior T. J., Rosseinsky M. J., et al. Permanent Microporosity and Enantioselective Sorption in a Chiral Open Framework[J]. Journal of the American Chemical Society,2004,126(19):6106-6114
    [197]Lin Z., Warren J. E., Morris R. E., et al. Anion Control in the Ionothermal Synthesis of Coordination Polymers[J]. Journal of the American Chemical Society,2007,129: 10334-10335
    [198]Xiao D. R., Wang E. B., Su Z. M., et al. A Bridge between Pillared-Layer and Helical Structures:A Series of Three-Dimensional Pillared Coordination Polymers with Multiform Helical Chains[J]. Chemistry-A European Journal,2006,12(25):6528-6541
    [199]Wang X. L., Wang E. B., Su Z. M., et al. Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J]. Angewandte Chemie International Edition,2005,44,5824-5827
    [200]Mahata P., Madras G, Natarajan S., Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds[J]. The Journal of Physical Chemistry B,2006,110(28):13759-13768
    [201]Li S. L., Lan Y. Q., Z. M. Su, et al. Structures and Luminescent Properties of a Series of Zinc(Ⅱ) and Cadmium(Ⅱ) 4,4'-Oxydiphthalate Coordination Polymers with Various Ligands Based on Bis(pyridyl imidazole) under Hydrothermal Conditions[J]. Crystal Growth & Design,2008,8,1610-1616
    [202]Lan Y. Q., Li S. L., Su Z. M., et al. Syntheses, Structures, and Luminescent Properties of Zinc(II) and Cadmium(II) Coordination Complexes Based on Different (Pyridyl)imidazole Derivatives and 1,4-Benzenedicarboxylate[J]. Crystal Growth & Design,2009,9,1353-1360
    [203]Chen X. L., Zhang B., Wang J. W., et al. Three Novel Heterobimetallic Cd/Zn-Na Coordination Polymers:Syntheses, Crystal Structure, and Luminescence [J]. Crystal Growth & Design,2008,8:3706-3712
    [204]Chu Q., Liu G. X., W. Y. Sun, et al. Syntheses, structures, and optical properties of novel zinc(II) complexes with multicarboxylate and N-donor ligands [J]. Dalton Transaction,2007,4302-4311
    [205]Wang H. L., Zhang D. P., Jiang J. Z., et al. Co(II) Metal-Organic Frameworks (MOFs) Assembled from Asymmetric Semirigid Multicarboxylate Ligands:Synthesis, Crystal Structures, and Magnetic Properties [J]. Crystal Growth & Design,2009,9:5273-5282
    [206]Wang H. L., Sun D. F., Jiang, J. Z., et al, Diverse Ni(II) MOFs constructed from asymmetric semi-rigid Ⅴ-shaped multicarboxylate ligands:structures and magnetic properties[J]. CrystEngComm,2010,12:1096-1102
    [207]Zhang S. Q., Jiang F. L., Hong, M. C., et al. Assembly of Discrete One-, Two-, and Three-Dimensional Zn(II) Complexes Containing Semirigid Ⅴ-Shaped Tricarboxylate Ligands [J]. Crystal Growth & Design,2012,12:1452-1463
    [208]Chen J., Wang Y. Y, Shi Q. Z. et.al Distinctly selective reactions of based on acetate lead(II) and hydrophilic 3-(4-carboxyphenoxy)phthalic acid[J]. Inorganic Chemistry Communication,2013,36:14-17
    [209]Chen J., Wang Y. Y, Shi Q. Z. et.al Fluorescence intensity decay of silver(I) coordination compound assembled from 4-(2',3'-dicarboxylphenoxy)benzoic acid with decarboxylation-2' via in situ[J]. Inorganic Chemistry Communication,2012,24:73-76
    [210]Chen J., Wang Y. Y., Shi Q. Z. et.al The nature of the metal ions influenced formation of coordination polymers based on asymmetric semi-rigid 3-(4-carboxyphenoxy)phthalic acid with N-heterocyclic ligands[J]. Inorganic Chimica Acta,2013,400:7-12
    [211]Sheldrick G. M. Program for the Refinement of Crystal Structures [M]. SHELXL-97; University of Gottingen:Germany,1997
    [212]Sheldrick G. M. Program for Area Detector. Absorption Correction [M]. SADABS 2.05; University of Gottingen:Germany,2002
    [213]Niu C. Y., Zheng X. F., Wan X. S., et al. A Series of Two-Dimensional Co(II), Mn(II), and Ni(II) Coordination Polymers with Di-or Trinuclear Secondary Building Units Constructed by 1,1'-Biphenyl-3,3'-Dicarboxylic Acid:Synthesis, Structures, and Magnetic Properties[J]. Crystal Growth & Design,2011,11:2874-2888
    [214]Ma L. F., Wang L. Y., Du M., et al. Unprecedented 4-and 6-Connected 2D Coordination Networks Based on 44-Subnet Tectons, Showing Unusual Supramolecular Motifs of Rotaxane and Helix[J]. Inorganic Chemistry,2010,49:365-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700