气体原子或分子在过渡金属表面吸附和解离的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气态原子、分子与过渡金属表面的相互作用是多相催化、气体腐蚀以及晶体生长等领域研究中的一个重要课题。尤其是近年来,伴随着化学工业中异相催化的迅猛发展,气-固表面相互作用动力学引起化学家和物理学家的极大兴趣。无论是多相催化,还是胶体化学催化反应,都涉及到反应物之间以及反应物与催化剂表面的相互作用。因而,从理论上系统地研究原子、分子与催化剂表面,尤其是与催化剂表面活性部位之间的相互作用是十分必要的。本论文选取了一些具有典型意义的原子和双原子分子通过5-参数Morse势和改进推广的LEPS势方法研究了原子、分子在过渡金属平坦和缺陷表面的吸附扩散动力学行为。本论文的内容简述如下:
     第一章简要介绍了气固表面相互作用的研究意义、研究现状、研究方法,并详细介绍了本论文研究所要用到的基本理论方法和表面簇合物模型。
     第二章应用5-参数Morse势(简称5-MP)分别对N-Ru、O-Ag表面体系的吸附和扩散进行了全面系统的研究。
     第三章在5-MP的基础上利用改进推广的LEPS势对NO-Ru低指数面及CO- Pd(211)(311)台阶面吸附体系进行了详细的研究。
     本论文的主要成果:
     1. N-Ru体系。虽然此前人们对N-Ru体系进行了大量的研究,且主要是实验研究,但只获得了表面吸附微观动力学的片段信息。例如:对于(1 121)台阶面,实验上测得了很多能量损失谱,但对其归属,目前仍没有明确的论断。理论计算结果认为:N原子在金属钌表面上的吸附倾向于三重位;在(1 010)低指数面上不存在子表面吸附态;在开放的(1 121)台阶面上存在6种不等价吸附态,并且可分为子表面吸附、次表面(facet)吸附和表面吸附三类。理论计算结果几乎都重现并解释了EELS实验测得的损失谱峰,并且指派了相应吸附位和吸附几何构型,同时还预测了其它振动频率的存在。该论文已发表在Chemical Research in Chinese University 2009年9月5期25卷。
     2. O-Ag体系。利用5-参数Morse势方法(简称5-MP),对O-Ag(100),(110),(111)平坦表面体系进行了全面系统的研究。为人们更加全面详细地了解这一重要体系提供了的帮助。对于O原子在Ag(111)面上的吸附,实验上测得的低频振动30meV,较为反常。但通过我们的计算结果,可预言这是由于Ag(111)面上的稀疏台阶对O原子吸附态的影响所致。关于O-Ag(211),(997),(410)台阶缺陷表面体系的研究也取得了较好的计算结果。
     3. NO-Ru低指数面体系。应用原子和表面簇合物相互作用的5-参数Morse势及推广的LEPS势进行了较为全面、系统的研究,获得了结合能、键长、吸附高度和振动频率等全部临界点性质,且与实验结果吻合较好。理论计算结果认为:NO在Ru(0001)面上存在多种分子吸附态,分别是顶位吸附态、桥位吸附态、三重位的垂直吸附态以及质心在桥位的平行吸附态,对应的频率分别为1732 cm~(-1),1587 cm~(-1),1451(1459) cm~(-1)和672 cm~(-1)。对于实验上出现的1130 cm~(-1)的特殊振动频率,本文认为该频率是由NO分子缔合产生的。在Ru (1 010)面,NO同样存在多种分子吸附态。但从计算结果来看,NO在此面不存在平行的分子吸附态。
     4.对于CO-Pd台阶面体系,重点研究了CO/Pd(211)和CO/Pd(311)两个体系。计算结果表明,在低覆盖度下,CO分子都是趋向吸附在(211)、(311)台阶面的三重位,基本上遗传了CO-Pd(111)三重吸附态的临界点性质。随着覆盖度的增加,又会垂直吸附在(100)台阶的二重桥位上,与CO在Pd(100)平面桥位吸附时的临界点性质都非常接近。但由于(211)、(311)两个面中(111)台面的长度不同,因此也存在不同之处。CO分子在(211)面上存在稳定的高配位吸附位,但在(311)面上没有稳定的高配位吸附位。
The dynamics of gas-solid surface interaction is arousing more and more interest in the community of chemists and physicists. Whether colloid catalyzed interaction or multi-phase catalysis is relating to the interaction between reactant and catalyzer surface. Therefore, the systemic study on the interaction between atom, molecule and catalyzer surface, especially the interaction with active sites in theory is necessary. Some representative atoms and molecules are selected to study the kinetic behavior of adsorption and diffusion on the flat and defective surfaces by employing five-parameter Morse potential and improved extended LEPS potential in this work.
     The main content in this paper is as follows:
     Chapter 1: the significance, status quo and methods of the investigation in gas-solid surfaces interaction are expatiated. On the other hand the theory methods and cluster modes used in this dissertation are introduced in detail.
     Chapter 2: N-Ru system and O-Ag system are studied by using 5-parameter Morse potential (5-MP) method.
     Chapter 3: The characteristics of adsorption sites and state for NO molecule on Ru low-index surfaces and CO-Pd (211),(311)stepped surfaces are investigated by extended LEPS method.
