大鼠急性心肌缺血组织诱导型一氧化氮合酶和硝基酪氨酸的表达及其抗原稳定性的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:急性心肌梗死引起的猝死是最常见的猝死类型。死后常规病理学检查方法常检测不出明显的急性心肌缺血性病理改变,从而使冠心病猝死(sudden coronary death,SCD)案例的鉴定变得困难和复杂。已有研究表明急性心肌缺血可诱导大鼠心肌细胞中诱导型一氧化氮合酶(induce nitricoxide synthase,iNOS)表达增加,导致NO生成增多,NO可与O2ˉ反应形成过氧亚硝酸阴离子(peroxynitrite,ONOOˉ),ONOOˉ使蛋白质中的酪氨酸残基硝基化生成3-硝基酪氨酸(3-nitrotyrosine,NT)。免疫组织化学(immunohistochemistry,IHC)是一种便捷、实用的方法,可以检测缺血心肌细胞内蛋白质的变化,从而为急性心肌梗死的死后诊断提供了一种技术支持。本实验拟采用IHC技术,检测大鼠急性心肌缺血早期不同时间缺血区心肌iNOS和NT的表达,并研究死后变化和组织固定时间对iNOS及NT的抗原稳定性的影响,以期寻找敏感的、实用的IHC指标,用以辅助SCD的死后诊断。
     一. iNOS及NT在缺血心肌中的表达及敏感性研究
     方法:50只健康SD大鼠,重250~300克,雌雄不拘,随机分为假手术组(S组)和缺血组(A组)。以结扎左冠状动脉前降支(LAD)的方法建立大鼠急性心肌缺血模型;缺血组大鼠分别于结扎LAD后0.5h、1h、2h、3h、4h、5h及6h处死,假手术组大鼠只在LAD下穿过缝线而不结扎,分别于术后1h、3h及6h处死,其它步骤与缺血组相同。取材后制作石蜡切片,以HE染色方法观察大鼠心脏的组织病理改变,并用IHC方法测定心肌组织中iNOS及NT表达的动态变化;用SPSS13.0统计分析软件对实验数据进行统计学分析,以P<0.05为有显著性差异。
     结果:
     1特殊染色观察
     1.1 Evans Blue染色:S组大鼠心脏均呈蓝色;A组大鼠心脏左心室前壁及外侧壁心肌呈红色,余心肌呈蓝色。
     1.2 TTC染色:急性心肌缺血0.5h、1h及2h组心肌呈均一的砖红色,3h组左心室前、外侧壁心肌局部出现小面积苍白色区域,4h、5h及6h组左心室前、侧壁的苍白色区域增大,与周围砖红色区域对比明显,边界较清晰;心内膜呈砖红色。
     2 HE染色:假手术组心肌组织结构清晰,急性心肌缺血2h以内仅局部心肌细胞及间质轻度水肿,3~5h局部可见间质少量炎细胞浸润,偶见心肌纤维肿胀及波浪样变,未见明显的细胞坏死;6h局部少数心肌细胞嗜酸性增强及个别心肌细胞坏死。
     3 IHC染色:
     3.1缺血后不同时间点缺血心肌iNOS的表达情况:
     假手术组:心肌细胞胞浆中iNOS呈阴性表达;
     缺血组:急性心肌缺血0.5h后缺血区心肌细胞胞浆中iNOS呈弱阳性表达,1h后各组缺血区心肌细胞胞浆中iNOS表达强度随着缺血时间的延长逐渐增强,至缺血后3~6h心肌细胞及间质血管内皮细胞内iNOS呈强阳性表达,与假手术组相比具有显著差异(P<0.05)。
     3.2缺血后不同时间点缺血心肌NT的表达情况:
     假手术组:心肌细胞胞浆中NT呈阴性表达;
     缺血组:急性心肌缺血0.5h后缺血区心肌细胞胞浆中NT呈弱阳性表达,1h后各组缺血区心肌细胞内NT表达随时间的延长逐渐增强,6h时可见大范围的NT阳性表达,与假手术组相比具有显著差异(P<0.05)。
     二. iNOS及NT的抗原稳定性的实验性研究
     方法:120只健康SD大鼠,重250~300克,雌雄不拘,随机分为3℃组(D组)、室温(20℃)组(E组)和固定组(F组)三组。D组和E组各分为1d、3d、5d、7d及14d五个亚组,每亚组均分为缺血组和假手术对照组;E组分为3d、5d、7d及14d四个亚组,以第一部分的S3h组做假手术对照。各缺血组大鼠分别于结扎LAD后3h后处死,假手术组大鼠只在LAD下穿过缝线而不结扎,其它步骤与缺血组相同。D组和E组大鼠处死后分别于4℃及室温环境下放置1d、3d、5d、7d及14d后固定24h;F组大鼠处死后即刻取出心脏放入10%中性甲醛中分别固定3d、5d、7d及14d;取材后制作石蜡切片,以HE染色方法观察大鼠心脏的组织病理改变,并用IHC方法测定不同环境下心肌组织中iNOS及NT表达的动态变化;用SPSS13.0统计分析软件对实验数据进行统计学分析,以P<0.05为有显著性差异。
     结果:
     1 HE染色:
     1.1 4℃放置1d,心肌组织细胞结构清楚,未见明显自溶改变;缺血组心肌可见缺血早期的非特异性病理改变。放置3~5d,缺血心肌部分改变如心肌细胞浊肿、横纹模糊或消失与正常心肌死后变化相似,不易区分。放置7~14d,细胞结构模糊、排列松散,胞浆呈均质化伊红色,细胞核大部分消失,缺血心肌组织和细胞形态与对照组类似。
     1.2室温放置1d,心肌轻度自溶,局部胞浆溶解,胞核淡染,缺血组心肌仍可见局部少量炎细胞浸润等病理改变。3d局部可见蓝染菌团、核溶解,细胞结构模糊,胞浆灶性淡染;缺血组心肌部分改变与正常心肌死后改变不易区分。5~7d大部分心肌细胞核消失,细胞排列松散,仅组织轮廓尚存,14d细胞核完全消失,胞浆呈均质化伊红色;5~14d缺血心肌组织和细胞形态与对照组类似。
     1.3固定14d以内对心肌组织的HE染色结果没有明显影响。
     2 IHC染色:
     2.1 4℃保存对iNOS及NT稳定性的影响
     假手术组:心肌细胞胞浆中iNOS及NT始终呈阴性表达;缺血组:随着放置时间的延长缺血区iNOS及NT的表达的强度及范围均逐渐减弱,iNOS放置7d以内、NT放置5d以内的表达强度与假手术组相比具有显著差异(P<0.05);iNOS放置14d、NT放置7d时与假手术组相比无明显差异(P>0.05);
     2.2室温保存对iNOS及NT稳定性的影响
     假手术组:心肌细胞胞浆中iNOS及NT始终呈阴性表达;缺血组:随着放置时间的延长缺血区iNOS及NT的表达强度及范围均逐渐减弱,3d时iNOS及NT的阳性表达强度及范围已明显减弱,但与对假手术相比仍有差异(P<0.05),5~14d iNOS及NT表达强度与假手术组相比无明显差异(P>0.05);
     2.3固定时间对iNOS及NT稳定性的影响
     缺血区iNOS及NT表达强度随着固定时间的延长而缓慢减弱,至固定14d时与假手术组之间仍具有明显差异(P<0.05)。
     结论:iNOS及NT对大鼠急性心肌缺血具有较高的敏感性,急性心肌缺血0.5h后缺血区心肌细胞内即有阳性表达,表达强度随着缺血时间的延长逐渐增强。iNOS及NT均具有较好的抗原稳定性,iNOS可用于死后4℃放置7d以内、室温放置3d以内及固定14d以内的大鼠心脏标本;NT可用于死后4℃放置5d以内、室温放置3d以内及固定14d以内大鼠心脏标本。
Objective: The cases of sudden coronary death (SCD) caused by acute myocardial infarction(AMI) often occur in the forensic medicine practice. The morphplogical changes of cardiac tissue caused by ischemic injury were so limited that normal phathological examination could not detect manifest myocardial damage. Therefore the assessment of SCD became difficult and complex. It has been demonstrated that AMI could induce nitricoxide synthase(iNOS) expression in myocardia cell, resulted in the increase of NO; peroxynitrite formed from NO and O2ˉ, could led to nitration of protein tyrosine residues producting 3-nitrotyrosine (NT). Immunohistochemical technology, as a convenient and practical method, which can detect the changes of proteins in the ischemic myocardial cells, may be a possible method for the postmortem identification of AMI. In this study, we detected the expression of iNOS and NT in myocardium using IHC at different time after early myocardial ischemia, and observed the effect of postmortem changes and fixation time on the expression of iNOS and NT, in order to search an utility, sensitiveness immunohistochemical markers for assist postmortem diagnosis of SCD.