     The main production of this paper:
     1. N-Ru system. Although the N-Ru system has been studied by many methods, especially experimental methods, only limited information was obtained. There are even more puzzles needed to be explained. For example, a variety of losses were observed for N atom on Ru (1 121) surface, but how to assign these losses? Calculated results demonstrate that the N atom has the tendency to adsorb at three-fold sites. There is no subsurface states for N atom on Ru (1 010) surface and there exist 6 stable adsorption sites for N atom on Ru (1 121) stepped surface which can be classified into 3 types: the on-surface adsorption states, the facet adsorption states and the subsurface states. And other calculated results are in good accord with HREELS experiments. Meanwhile, we predict that there exist some other vibrational frequencies.
     This paper has been published on Chemical Research in Chinese University, 2009, Vol.25, No.5, 705~710.
     2. O-Ag system. we dealt with the O-Ag(100),(110),(111) plane surface systems comprehensively, using the 5-MP method, which make it possible for people to understand this important system detailedly and completely. With regard to the adsorption of O atom on the Ag (111) surface, our calculation results suggest that the abnormally low vibration of 27.3, 30meV of EELS experimental results should be resulted by the effect of the sparse steps to the nearest neighbouring hollow site on the Ag (111) terrace. The investigation to O atom adsorbed on the Ag (211), (997), (410) step surfaces also gained better calculation results.
     3. N-Ru system. The extended LEPS of NO-Ru system are constructed by means of 5-MP. All critical characteristics of the system we obtained, such as adsorption geometry, binding energy, eigenvalues for vibration, etc. are in good agreement with the experimental results. There exist several adsorption states for NO adsorption on Ru(0001) surface:T, B, H and H-B-H sites, and the vibrational frequencies are 1732cm~(-1),1587 cm~(-1),1451(1459) cm~(-1)和672 cm~(-1) respectively. The unusual vibrational frequency of 1130 cm~(-1) is atributed to hyponitrite form. For NO adsorption on Ru (1 010)surface, there also exist several adsorption states, but parallel adsorption state is not found.
     4. For the adsorption systems of CO on Pd stepped surfaces, We study mainly CO-Pd(211) and CO-Pd(311) systems. The results show: there exist common characters of CO molecule adsorption on these two surfaces. At low coverage, CO molecule will perpendicularly adsorb in three-fold hollow site of the (111) terrace and has a tilt angle with respect to the surface normal. The critical characters inherit the characters of CO molecule adsorbed in three-fold hollow site of (111) original surface. When the coverage is increasing, two-fold bridge sites of (100) step are occupied. The critical characters inherit the characters of CO molecule adsorbed in two-fold bridge sites of (100) original surface. Considering the different length of (111) terrace, there exist some different characteristics of (211) and (311) stepped surfaces. A number of new sites are exposed on the boundary regions between the two types of surface, for example H5 of (211)and H4 of (311) surface. When the coverage is up, CO will inside in H5 of (211) surface, but the H4 of (311) surface will not be a stable adsorption state.
引文
[1] Materer N.; Starke U.; Barbieri A. Reliability of detailed LEED structural analyses: Pt(111) and Pt(111)-p(2×2)-O[J]. Surf. Sci., 1995, 325:207-222.
    [2] Walker, A.; Klotzer, B.; King D. Dynamics and kinetics of oxygen dissociative adsorption on Pt{110}(1×2) [J]. J. Chem. Phys., 1998, 109(6):6879-6888.
    [3] Winkler, A.; Guo, X.; Siddiqui, H.R. Kinetics and energetics of oxygen adsorption on Pt(111) and Pt(112)- A comparison of flat and stepped surfaces[J]. Surf. Sci., 1988, 201:419-443.
    [4] Ohno, Y.; Matsushima T. Dissociation of oxygen admolecules on platinum (110)(1×2) reconstructed surfaces at low temperatures[J]. Surf. Sci., 1991, 241(1): 47-53.
    [5] Yeo, Y.Y.; Vattuone, L.; King, D. Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}[J]. J. Chem. Phys., 1997, 106(1): 392-401.
    [6] Wartnaby, C.; Stuck, A.; Yeo, Y. Influence of the Framework Density and the Effective Electronegativity of Silica and Aluminophosphate Molecular Sieves on the Heat of Adsorption of Nonpolar Molecules[J]. J. Phys. Chem., 1996, 100:12483-12488.
    [7] Wang, H.; Tobin, R.G.; Lambert, D. K. Adsorption and dissociation of oxygen on Pt(335) [J]. Surf. Sci.,1997, 372:267-278.
    [8] Schmidt, J.; Stuhlmann, Ch.; Ibach, H. Oxygen adsorption on the Pt(110)(1×2) surface studied with EELS[J]. Surf. Sci., 1993, 284:121-128.
    [9] Martin, R.; Gardner, P.; Bradshaw.A.M. The adsorbate-induced removal of the Pt{100} surface reconstruction. Part II: CO[J]. Surf. Sci., 1995, 342:69-84.
    [10] Bare. S. R.; Hofmann, P.; King.D.A. Vibrational studies of the surface phases of CO on Pt{110} at 300 K[J]. Surf. Sci., 1984, 144:347-369.
    [11] Freyer, N.; Kiskinova, M.; Pirug, G.. Oxygen adsorption on Pt(110)-(1×2) and Pt(110)-(1×1) [J]. Surf. Sci.,1986,166:206-220.
    [12] Engstrom, U.; Ryberg, R. Atomic Oxygen on a Pt(111) Surface Studied by Infrared Spectroscopy[J]. Phys. Rev. Lett., 1999, 82:2741-2744.
    [13] Helveg, S.; Lorensen, H.T.; Horch, S. Oxygen adsorption on Pt(110)-(1×2): newhigh-coverage structures[J]. Surf. Sci., 1999, 430:L533-L539.
    [14] Janin, E.; Schenck, H.; Gothelid, M. Bridge-bonded atomic oxygen on Pt(110) [J].Phys. Rev. B., 2000, 61:13144-13149.
    [15] Lynch, M.; Hu, P. A density functional theory study of CO and atomic oxygen chemisorption on Pt(111)[J]. Sur. Sci., 2000, 458:1-14.
    [16] Lin, X.; Ramer, N.; Rappe, A. Effect of Particle Size on the Adsorption of O and S Atoms on Pt: A Density-Functional Theory Study[J]. J. Phys. Chem.B., 2001, 105:7739-7747.
    [17] Upton, T. H.; GoddardⅢ, W. A. Chemisorption of Atomic Hydrogen on Large-Nickel-Cluster Surfaces[J]. Phys. Rev .Lett., 1979, 42:472-476.
    [18] Martin, R. L.; Hay, P. J. Theoretical studies of chemisorbed oxygen on Ag(110) [J]. Surf. Sci., 1983,130:L283-L288.
    [19] Feibelman, P.; Hafner, J.; Kresse, G.. Vibrations of O on stepped Pt(111) [J]. Phys. Rev. B., 1998, 58(4): 2179-2184.
    [20] McCreey, H.; Wolken, Jr. A model potential for chemisorption: H2+W(001) [J]. J. Chem. Phys., 1975, 63: 2340-2349.
    [21] McCreey, H.; Wolken, Jr. Dynamics of adsorption on covered surfaces[J]. J. Chem. Phys., 1977, 66: 2316-2322.
    [22] Wang, Z. X.; Tian, F. H. The Adsorption of O Atom on Cu (100), (110), and (111) Low-Index and Step Defect Surfaces[J]. J. Phys. Chem. B., 2003, 107:6153-6161.
    [23] Wang, Z.X.; Qiao, Q. A.; Chen, S. G.. The adsorption of O and CO on low index Ni planes and stepped nickel surfaces[J]. Surf. Sci., 2002, 517:29-42.
    [24] Wang, Z. X.; Jia, X. F. Wang. R., Dynamic Study of O2 Adsorption and Dissociation on Pd Low-Index Surfaces[J]. J. Phys. Chem. A., 2004, 108: 5424-5230.
    [25] Jia, H. Y.; Wang Z. X. Study of microdynamics for CO adsorbing on Pt low-index surfaces[J]., Acta Phys.–Chim. Sin. 2004, 20(2): 144-148.
    [26] Wang. Z. X., Pang. X. H., R. Wang, Adsorption of CO molecules on Rh low index and (311) stepped surfaces[J]. Chin. Sci. Bull, 2004, 49(10):1012-1019.
    [27] Diao. Z.Y.; Han. L. L.; Wang, Z. X.; Dong, C. C. The Adsorption and Dissociation of O2 on Cu Low-Index Surfaces [J]. J. Phys. Chem. B., 2005, 109: 5739-5745.
    [28]丰慧,刁兆玉,王泽新,张静.氢原子在Fe低指数面及高指数面(211)上的吸附和振动[J].高等学校化学研究, 2006, 27(2):297-302.
    [29]张学娜,刁兆玉,王泽新,张静.Adsorption and D iffusion of O Atoms on Ag( 210) Stepped Surface[J].高等学校化学研究,2007, 23(4):456—459.
    [30] J. Zhang, X. N. Zhang, Z. X. Wang, Zh. Y. Diao, Adsorption of carbon monoxide on Pd(311) and (211) surfaces[J]., Appl. Surf. Sci. 2008, 254:6327-6331.
    [31]刁兆玉,巫洪章,王泽新,张学娜,张燕.氧原子在Al(100)、(110)、(111)面上的吸附与振动[J].物理化学学报,2008,24(3):437-442.
    [32]刁兆玉,张燕,张学娜,王泽新,王仲妮. Theoretical Studies on Adsorption Sites and States of O and N on Ni(311)[J].高等学校化学研究,2009, 25(1):98—101.
    [33] Diao. Zh. Y, Yu. H. Y, Wang. Zh. N, Zhang. X. N, Wang. Z. X. Adsorption Site and State of Nitrogen Atom on Ru ( 0001),(1010)Low-Index and (1 120),(1121)Stepped Surfaces[J]. Chemical Research in Chinese University, 2009, 25(5):705—710.
    [1] Kostov. K. L,Menzel. D,Widdra. W. Vibrational characterization of a high-density Ru(001)-(2×2)-(NO+3O) phase[J]. Phys. Rev. B, 2000, 61(24):16911.