     1. Expression and sensitiveness of iNOS and NT in myocardium at different time after early myocardial ischemia
     Methods: 50 SD rats weighting 250~300g of either sex, were randomly distributed into Sham group and ischema group. The rat model of early aute myocardial ischemia was established by ligating the left anterior descending branch of coronary artery. The ischemia group rats were killed at 0.5h, lh, 2h, 3h, 4h, 5h and 6h after ligation. Sham group rats underwent the same surgical protocol as the ischemia group except LAD ligation, and were killed at lh, 3h, and 6h after operation. Then all hearts were dissected and fixed, the tissue blocks were taken and embedded in paraffin and the tissue sections were prepared according to routine histological procedures. Then histological sections were dyed with HE staining, and the expression of iNOS and NT were detected by IHC. The data were analyzed using SPSS13.0 statistical program. A level of P<0.05 was considered as statistical significance.
     Results:
     1 Specific stain
     1.1 Stain of Evans Blue: Myocardium of ischemic area was unstained presenting red; in contrast, myocardium of non-ischemic area was stained with Evans Blue presenting blue.
     1.2 TTC staining: 0.5h, 1h and 2h groups, all around the myocardium presented red; 3h group, small pale area of left ventricle(LV); manifest pale area of LV compared obviously to other area during 4~6h.
     2 HE staining: Myocardium of control group and myocardial ischemia group within 2h was stained clearly, with very mild cellular swelling or/and interstitial edema in ischemic myocardium. During 3~5h after myocardial ischemia there were manipulus inflammatory cells in the matrix and cardiac wavy muscle fibers. In the 6h group which a few myocardial acidophiliar was reinforcing, and a few of myocardium necrosis.
     3 Immunohistochemical in ischemic myocardium:
     3.1 The change of the expression of iNOS at different time points after myocardial ischemia: In sham group there was little expression of iNOS in myocardium. In the ischemia groups, there was weakly positive expression of iNOS in the cardiac cytoplasm at 0.5h after myocardial ischemia, and the intensity of positive expression was reinforcing significantly along with ischemic time; there was strong positive expression in ischemic myocardium during 3~6h, having obvious difference compared to sham group’s (P<0.05).
     3.2 The change of the expression of NT at different time points after myocardial ischemia: In sham group there was little expression of NT. In the ischemic groups, there was weakly positive expression of NT in the cardiac cytoplasm at 0.5h after myocardial ischemia, and the intensity of positive expression was reinforcing with ischemic time, having obvious difference compared to sham group’s (P<0.05). .
     2.Study on the antigen stability of iNOS and NT
     Methods: 120 healthy adult rats weighting 250~300g of either sex, were randomly distributed into 4℃group, room temperature group and fixation group. 4℃group and room temperature group were distributed into 1d, 3d, 5d, 7d and 14d groups, which include ischemic group and sham group; fixation time group was distributed into 3d, 5d, 7d and 14d groups, using the S3h group in part one as control. The ischemic group rabbits were killed at 3h after ligation. Sham group rats underwent the same surgical protocol as the ischemic group except LAD ligation. The myocardium of 4℃groups and room temperature groups was fixed for 24h after 1d, 3d, 5d, 7d and 14d of postmortem stored at 4℃and room-temperature respectively. The myocardium of fixation time group was fixed in 10% neutral formalin immediately after killed for 3d, 5d, 7d and 14d. The tissue blocks were taken and embedded in paraffin and the tissue sections were prepared according to routine histological procedures. Then histological sections were dyed with HE staining, and the expression of iNOS and NT were detected by IHC. Observe the changes of ischemic myocardia as well as the expression of iNOS and NT stored at the same environment for different time intervals after death. The data were analyzed using SPSS13.0 statistical program. A level of P<0.05 was considered as statistical significance.