    [2] Tennison. S. R. Catalytic Ammonia Synthesis [C] Ed. by Jennings J.R.New York: Plenum Press 1991:303.
    [3] H Shi, K Jacobi, G. Ertl. Dissociative chemisorption of nitrogen on Ru(0001) [J]. J. Chem. Phys, 1993, 99(11): 9248-9254.
    [4] Shi. H, Jacobi. K, Ertl. G.. Interaction of hydrogen with nitrogen atoms chemisorbed on a Ru(0001) surface [J]. J. Chem. Phys, 1995, 102(3):1432-1430.
    [5] Dietrich. H, Jacobi. K, Ertl. G.. Coverage, lateral order, and vibrations of atomic nitrogen on Ru(0001)[J]. J. Chem. Phys, 1996, 105(19):8944-8950.
    [6] Dietrich. H, Jacobi. K, Ertl. G.. Vibrational analysis of the NH + N coadsorbate on Ru(0001)[J]. Surf. Sci. 1997, 377-379:308-312.
    [7] Schwegmann.S, Seitsonen. A. P, Dietrich. H, Bludau. H, Over. H, Jacobi. K, Ertl . G., The adsorption of atomic nitrogen on Ru(0001): geometry and energetics[J]. Chem. Phys. Lett, 1997, 264(6):680-686.
    [8] Diekhoner. L, Baurichter. A, Mortensen. H. A, Luntz. C. Observation of metastable atomic nitrogen adsorbed on Ru (0001) [J]. J. Chem. Phys. 2000, 112(5): 2507-2515.
    [9] Mortensen. J. J, Morikawa. Y, Hammer. B, Norskov. J. K. Density Functional Calculations of N2Adsorption and Dissociation on a Ru(0001) Surface[J]. J. Catal. 1997, 169(1):85-92.
    [10] Hammer. B. Adsorption, diffusion, and dissociation of NO, N and O on flat and stepped Ru(0001)[J]. Surf. Sci. 2000, 459(3): 323-348.
    [11] Dietrich. H, Jacobi. K, Ertl. G. Vibrations, coverage, and lateral order of atomic nitrogen and formationof NH_3 on Ru(10ˉ10) [J]. J. Chem. Phys. 1997, 106(22), 9313-9319.
    [12] Wang. Y, Lafosse. A, Jacobi. K. Stepwise dehydrogenation of NH_3 at the Ru(11_20) surface[J]. Surf. Sci. 2002, 507-510:773-777.
    [13] Wang. Y, Jacobi. K. Vibrational characterization of NH and NH_2 reaction intermediates on the Ru(1 1 0) surface [J]. Surf. Sci. 2002, 513, 83-92.
    [14] Wang. Y, Jacobi. K. Adsorption and Reaction of Ammonia on the Ru(112h0) Surface[J]. J. Phys. Chem. B, 2004, 108(38), 14726-14732.
    [15] Jacobi. K, Dietrich. H, Ertl. G.. Nitrogen chemistry on ruthenium single-crystal surfaces [J]. Appl. Surf. Sci, 1997, 121-122:558-561.
    [16] Jacobi. K, Wang. Y, Fan. C. Y, Dietrich. H. Adsorption and thermal dehydrogenation of ammonia on Ru (11-21) [J]. J. Chem. Phys, 2001, 115(9):4306-4313.
    [17] Jacobi. K., Wang. Y, Fan. C. Y, Dietrich. H. J. Chem. Phys, 2001, 115:4306-4313.
    [18]刁兆玉庞雪辉王泽新,郝策.原子氧在Ru低指数面及(11-21)、(11-21)台阶面上的吸附[J].化学学报, 2005, 63(17):1581-1586.
    [19]王泽新,张文霞,刁兆玉,李文华,郝策.氢原子在Ru(0001)和Ru(1010)面上吸附扩散势能面的结构[J].化学学报,1997,55:1158-1164.
    [20] DIAO, Z. Y, ZHANG, X. M, WANG, Z. X, HAN, L.L. The Theoretical Studies of Adsorption and Diffusion of N Atoms on Cu Low-index Surface [J]. Chinese Journal of Chemistry, 2004, 22(11):1225-1230.
    [21] DIAO, Z.Y, HAN, L. L, WANG, Z. X, DONG, C. C. The adsorption and dissociation of O_2 on Cu low-index surfaces [J]. J. Phys. Chem. B, 2005, 109:5739-5745.
    [22]王泽新,庞雪辉张晓明H原子在Ru( 112 1)台阶面上的吸附位和吸附态[J].高等学校化学学报,2004,25(4):705-709.
    [23] HAN, L. L, DIAO Z. Y, WANG, Z. X, ZHANG, X. M. The Adsorption of an O Atom on Cu (311) Step defective Surface[J]. J. Phys. Chem. B, 2004, 108(4):1392-1395.
    [24] Wang, Z.X, Tian, F.H. The Adsorption of O Atom on Cu (100), (110), and (111) Low-Index and Step Defect Surfaces [J]. J. Phys. Chem. B, 2003, 107(25):6153-6161.
    [25] Vattuone, L., Boragno. C, Pupo. M, Restelli. P, Rocca. M. and Valbusa. U. Azimuthal dependence of sticking probability of O_2 on Ag(110)[J]. Phys. Rev. Lett., 1994, 72(4):510-513.
    [26] Bartolucci, F, Franchy. R, Barnard. J.C. and Palmer. R. E. Two Chemisorbed Species of O_2 on Ag(110) [J]. Phys. Rev. Lett., 1998, 80(23):5224-5227.
    [27] Prince. K.C, Paolucci. G. and Bradshaw. A. M. Oxygen adsorption on silver (110): Dispersion, bonding and precursor state [J]. Surf. Sci., 1986,175(1):101-122.
    [28] Heiland. W, Iberl. F. and Taglauer. E, Menzel. D. Oxygen adsorption on (110) silver [J]. Surf. Sci., 1975, 53(1):383-392.
    [29] Martin. R. L. and Hay. P. J. Theoretical studies of chemisorbed oxygen on Ag(110)[J]. Surf. Sci. , 1983, 130(1):L283-L288.
    [30] Puschmann. A. and Haase. J. Surface EXAFS of the (2×1) oxygen adlayer on Ag(110) [J]. Surf. Sci. , 1984, 144(2-3):559-566.
    [31] Tjeng. L. H, Meinders. M. B. J.and Sawatzky. G.. A. Electronic structure of clean and oxygen covered silver (110) surface[J]. Surf. Sci., 1990, 236(3): 341-368.
    [32] Bang. K, Madey. T. E. and Sass. J. K. The adsorption of oxygen on Ag(110): a new view of structure and bonding [J]. Chem.Phys.Lett. 1985, 113(1): 56-62.
    [33] Campbell. C.T, Paffet. M.T. The interactions of O_2, CO and CO_2 with Ag(110) [J]. Surf. Sci., 1984, 143(2-3):517-535.
    [34] Backx. C, de Groot. C. P. M. and Biloen. P. Adsorption of oxygen on Ag(110) studied by high resolution ELS and TPD[J]. Surf. Sci., 1981, 104(1): 300-317.
    [35] Stietz. F, Pantf(O¨)rder. A, Schaefer. J. A, Meister. G., Goldmann. A. High-resolution study of dipole-active vibrations at the Ag(110) (n×1)O surface[J]. Surf. Sci., 1994, 318(3): L1201-L1205.
    [36] Vattuone. L, Valbusa. U, Rocca. M. Coverage dependence of the O-Ag (110) vibration [J]. Surf.Sci. , 1994, 317(1-2): L1120-L1123.
    [37] Bare. S. R, Griffiths. K, Lennard. W. N. and Tang. H. T. Generation of atomic oxygen on Ag(111) and Ag(110) using NO_2: a TPD, LEED, HREELS, XPS and NRA study [J]. Surf. Sci., 1995, 342(1-3):185-198.
    [38] Vattuone. L, Rocca. M, Restelli. P, Pupo. M, Boragno. C. and Valbusa. U. Low-temperature dissocation of O_2 on Ag(110): Surface disorder and reconstruction [J]. Phys.Rev.B ,1994, 49(7): 5113-5116.
    [39] Vattuone. L, Rocca. M, Boragno. C. and Valbusa. U. Initial sticking coefficient of O_2 on Ag(110) [J]. J.Chem.Phys., 1994, 101:713-725.
    [40] Peng. M. R, Reutt-Robey. J. E. A far infrared vibrational study of O/Ag(110)[J]. Surf.Sci. ,1995, 336(1), L755-L761.
    [41] Vittoria Isabella pazzi, Pierre Herman Theodoor Ohilipsen, Evert Jan Baerends, Gian Franco Yantardini. Oxygen adsorption on Ag(110): density functional theory band structure calculations and dynamical simulations[J], Surf. Sci., 1999,443(1-2):1-12.
    [42] L.Becker, S.Aminpirooz, A.Schmalz, B.Hillert, M.Pedio, and J.Haase. Missing-row reconstruction in the system (2×1)O/Ag(110): A surface extended x-ray-absorption fine-structure study[J], Phys.Rev.B , 1991, 44(24):13655-13659.
    [43] Canepa. M, Cantini. P, Fossa. F, Mattera. L, Terreni. S. O(2×1)-Ag(110) missing- row reconstruction: Structure determination by low-energy ion scattering [J]. Phys.Rev.B, 1993, 47(23): 15823-15829.
    [44] Katagiri. H, Uda. T, Terakura. K. Structural and vibrational properties of added-row reconstructions on O/Cu(110) and O/Ag(110) surfaces[J]. Surf. Sci., 1999, 424(2-3):322-330.
    [45] Upton. T.H, Stevens. P. and Madix. R. J. Chemisorption of dioxygen on the Ag(110) surface [J]. J. Chem. Phys., 1988, 88(6): 3988-3995.
    [46] Hock. P. J. and Baerends. E. J. Chemisorption and dissociation of O_2, on Ag(110) [J]. Surf. Sci., 1989, 221(3):L791-L799.
    [47] Nakatsuji. H. and Nakai. K. Dipped adcluster model study for molecular and dissociative chemisorptions of O_2 on Ag surface[J]. J.Chem.Phys., 1993, 98(3): 2423-2436.