     Results:
     1.HE staining:
     Stored at 4℃: There were some pathological changes of early myocardial ischemia in ischemic myocardium, no definite indicators of myocardial infraction. At 3~5d, the cellular cloudy swelling blur or disapearanse of transverse striation in ischemic myocardium are similar to sham group’s changes. While samples stored at 4℃for 7~14d after death, the two groups experienced similar changes in morphous of tissue.
     Stored at room-temperature: For 1d the autolysis is not obviously with partly plasmolysis and light-stained nucleus in both control and ischemic group’s, and there were some pathological changes of early myocardial ischemia in ischemic myocardium. For 3d there were blue-stained cenobium, hypochromatosis, cellularity unclear and hyalomitome light-stained in part myocardial cell; while some changes in ischemic myocardium are similar to sham group’s changes. While samples stored at room-temperature for 5~7d nuclei almost disappeared, cell spreaded looseing with outline of tissue kept only; the two groups experienced similar changes in morphous of tissue; For stored 14d after death the two groups experienced similar changes in morphous of tissue and in ischemic myocardial cell with nuclei disappeared and hyalomitome homogenized.
     Fixation: there were not obviously changes of HE staining for different fixation time.
    
     2 Immunochemistry in ischemic myocardium:
     2.1 The effect of stabilitu to iNOS and NT stored at 4℃:
     Sham group: there was little positive expression in myocardium.
     Ischemia group: intensity and extent of positive expression to iNOS and NDT in ischemic myocardial cell were decreasing along with stored time. The positive expression to iNOS of 7d and NT of 5d was decreasing obviously, but having obvious difference compared to sham group’s(P<0.05). While iNOS stored for 14d and NT stored for 7d after death, there was little positive expression, having no difference compared to sham group’s (P>0.05).
     2.2 The effect of stability to iNOS and NT stored at room temperature:
     Sham group: there was little positive expression in myocardium.
     Ischemia group: intensity and extent of positive expression to iNOS and NT in ischemic myocardial cell were decreasing along with stored time; at 3d after death the positive expression was decreasing obviously, but have difference compared to sham group’s(P<0.05). For 5d-14d there was little positive expression having no difference compared to sham group’s (P>0.05).
     2.3 The effect of fixation time to iNOS and NT stability:
     The positive expression of iNOS and NT decreased slowly in ischemic myocardial cell along with fixation time. At 14d there was still obvious difference compared to sham group’s (P<0.05).
     Conclusions: iNOS and NT were sensitivity to early rat’s AMI, and appeared positive expression 0.5h after AMI; the intensity of positive expression to iNOS and NT was increasing with ischemic time. The antigen stability of iNOS and NT was relatively small influenced of autolysis and fixation time; it can be conclude that the immunohistochemical detection of iNOS can be used in myocardia of rat stored at 4℃for 7d or less than 7d after death, stored at room temperature for 3d or less than 3d after death and fixed for 14d or less than 14d after death. It also can be conclude that the immunohistochemical detection of NT can be used in myocardia of rat stored at 4℃for 5d or less than 5d after death, stored at room temperature for 3d or less than 3d after death and fixed for 14d or less than 14d after death.
引文
1 de la Grandmaison GL. Is there progress in the autopsy diagnosis of sudden unexpected death in adults? Forensic Science International, 2006, 156(2-3): 138~144
    2徐永城,荊小莉,柯咏等.大鼠急性心肌缺血后脑钠肽、c-fos基因的表达及法医学意义.法医学杂志, 2008, 1: 1~4
    3汪静宇,丁美满,李永宏.冠心病猝死的法医病理学免疫组织化学研究进展.刑事技术, 2007(6): 32~35
    4 Maleszewski J, Lu J, Fox-Talbot K, et al. Robust immunohistochemical staining of several classes of proteins in tissues subjected to autolysis. J Histochem Cytochem, 2007, 55(6): 597~606
    5 KYCLOVáJ. RP, DVO?áK K., LUKá? Z. Effect of fixation and autolysis on immunohistochemistry detection of CD antigens. Scripta Medica (BRNO), 2004, 77(2): 63~72
    6 Ungvari Z, Gupte SA, Recchia FA, et al. Role of Oxidative-Nitrosative Stress and Downstream Pathways in Various Forms of Cardiomyopathy and Heart Failure. Curr Vasc Pharmacol, 2005, 3(3): 221~229
    7 Berges A, Van Nassauw L, Timmermans JP, et al. Time-dependent expression pattern of nitric oxide and superoxide after myocardial infarction in rats. Pharmacological Research, 2007, 55(1): 72~79
    8 Zhao W, Zhao D, Yan R, et al. Cardiac oxidative stress and remodeling following infarction:role of NADPH oxidase.Cardiovascular Pathology, 2009, 18(3): 156~166
    9 Salto-Tellez M, Yung Lim S, El-Oakley RM, et al. Myocardial infarction in the C57BL/6J mouse:a quantifiable and highly reproducible experimental model. Cardiovasc Pathol, 2004, 13(2): 91~97
    10 Duran AC, Sans-Coma V, Arque JM, et al. Blood supply to the interventricular septum of the heart in rodents with intramyocardial coronary arteries. Acta Zool (Stockholm), 1992, 73: 223~229
    11 Guerra MS, Roncon-Albuquerque R Jr, Lourenco AP, et al. Remotemyocardium gene expression after 30 and 120 min of ischaemia in the rat. Exp Physiol, 2006, 91(2): 473-480
    12李保,马业新,解军.大鼠心肌梗死模型制备的改进.山西医科大学学报, 2005, 36(1): 11~12
    13边素艳,刘宏斌,杨庭树.提高急性心肌梗死大鼠模型存活率的实验研究.中国康复医学杂志, 2005, 20(3): 180~181
    14 Vivaldi MT, Kloner RA, Schoen FJ. Triphenyltetrazolium Staining of Irreversible Ischemic Injury Following Coronary Artery Occlusion in Rats. Am J Pathol, 1985, 121(3): 522~530