    [48] Lin. J.H. and Garrison. B. J. A model potential for the interaction of oxygen and Ag(110) [J]. J.Chem.Phys., 1984, 80(6):2904-3913.
    [49] Butler. D. A. and Kleyn. A.W. The growth of oxygen adlayers on Ag(110)[J]. Surf. Sci., 1996, 357-358: 619-623.
    [50] Bao. X, Muhler. M, Schedel–Niedrig. Th. and Schl(o¨)gl. R. Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species [J]. Phys.Rev.B, 1996, 54(3): 2249-2262.
    [51] Carlisle. C. I, Fujimoto. T, Sim. W. S, King. D. A Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag{1 1 1} [J]. Surf. Sci., 2000, 470(1-2):15-31.
    [52] Tanniguchi. M, Tanaka. K, Hashizume. T. and Sakurai. T. Ordering of Ag-O chains on the Ag(110) surface [J]. Surf. Sci., 1992, 262(3):L123-L128.
    [53] Pai. W. W, Bartelt. N. C, Peng. M. R. and Reutt-Robey. J. E. Steps as adatom sources for surface chemistry: oxygen overlayer formation on Ag(110) [J]. Surf. Sci., 1995, 330(3):L679-L685.
    [54] Rovia. G., Pratesi. F, Maglietta. M. and Ferroni. E. Chemisorption of oxygen onthe silver (111) surface [J]. Surf. Sci., 1974, 43(1):230-256.
    [55] Engelhart. H. A. and Menzel. D. Adsorption of oxygen on silver single crystal surfaces [J]. Surf. Sci., 1976, 57(2): 591-618.
    [56] Albers. H, van der Wal. W. J. J. and Bootsma. G. A. Ellipsometric study of oxygen adsorption and the carbon monoxide-oxygen interaction on ordered and damaged Ag(111) [J]. Surf. Sci., 1974, 68: 47-56.
    [57] Felter. T. E, Weinberg. W. H, Lastushkina. G. Ya, Boronin. A. I, zhdan. P. A, Boreskov. G. K. and Hrbek. J. An XPS and UPS study of the kinetics of carbon monoxide oxidation over Ag(111) [J]. Surf. Sci., 1982, 118(3): 369-386.
    [58] Benndorf. C, Franck. M. and thieme. F. Oxygen adsorption on Ag(111) in the temperature range from 100–500 K: UPS, XPS and EELS investigations[J]. Surf. Sci., 1983, 128(2-3): 417-423.
    [59] Grant. R B. and Lambert. R. M. Basic studies of the oxygen surface chemistry of silver: Chemisorbed atomic and molecular species on pure Ag(111) [J]. Surf. Sci., 1984, 146(1): 256-268.
    [60] Campbell, Charlse T. Atomic and molecular oxygen adsorption on Ag(111)[J]. Surf. Sci., 1985, 157(1): 43-60.
    [61] Carlisle,C. I.; King,D. A.; Bocquet, M.-L.; Cerdá, J. and Sautet,P. Imaging the Surface and the Interface Atoms of an Oxide Film on Ag{111} by Scanning Tunneling Microscopy: Experiment and Theory [J]. Phys.Rev.Lett. 2000, 84(17): 3899-3902.
    [62] Bukhtiyarov,V.I.; Kaichev,V. V. and Prosvirin,I. P. Oxygen adsorption on Ag(111): X-ray photoelectron spectroscopy (XPS), angular dependent x-ray photoelectron spectroscopy (ADXPS) and temperature-programmed desorption (TPD) studies [J]. J.Chem.Phys. 1999, 111(5):2169-2175.
    [63] Spruit,M.E.M.;W.kuipers,E.;Geuzebroek,F.H.and leyn,A.W.Trapping-desorption of O2 from Ag(111) [J]. Surf.Sci. 1989, 215(3): 421-436.
    [64] Buatier de Mongeot, F.; Valbusa,U.; Rocca, M. Oxygen adsorption on Ag(111) [J]. Surf.Sci. 1995, 339(3):291-296.
    [65] Wei-Xue Li, Catherine Stampfl, and Matthias Scheffler. Oxygen adsorption on Ag(111): A density-functional theory investigation [J],Phys.Rev.B 2002, 65(7): 075407-075425.
    [66] G.Ertl, in: The Nature of the Chemical Bond, Eds. T.N. Rhodin andG.Ertl .North-Holland, Amsterdam, 1979.
    [67] Frese, K.W.; Jr. Calculation of surface binding energy for hydrogen, oxygen, and carbon atoms on metallic surfaces [J]. Surf.Sci. 1987, 182(1-2):85-97.
    [68] Fang, G.SD.A. Surface structural transition of adsorption of oxygen on Ag(100) [J]. Surf.Sci. 1990, 235(1): L291-L294.
    [69] Garfunkel, Eric L.; Ding, Xunmin; Yang, Guosheng; Hou,Xiaoyuan and Wang, Xun. The coadsorption of sodium and oxygen on Ag(100): an XPS, UPS and HREELS study [J] Surf.Sci. 1985, 164(2-3):511-525.