    15 Lie JT, Pairolero PC, Holley KE, et al. Macroscopic enzyme-mapping verification of large, homogenous, experimental myocardial infarcts of predictable size and location in dogs. J Thorac Cardiovasc Surg, 1975, 69(4): 599~605
    16 Fishbein MC, Meerbaum S, Rit J, et al. Early phase acute myocardial infarct size quantification: Validation of the triphenyltetrazolium chloride tissue enzyme staining technique. Am Heart J, 1981, 101(5): 593~600
    17 Ye Y, Martinez JD, Perez-Polo RJ, et al. The role of eNOS, iNOS, and NF-κB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol, 2008, 295(1): H343~H351
    18 Matsuhisa S, Otani H, Okazaki T, et al. Angiotensin II type 1 receptor blocker preserves tolerance to ischemia-reperfusion injury in Dahl salt-sensitive rat heart. Am J Physiol Heart Circ Physiol, 2008, 294(6): H2473~H2479
    19 Han W, Fu S, Wei N, et al. Nitric oxide overproduction derived from inducible nitric oxide synthase increases cardiomyocyte apoptosis in human atrial fibrillation. International Journal of Cardiology, 2008, 130(2): 165~173
    20 Wang D, Yang XP, Liu YH, et al. Reduction of myocardial infarct size by inhibition of inducible nitric oxide synthase. Am J Hypertens, 1999, 12(2 Pt 1): 174-182
    21蒋剑英.实验性急性心肌缺血早期心肌的法医病理学研究.山西医科大学硕士学位论文, 2002
    22 Berges A, Van Nassauw L, Bosmans J, et al. Role of nitric oxide and oxidative stress in ischemic myocardial injury and preconditioning. Heart Fail Rev, 2003, 58(2): 119~132
    23 Mery PF, Cohmann SM, Walter U, et al. Ca2+ current is regulated by cyclic GMP - dependent protein kinase in malimn cardial myocytes. Proc Matl Acad Sci USA, 1991, 88: 1197~1201
    24 Jackson PE, Feng QP, Jones DL. Nitric oxide depresses connexin 43 after myocardial infarction in mice. Acta Physiol (Oxf), 2008, 194(1): 23~33
    25 Levrand S, Vannay-Bouchiche C, Pesse B, et al. Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic Biol Med, 2006, 41(6): 886~895
    26 Szabo C, Cuzzocrea S, Zingarelli B. Endothelial dysfunction in a rat model of endotoxic shock, importance of the activation of poly(ADP-ribose) synthetase by peroxynitrite. J Clin Invest, 1997, 100(3): 723~735
    27 Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A, 2004, 101(12): 4003~4008
    28 Mihm MJ, Coyle CM, Schanbacher BL, et al. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc Res, 2001, 49(4): 798~807
    29 Chwen CL, Chen J, Rawale S, et al. Protein Tyrosine Nitration of the Flavin Subunit Is Associated with Oxidative Modification of Mitochondrial Complex II in the Post-ischemic Myocardium. The Journal of Biological chemistry, 2008, 283(41): 27991~28003
    30 Shenouda SK, Lord KC, McIlwain E, et al. Ecstasy produces left ventricular dysfunction and oxidative stress in rats. Cardiovascular Research, 2008, 79(4): 662~670
    31 Gianni D, Chan J, Gwathmey JK, et al. SERCA2a in heart failure: Role and therapeutic prospects. J Bioenerg Biomembr, 2005, 37(6): 375~380
    32 Cesselli D, Jakoniuk I, Barlucchi L, et al. Oxidative stress-mediatedcardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res, 2001, 89(3): 279~286
    33 Mebazaa A, De Keulenaer GW, Paqueron X, et al. Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomyopathy: role of endothelin, prostaglandins and nitric oxide. Circulation , 2001, 104(25): 3137~3144
    34 Shin T, Tanuma N, Kim S, et al. An inhibitor of inducible nitric oxide synthase ameliorates experimental autoimmune myocarditis in Lewis rats. J Neuroimmunol, 1998, 92(1~2): 133~138
    35丁媛媛,邱麟,王四旺等.桂皮醛治疗CVB3诱发的小鼠病毒性心肌炎研究.医药导报, 2009, 28(8): 970~974
    36 Lokuta AJ, Maertz NA, Meethal SV, et al. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation, 2005, 111(8): 988~995
    1魏仲梅,俞诗源,严峰.免疫组织化学中的抗原修复技术.生物学通报, 2006,41(7):9~11
    2 KYCLOVáJ. RP, DVO?áK K., LUKá? Z. Effect of fixation and autolysis on immunohistochemistry detection of CD antigens. Scripta Medica (BRNO), 2004, 77(2): 63~72
    3 Maleszewski J, Lu J, Fox-Talbot K, et al. Robust immunohistochemical staining of several classes of proteins in tissues subjected to autolysis. J Histochem Cytochem, 2007, 55(6): 597~606
    4胡丙杰,冯绮明,汪冠三.心肌梗死6项免疫组化指标的死后稳定性比较.中国法医学杂志, 2003, 18(4): 208~211
    5熊小明,等世雄. VEGF在家兔缺血心肌中的表达及其死后稳定性研究.中国法医学杂志. 2008, 23(1): 16~19
    6 Betz P, Nerilch A, Wilske J, et al. The immunohistochemical analysis of fibronectin, collagen type III, laminin, and cytokeratin 5 in putrified skin. Forensic Sci Int, 1993, 61(1): 35~42
    7 Fountoulakis M, Hardmeier R, Hoger H, et al. Postmortem changes in the level of brain proteins. Experimental neurology, 2001, 167(1): 86~94
    8 Dapson, R. W. Macromolecular changes caused by formalin fixation and antigen retrieval. Biotech Histochem, 2007, 82(3): 133~140
    9 Puchtler H, Meloan SN. On the chemistry of formaldehyde fixation and its effects on imunohistochemical reaction. Histochemistry, 1985, 82: 201~204
    10 Fox PC, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem, 1985, 33: 845~853
    11 Battifora H. Immunohistochemistry as a molecular diagnostic method. Molecular diagnostic aspects of solid tumors. XXI International Congress of the IAP, Budapest, 1996: 14~16
    12 Leong AS, Gilham PN .The effects of progressive formaldehyde fixation on the preservation of tissue antigens. Pathology, 1989, 21(4): 266~268
    13 Moran MM,Siegel RJ,Said JW,et al. Demonstration of myoglobin and CK-M in myocardium. Comparison of five fixation methods and three immunohistochemical techniques. J Histochem Cytochem, 1985, 33 (11): 1110~1115
    14陈新山,胡俊,秦启生等.冠心病猝死心肌肌红蛋白缺失的免疫组化研究.中国法医学杂志1993, 8(1): 20
    15胡丙杰,陈玉川,祝家镇.早期心肌梗死心肌细胞内纤维连接蛋白的免疫组化观察.中国法医学杂志, 1996, 11(1): 14~17
    1 Bartesaghi S, Ferrer-Sueta G, Peluffo G, et al. Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids, 2007, 32(4): 501~515
    2 Liu B, Tewari AK, Zhang L, et al. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochim Biophys Acta, 2009, 1794(3): 476~485
    3 Shishehbor MH, Aviles RJ, Brennan ML, et al. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA, 2003, 289(13): 1675~1680
    4 Ungvari Z, Gupte SA, Recchia FA, et al. Role of Oxidative-Nitrosative Stress and Downstream Pathways inVarious Forms of Cardiomyopathy and Heart Failure. Curr Vasc Pharmacol, 2005, 3(3): 221~229
    5 DrogeW. Free radicals in the physiological control of cell function. Physiol Rev, 2002, 82(1): 47~95
    6 Wattanapitayakul SK, Bauer JA. Oxidative pathways in cardiovascular disease. Roles, mechanisms and therapeutic implications. Pharmacol Ther, 2001, 89(2): 187~206
    7 Ghafourifar P, Bringold U, Klein SD, et al. Mitochondrial nitric oxide synthase, oxidative stress and apoptosis. Biol Signals Recept, 2001, 10: 57~65
    8 Zweier JL, Fertmann J, and Wei G. Nitric oxide and peroxynitrite in postischemic myocardium. Antioxid Redox Signal, 2001, 3(1): 11~22
    9 Ye Y, Martinez JD, Perez-Polo RJ, et al. The role of eNOS, iNOS, and NF-κB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol, 2008, 295(1): H343~H351
    10 Matsuhisa S, Otani H, Okazaki T, et al. Angiotensin II type 1 receptor blocker preserves tolerance to ischemia-reperfusion injury in Dahl salt-sensitive rat heart. Am J Physiol Heart Circ Physio, 2008, 294(6):H2473~H2479
    11 Han W, Fu S, Wei N, et al. Nitric oxide overproduction derived from inducible nitric oxide synthase increases cardiomyocyte apoptosis in human atrial fibrillation. International Journal of Cardiology, 2008, 130(2): 165~173
    12 Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep, 1997, 17(1): 3~8
    13 Zorov DB, Filburn CR, Klotz LO, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med, 2000, 192(7): 1001~1014
    14 Chwen CL, Chen J, Rawale S, et al. Protein Tyrosine Nitration of the Flavin Subunit Is Associated with Oxidative Modification of Mitochondrial Complex II in the Post-ischemic Myocardium. The Journal of Biological chemistry, 2008, 283(41): 27991~28003
    15 Pou S, Pou WS, Bredt DS, et al. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem, 1992, 267(34): 24173~24176
    16 Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA, 1997, 94(13): 6954~6958
    17 Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA, 1998, 95(16): 9220~9225
    18 Vasquez-Vivar J, Hogg N, Martasek P, et al . Effects of redox-active drugs on superoxide generation from nitric oxide synthases: biological and toxicological implications. Free Radic Res, 1999, 31(6): 607~617
    19 Xu KY. Does nitric oxide synthase catalyze the synthesis of superoxide? FEBS Lett, 2000, 474(2~3): 252~256
    20 Xu KY. Nitric oxide protects nitric oxide synthase function from hydroxyl radical-induced inhibition. Biochim Biophys Acta, 2000, 1481(1): 156~166
    21 Radi R, Peluffo G, Alvarez MN, et al . Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med, 2001, 30(5): 463~488
    22 Hogg N, Singh RJ, and Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett, 1996, 382(3): 223~228
    23 Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys, 1992, 298(2): 431~437
    24 Lymar SV, Jiang Q, Hurst K . Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry, 1996, 35(24): 7855~7861
    25 Pfeiffer S, Lass A, Schmidt K, et al. protein tyrosine nitration in mouse peritoneal macrophages activated in vitro and in vivo: evidence against an essential role of peroxynitrite. FASEB J, 2001, 15(13): 2355~2364
    26 Brennan ML, Wu W, Fu X, et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem, 2002, 277(20): 17415~17427
    27 Sampson JB, Ye YZ, Rosen H, et al. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys, 1998, 356(2): 207~213
    28 Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem, 1999, 274(36): 25933~25944
    29 Whiteman M, Siau J L, Halliwell B. Lack of tyrosine nitration by hypochlorous acid in the presence of physiological concentrations of nitrite. Implications for the role of nitryl chloride in tyrosine nitration in vivo. J Biol Chem, 2003, 278(10): 8380~8384
    30 Pfeiffer S, Lass A, Schmidt K, et al . Protein tyrosine nitration incytokine-activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite. J Biol Chem, 2001, 276(36): 34051~34058
    31 Sankarapandi S, Zweier JL. Bicarbonate is required for the peroxidase function of Cu, Zn-superoxide dismutase at physiological pH. J Biol Chem, 1999, 274(3): 1226~1232
    32 Zhang H, Joseph J, Felix C, et al . Bicarbonate enhances thehydroxylation, nitration and peroxidation reactions catalyzed by cooper, zinc superoxide dismutase. Intermediacy of carbonate anion radical. J Biol Chem, 2000, 275(19): 14038~14045
    33 Ogino K, Kodama N, Nakajima M, et al.Catalase catalyzes nitrotyrosine formation from sodium azide and hydrogen peroxide. Free Rad Res, 2001, 35(6): 735~747
    34 Minetti M, Pietraforte D, Carbone V, et al. Scavenging of peroxynitrite by oxyhemoglobin and identification of modified globin residues. Biochemistry, 2000, 39(22): 6689~6697
    35 Grzelak A, Balcerezyk A, Mateja A, et al. Hemoglobin can nitrate itself and other proteins. Biochim Biophys Acta, 2001, 1528 (2~3): 97~100
    36 Kikugawa K, Nakauchi K, Beppu M, et al. Is nitrotyrosine generated in human erythrocytes in circulation? Biol Pharm Bull, 2000, 23(4): 379~385
    37 Kilinc K, Kilinc A, Wolf RE, et al. Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite. Biochem Biophys Res Commun, 2001, 285(2): 273~276
    38 Greenacre SAB, Ischiropoulos H. Tyrosine nitration: localization, quantification, consequences for protein function and signal transduction. Free Rad Res, 2001, 34(6): 541~581