    [70] Rocca,M.; Savio,L.; Vattuone, L.; Burghaus,U.; Palomba,V.; Novelli,N.; Buatier de Mongeot, F.; Valbusa, U.; Gunnella, R.; Comelli, G.; Baraldi, A.; Lizzit,S. and Paolucci,G.. Phase transition of dissociatively adsorbed oxygen on Ag(001) [J]. Phys.Rev.B 2000, 61(1):213-227.
    [71] Valbusa, U.; Buatier De Mongeot, F.; Rocca, M. and Vattuone, L. Adsorption and desorption of O[2] on Ag surfaces[J]. VaAgum 1998 50(3-4):445-450.
    [72] Vattuone,L.; Gambardella,P.; Burghaus,U.; Cemi?,F.; Agpolillo,A.; Valbusa,U. and Rocca, M. Collision induced desorption and dissociation of O2 chemisorbed on Ag(001) [J]. J.Chem.Phys. 1998,109(6): 2490-2503.
    [73] Vattuone, L.; Burghaus, U.; Savio, L.; Rocca,.M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S. and Valbusa., U. Oxygen interaction with disordered and nanostructured Ag(001) surfaces[J]. J.Chem.Phys. 2001,115 (7):3346-3355.
    [74] Gabriele Cipriani, Davide Loffreda, Andrea Dal Corso, Sefano de Gironcoli, Stefano Baroni. Adsorption of atomic oxygen on Ag(0 0 1): a study based on density-functional theory [J], Surf.Sci. 2002, 501(3): 182-190.
    [75]陈文斌,陶向明,陈鑫,谭明秋,Ag(100)表面氧吸附的密度泛函理论和STM图像研究[J],物理学报,2008,57(1):488-495.
    [76]任润鹏,乙烯选择性环氧化在不同金属表面的DFT研究太原:太原理工大学,2008.
    [77]刘瑛,何天敬,陈东明,刘凡镇,氧原子在银原子簇表面吸附重构的DFT研究,化学物理学报,2000, 13(6): 654-660.
    [78] Dubois,L.H Oxygen chemisorption and cuprous oxide formation on Cu(111): A high resolution EELS study [J]. Surf.Sci. 1982,119(2-3): 399-410.
    [79] Besenbacher,F.; Nφrskov,J.K. Oxygen chemisorption on metal surfaces: Generaltrends for Cu, Ni and Ag [J]Progress in surface science, 1993,44(1):5-56.
    [80] Ibach,H.; Bruchmann,D. Observation of Surface Phonons on Ni(111) by Electron Energy-Loss Spectroscopy [J]. Phys.Rev.Lett. 1980,44(1):36-39.
    [81] Banse,B.A. and Koel,B.E. Interaction of oxygen with Pd(111): High effective O2 pressure conditions by using nitrogen dioxide [J]. Surf.Sci 1990,232(3):275-285.
    [82] Nolan,P.D.; Lutz,B.R.; Tanaka,P.L.; Mullins,C.B. Direct verification of a high-translational-energy molecular precursor to oxygen dissociation on Pd(111)[J]. Surf.Sci 1998,419(1): L107-L113.
    [83] Leisenberger,F.P.; Koller,G.; Socket.al.M. Surface and subsurface oxygen on Pd(111)[J]. Surf.Sci 2000,445(2-3): 380-393.
    [84] Nascente,P.A.P.; Van Hove,M.A.; Somorjai,G.A. Induced ordering of ethylidyne on the Pd(111) surface by the preadsorption of oxygen: a LEED and HREELS study [J]. Surf.Sci 1991,253(1-3):167-176.
    [85] Ibach,H.; Mullis,D.L. Electron Energy Loss Spectroscopy and Surface Vibrations, Acdemic Press, New York, 1982, 277.
    [86] Lenard,S.; Ibach,H. Decomposition of hydrocarbons on flat and stepped Ni(111) surfaces [J]. Surf.Sci 1979,89(1-3): 425-445.
    [87] Wang,ZeXin; Qiao,Qing-An; Chen,ShouGang; Zhang,WenXia. The adsorption of O and CO on low index Ni planes and stepped nickel surfaces[J] Surf.Sci. 2002,517(1-3):29-42.
    [88] Jacobsen,K.W.; Norskov,J.K. A theoretical study of carbon chemisorption on nickel surfaces [J]. Surf.Sci 1986,166(2-3):539-553.
    [89] Zhang,WenXia; Qiao,Qing-An; Chen,ShouGang; Cai,MeiChao; Wang,ZeXin. Adsorption and vibration of carbon on low index and defect Nickel surface [J] Chinese Journal of Chemistry, 2001,19(4):325-329.
    [90] Thompson,K.A. and Fadley, C.S. X-ray photoelectron diffraction study of oxygen adsorption on the stepped copper surfaces (410) and (211)[J]. Surf.Sci. 1984, 146(1): 281-308.
    [91] G.Witte, J.Braun, D.Nowack, L.Bartels, B.Neu and G.Meyer. Oxygen-induced reconstructions on Cu (211) [J], Phys.Rev.B 1998,58(19):13224-13232.