    39 Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev, 2002, 54(6): 619~634
    40 Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys Res. Commun, 2003, 305(3): 776~783
    41 Berlett BS, Friguet B, Yim MB, et al. Peroxynitrite mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Proc Natl Acad Sci USA, 1996, 93(5): 1776~1780
    42 Blanchard-Fillion B, Souza J M, Friel T, et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem, 2001, 276(49): 46017~46023
    43 Yamakura F, Taka H, Fujimura T, et al. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem, 1998, 273(23): 14085~14089
    44 Zou MH, Leist M, Ullrich V. Selective nitration of prostacyclin synthase and defective vasorelaxation in atherosclerotic bovine coronary arteries. Am J Pathol, 1999, 154(5): 1359~1365
    45 Quaroni L G, Seward H E, McLean KJ, et al. Interaction of nitric oxide with cytochrome P450 BM3. Biochemistry, 2004, 43(51): 16416~16431
    46 Batthyany C, Souza J M, Durán R, et al. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry, 2005, 44(22): 8038~8046
    47 Zhang H, Bhargava, Kalyanaraman B, et al . Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J Biol Chem, 2003, 278(11): 8969 ~8978
    48 Lin H L, Zhang H, Hollenberg P F, et al . The highly conserved Glu149 and Tyr190 residues contribute to peroxynitrite-mediated nitrotyrosine formation and the catalytic activity of cytochrome P450 2B1. Chem Res Toxicol, 2005, 18(8): 1203~1210
    49 Gole MD, Souza JM, Choi I, et al. Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol, 2000, 278(5): L961~L967
    50 Li H, Gutterman DD, Liu Y, et al. Nitration and functional loss ofvoltage-gated K+channels in rat coronary microvessels exposed to high glucose. Diabetes, 2004, 53(9): 2436~2442
    51 Gonzalez D, Drapier JC, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J Biol Chem, 2004, 279(41): 43345~43351
    52 Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 2003, 25(3~4): 295~311
    53 Chi Q, Wang T, Huang K. Effect of insulin nitration by peroxynitrite on its biological activity. Biochem Biophys Res Commun, 2005, 330(3): 791~796
    54 Reinehr R, Gorg B, Hongen A, et al. CD95-tyrosine nitration inhibits hyperosmotic and CD95 ligand-induced CD95 activation in rat hepatocytes. J Biol Chem, 2004, 279(11): 10364~10373
    55 Takakura K, Beckman JS, Crow JP, et al. Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite.Arch Biochem Biophys, 1999, 369(2): 197~207
    56 Mallozzi C, Di Stasi AM, Minetti M. Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB J, 1997, 11(14): 1281~1290
    57 Klotz LO, Schroeder P, Sies H. Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Free Radic Biol Med, 2002, 33(6): 737~743
    58 Minetti M, Mallozzi C, Di Stasi AM. Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Free Radic Biol Med, 2002, 33(33): 744~754
    59 Mallozzi C, Di Stasi AM, Minetti M. Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Let, 2001, 503(2~3): 189~195
    60 Lokuta AJ, Maertz NA, Haworth RA, et al. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation,2005, 111(8): 988~995
    61 Monteiro HP. Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic. Biol. Med., 2002, 33(6): 765~773
    62 Schopfer FJ, Baker PRS, Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci, 2003, 28(12): 646~654
    63 Gow AJ, Farkouh CR, Munson DA, et al. Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol, 2004, 287(2): L262~L268
    64 Kamisaki Y, Wada K, Bian K, et al. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc NatlAcad SciUSA, 1998, 95(20): 11584~11589
    65 Koeck T, Fu X, Hazen S. Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria. J Biol Chem, 2004, 279(26): 27257~27262
    66 Irie Y, Saeki M, Murad F, et al. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA, 2003, 100(10): 5634 ~5639
    67 Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab, 2009, 20(7): 332~340
    68 Azadzoi KM, Radisavljevic ZM, Golabek T, et al. Oxidative modification of mitochondrial integrity and nerve fiber density in the ischemic overactive bladder. J Urol, 2010, 183(1): 362~369
    69 Castro L, Eiserich JP, Sweeney S, et al. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Arch Biochem Biophys, 2004, 421(1): 99~107
    70 Shenouda SK, Lord KC, McIlwain E, et al. Ecstasy produces left ventricular dysfunction and oxidative stress in rats. Cardiovasc Res, 2008, 79(4): 662~670
    71 Hucks D, Thuraisingham RC, Raftery MJ, et al.Homocysteine induced impairment of nitric oxide-dependent vasorelaxation is reversible by the superoxide dismutase mimetic TEMPOL. Nephrol Dial Transplant, 2004, 19(8): 1999~2005
    72 Zhang R, Ma J, Xia M, et al. Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J Nutr, 2004, 134(4): 825~830
    73 Hermo R, Mier C, Mazzotta M, et al. Circulating levels of nitrated apolipoprotein A-I are increased in type 2 diabetic patients. Clin Chem Lab Med, 2005, 43(6): 601~606
    74 Botti H, Trostchansky A, Batthyany C, et al. Reactivity of peroxynitrite and nitric oxide with LDL. IUBMB Life, 2005, 57(6): 407~412
    75 Davis B et al. CD40 ligand-dependent tyrosine nitration of prostacyclin synthase in vivo. Circulation, 2005, 112(14): 2184~2192
    76 Ma XL, Lopez BL, Liu GL, et al. hypercholesterlemia impair a detoxification mechanism against peroxynitrite and renders the vascular tissue more susceptible to oxidative injury. Cric Res, 1997, 80(6): 894~901
    77 Shao B, Bergt C, Fu X, et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J Biol Chem, 2005, 280(7): 5983~5993
    78 Zheng L, Settle M, Brubaker G, et al. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem, 2005, 280(1): 38~47
    79 Pennathur S, Bergt C, Shao B H, et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biolo Chem, 2004, 279(41): 42977~42983
    80 Csont T, Bereczki E, Bencsik P, et al. Hypercholesterolemia increasesmyocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice. Cardiovascular Research, 2007, 76(1): 100~109
    81 Kano H, Hayashi T, Sumi D, et al. Estriol retards and stabilizes atherosclerosis through an NO-mediated system. Life Sci, 2002, 71(1): 31~42
    82 Szilvassy Z, Csont T, Pali T, et al. Nitric oxide,peroxynitrite and cGMP in atherosclerosis-induced hypertension in rabbits:beneficial effects of cicletanine. J Vasc Res, 2001, 38(1): 39~46
    83 Yang H, Shi M, Story J, et al. Food restriction attenuates age-related increase in the sensitivity of endothelial cells to oxidized lipids. J Gerontol A Biol Sci Med Sci, 2004, 59(4): 316~323
    84 Cesselli D, Jakoniuk I, Barlucchi L, et al. Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res, 2001, 89(3): 279~286
    85 Steenken S, Jovanovic SV. How easily oxidizable is DNA? One electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc, 1997, 119(3): 617~618
    86 Samar B, Jacquin C, Niles PC, et al. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem Res Toxicol, 1999, 12(6): 513~520
    87 SzabóC. DNA strand breakage and activation of poly-ADP-ribosyltran- sferase: a cytotoxic pathway triggered by peroxynitrite. Free Radical Biol Med, 1996, 21(3): 855~869
    88 Szabo C, Cuzzocrea S, Zingarelli B. Endothelial dysfunction in a rat model of endotoxic shock, importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest, 1997, 100(3): 723~735
    89 Zingarelli B, Connor M, Wong H, et al. Peroxynitrite-mediated DNA strand breakage activates poly-ADP ribosyl synthetase and causes cellular energy dep letion in macrophages stimulated with bacterial lipopolysaccharide. J Imm unol, 1996, 156(1): 350~358
    90 Levrand S, Vannay-Bouchiche C, Pesse B, et al. Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic Biol Med, 2006, 41(6): 886~895
    91 Feng Q, Lu X, Jones DL, et al. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation, 2001, 104(6): 700~704
    92 Berges A, Van Nassauw L, Timmermans JP, et al. Time-dependent expression pattern of nitric oxide and superoxide after myocardial infarction in rats. Pharmacological Research, 2007, 55(1): 72~79
    93 Siwik DA, Colucci WS. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev, 2004, 9(1): 43~51
    94 Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res, 2002, 53(1): 165~174
    95 Looi YH, Grieve DJ, Siva A, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension, 2008, 51(2): 319~325
    96 Zhao W, Zhao D, Yan R, et al. Cardiac oxidative stress and remodeling following infarction:role of NADPH oxidase. Cardiovascular Pathology, 2009, 18(3): 156~166
    97 Korkmaz S, Radovits T, Barnucz E, et al. Pharmacological Activation of Soluble Guanylate Cyclase Protects the Heart Against Ischemic Injury. Circulation, 2009, 120(8): 677~686
    98 Elfatih A, Anderson NR, Mansoor S, et al. Plasma nitrotyrosine in reversible myocardial ischaemia. J Clin Pathol, 2005, 58(1): 95~96
    99 Wang P, Zweier JL. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. J Biol Chem, 1996, 271(29): 223~230
    100 Liu P, Hock CE, Nagele R, et al. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol, 1997, 272(5 Pt 2): H2 327~336
    101 Wang H, Zhang H, Guo W, et al. Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis, 2006, 11(8): 1453~60
    102 Zhu X, Liu B, Zhou S, et al. Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption. Am J Physiol Heart Circ Physiol, 2007, 293(3): H1442~1450
    103 Hu A, Jiao X, Gao E, et al. Chronic beta-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress. J Pharmacol Exp Ther, 2006, 318(2): 469~475
    104 Hayashi Y, Sawa Y, Ohtake S, et al. Peroxynitrite formation from human myocardium after ischemia-reperfusion during open heart operation. Ann Thorac Surg, 2001, 72(2): 571~576
    105 Mehlhorn U, Krahwinkel A, Geissler HJ, et al. Nitrotyrosine and 8-isoprostane formation indicate free radicalmediated injury in hearts of patients subjected to cardioplegia. J Thorac Cardiovasc Surg, 2003, 125(1): 178~183
    106刘霖,范谦,杨新春等.过氧亚硝酸阴离子加重急性心肌梗死患者缺血-再灌注心肌损伤. Chin J Intervent Cardiol, 2008, 16(4):219~211
    107 Iliodromitis EK, Paraskevaidis IA, Fountoulaki K, et al. Staccato reperfusion prevents reperfusion injury in patients undergoing coronary angioplasty: A 1-year follow-up pilot study. Atherosclerosis, 2009, 204(2): 497~502
    108 Zou MH, Bachschmid M. Hypoxia-reoxygenation triggers coronary vasospasm in isolated bovine coronary arteries via tyrosine nitration of prostacyclin synthase. J Exp Med, 1999, 190(1): 135~139
    109 Bianchi C, Wakiyama H, Faro R, et al. A novel peroxynitrite decomposer catalyst(FP-15)reduces myocardial infarct size in an in vivoperoxynitrite decomposer and acute ischemia-reperfusion in pigs. Ann Thorac Surg, 2002, 74(4): 1201~1207
    110 Tao L, Gao E, Jiao X, et al. Adiponectin Cardioprotection After Myocardial Ischemia/Reperfusion Involves the Reduction of Oxidative/Nitrative Stress. Circulation, 2007, 115(11): 1408~1416
    111 Jiao XY, Gao E, Yuan Y, et al. INO-4885[5,10,15,20- Tetra[N-(benzyl-4′-carboxylate)-2-pyridinium]-21H,23H-porphine Iron(III) Chloride], a Peroxynitrite Decomposition Catalyst, Protects the Heart against Reperfusion Injury in Mice. J Pharmacol Exp Ther, 2009, 328(3): 777~784
    112 Ravalli S, Albala A, Ming M, et al. Inducible nitric oxide synthase expression in smooth muscle cells and macrophages of human transplant coronary artery disease. Circulation, 1998, 97(23): 2338~345
    113 Szabolcs MJ, Ravalli S, Minanov O, et al. Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection. Transplantation, 1998, 65(6): 804~812
    114 Yamamoto M, Maeda H, Hirose N, et al. Bilirubin oxidation provoked by nitric oxide radicals predicts the progression of acute cardiac allograft rejection. American Journal of Transplantation, 2007, 7(8): 1897~1906
    115 Nossuli TO, Hayward R, Jensen D, et al.Mechanisms of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am J Physiol, 1998, 275(2Pt2): H509~H519
    116 Schulz R, Dodge KL, Lopaschuk GD, et al. Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency. Am J Physiol, 1997, 272(3Pt2): H1212~H1219
    117 Barton CH, Ni Z, Vaziri ND. Enhanced nitric oxide inactivation in aortic coarctation-induced hypertension. Kidney Int, 2001, 60(3): 1083~1087
    118 Cabassi A, Dumont EC, Girouard H, et al. Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats. J Hypertens, 2001, 19(7):1233~1244
    119 Zheng J P, Sun L, Ke Y, et al. Role of NADPH oxidase in oxidative stress involved in spontaneously hypertensive rats. Chin Pharm acol Bull, 2006, 22 (9) : 1079~83
    120 Suzuki K, Nakazato K, Kusakabe T, et al. Role of oxidative stress on pathogenesis of hypertensive cerebrovascular lesions. Pathol Int, 2007, 57 (3): 133~9
    121 Kagota S, Yamaguchi Y, TanakaN, et al. Disturbances in nitric oxide/ cyclic guanosine monophosphate system in SHR/NDmcr-cp rats, a model ofmetabolic syndrome. Life Sci, 2006, 78 (11): 1187~1196
    122 Wattanapitayakul SK, Weinstein DM, Holycross BJ, et al. Endothelial dysfunction and peroxynitrite formation are early events in angiotens ininduced cardiovascular disorders. FASEB J, 2000, 14(2): 271~278
    123 Ducrocq C, Dendane M, Laprevote O, et al. Chemical modifications of the vasoconstrictor peptide angiotensin II by nitrogen oxides (NO, HNO2, HOONO): evaluation by mass spectrometry. Eur J Biochem, 1998, 253(1): 146~153
    124 Whaley-Connell A, Habibi J, Cooper SA, et al. Effect of renin inhibition and AT1R blockade on myocardial remodeling in the transgenic Ren2 rat. Am J Physiol Endocrinol Metab, 2008, 295(1): E103-109
    125 Kooy NW, Lewis SJ, Royall JA, et al. Extensive tyrosine nitration in human myocardial inflammation: evidence for the presence of peroxynitrite. Crit Care Med, 1997, 25(5): 812~819
    126 Marcos A. Rossi, Mara R. N. Celes, Cibele M,et al. Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. SHOCK, 2007, 27(1): 10~18
    127 Cheng XS, Shimokawa H, Momii H, et al. Role of superoxide anion in the pathogenesis of cytokine-induced myocardial dysfunction in dogs in vivo. Cardiovasc Res, 1999, 42(3): 651~659
    128 Szabo C, Salzman AL, Ischiropoulos H. Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and theformation of peroxynitrite in the rat aorta in vivo. FEBS Lett, 1995, 363(3): 235~238
    129 Kamisaki Y, Wada K, Ataka M, et al. Lipopolysaccharide-induced increase in plasma nitrotyrosine concentration in rats. Biochim Biophys Acta, 1997, 1362(1): 24~28
    130 Combes A, McTiernan C, Brooks SS, et al. UV light synergistically enhances the cardiotoxic effects of interleukin 1 beta through peroxynitrite formation. J Card Fail, 2001, 7(2): 165~175
    131 Mebazaa A, De Keulenaer GW, Paqueron X, et al. Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomyopathy: role of endothelin, prostaglandins and nitric oxide. Circulation , 2001, 104(25): 3137~3144
    132 Iqbal M, Cohen RI, Marzouk K, et al. Time course of nitric oxide, peroxynitrite and antioxidants in the endotoxemic heart. Crit Care Med, 2002, 30(6): 1291~1296
    133 Matsuzaki M, Mohammed MU, Nakazawa H, et al. Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. Circulation, 1997, 95(2): 489~496
    134 Shin T, Tanuma N, Kim S, et al. An inhibitor of inducible nitric oxide synthase ameliorates experimental autoimmune myocarditis in Lewis rats. J Neuroimmunol, 1998, 92(1~2): 133~138
    135 Mabley JG, Soriano FG. Role of nitrosative stress and poly(ADPribose) polymerase activation in diabetic vascular dysfunction. Curr Vasc Pharmacol, 2005, 3(3): 247~252
    136 Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol, 2009, 156(5): 713~727
    137 Pacher P, Obrosova IG, Mabley JG, et al. Role of Nitrosative Stress and Peroxynitrite in the Pathogenesis of Diabetic Comp lications. Emerging New Therapeutical Strategies, 2005, 12 (3): 267~275
    138 Taguchi K, Kobayashi T, Hayasi Y, et al. Enalap ril imp roves impairment of SERCA-derived relaxation and enhancement oftyrosinenitration in diabetic rat aorta. Euro J Pharm, 2007, 556(123): 121-128
    139 Nagareddy PR, McNeill JH, MacLeod KM. Chronic inhibition of inducible nitric oxide synthase ameliorates cardiovascular abnormalities in streptozotocin diabetic rats. Eur J Pharmacol, 2009, 611(1~3): 53~59
    140 Turko IV, Marcondes S, and Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol, 2001, 281(6): H2289~H2294
    141 Turko IV, Li L, Aulak KS, et al. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem, 2003, 278(36): 33972~33977
    142 Rodica Pop-Busui, Elif Oral, David Raffel, et al. Impact of rosiglitazone and glyburide on nitrosative stress and myocardial blood flow regulation in type 2 diabetes mellitus. Metabolism Clinical and Experimental, 2009, 58(7): 989~994
    143 Van der Loo B, Labugger R, Skepper JN, et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med, 2000, 192(12): 1731~1743
    144 Knyushko TV, Sharov VS, Williams TD, et al. 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry, 2005, 44(39): 13071~13081
    145 Bátkai S, Rajesh M, Mukhopadhyay P, et al. Decreased age-related cardiac dysfunction, myocardial nitrative stress,inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am J Physiol Heart Circ Physiol, 2007, 293(2): 909~918

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700