    [92] Zambelli,T.; Wintterlin, J.; Trost,J. and Ertl,G. Identification of the "Active Sites" of a Surface-Catalyzed Reaction [J]. Science 1996, 273(5282), 1688-1690.
    [93] Hammer, B. Bond Activation at Monatomic Steps: NO Dissociation at Corrugated Ru(0001)[J]. Phys.Rev.Lett. 1999, 83(18):3681-3684.
    [94] Dahl,S.; Logadottir,A.; Egeberg,R.C.; Larsen,J.H.; Chorkendorff,I.; Tornqvist,E. and Norskov,J.K. Role of Steps in N2 Activation on Ru(0001)[J]. Phys.Rev.Lett 1999,83(9):1814-1817.
    [95] Gambardella,P.; Sljivancanin,(Zˇ).; Hammer,B.; Blanc,M.; Kuhnke,K. and K.Kern. Oxygen Dissociation at Pt Steps [J], Phys.Rev.Lett. 2001,87(5):056103-056106.
    [96] Savio, L.; Vattuone,L. and Rocca,M. Role of Steps and of Terrace Width in Gas-Surface Interaction: O2/Ag(410) [J]. Phys.Rev.Lett. 2001, 87(27): 276101- 276104.
    [97] Savio,L.; Vattuone,L. and Rocca,M. Dynamics of the interaction of O2 with stepped and damaged Ag surfaces [J]. J. Phys.: Condens.Matter 2002,14(24): 6065-6080.
    [98] Rocca, M.; Savio,L.; Vattuone,L. Dynamics of the gas–surface interaction in presence of well defined defects [J]. Surf.Sci. 2002, 502–503:331-340.
    [99] Nascente, P. A. P.; Van Hove, M. A.; Somorjai, G. A. Induced ordering of ethylidyne on the Pd(111) surface by the preadsorption of oxygen: a LEED and HREELS study [J]. Surf.Sci 1991, 253(1-3): 167-176.
    [100] Thompson,K.A. and Fadley, C.S. X-ray photoelectron diffraction study of oxygen adsorption on the stepped copper surfaces (410) and (211)[J]. Surf.Sci. 1984,146(1): 281-308.
    [101] G.Witte, J.Braun, D.Nowack, L.Bartels, B.Neu and G.Meyer. Oxygen-induced reconstructions on Cu (211) [J], Phys.Rev.B 1998,58(19): 13224-13232.
    [102] Liu, W.; Wong, k.C.; Zeng, H.C.;Mitchell, K.A.R. What determines the structures formed by oxygen at low index surfaces of copper? [J]. Prog. Surf.Sci. 1995,50(1-4):247-257.
    [103] Algra, A.J.; Suurmeijer, E. and Boers, A.L. The position of oxygen adsorbed at the steps of a copper (410) surface studied with low energy ion scattering [J]. Surf.Sci. 1983,128(2-3):207-223.
    [104] M.Rocca, L.Savio, L.vattuone. Dynamics of the gas–surface interaction in presence of well defined defects [J] Surf.Sci. 2002,502-503:331-340.
    [105] Perdereau, J. and Rhead, G.E. LEED studies of adsorption on vicinal copper surfaces [J]. Surf.Sci. 1971, 24(2):555-571.
    [106] Robinson, I.K.; Vlieg, E. andFerrer, S. Oxygen-induced missing-row reconstruction of Cu(001) and Cu(001)-vicinal surfaces[J]. Phys.Rev.B1990,42(11):6954-6962.
    [107] Walko, D.A. and Robinson, I.K. Structure of Cu(115): Clean surface and its oxygen-induced facets [J]. Phys.Rev.B 1999, 59(23): 15446-15456.
    [108] Vlieg, E.; Driver, S.M.; Goedtkindt, P.; Knight, P.J.; Liu, W.; Lüdecke, J.; Mitchell, K.A.R.; Murashov, V.; Robinson, I.K.; de Vries ,S.A. and Woodruff,D.P. Structure determination of Cu(4 1 0)–O using X-ray diffraction and DFT calculations [J]. Surf.Sci. 2002, 516(1-2):16-32.
    [109]田凤惠,表面吸附动力学模型和动力学行为的理论研究济南:山东师范大学,2003.
    [1] Wendy A. B., David A. K. NO Chemisorption and Reactions on Metal Surfaces: A New Perspective [J], J. Phys. Chem. B, 2000, 104(12):2578-2595.
    [2] W.F. Egelhoff, Jr., In: The Chemical Physics of Solid Surfaces and Heterogenous Catalysis, Eds. D.A, King and D.Woodruff .Elsevier, Amsterdam, 1982:397.
    [3] Thomas G E and Wienberg W H. Adsorption and Dissociation of Nitric Oxide on the Ru(001) Surface [J] Phys. Rev. Lett. 1978, 41(17):1181-1184.
    [4] Schwalke U and Weinberg W H. Summary Abstract: Nitric oxide adsorption on Ru(001) at 78 and 120 K: Temperature dependence on the bonding geometry [J], J. Vac. Sci. Technol. A, 1987, 5(4):459-460.
    [5] Neyman K M, R¨osch N, Kostov K L, Jacob P and Menzel D Structural features of the NO/Ru(001) adsorption complexes: A linear combination of Gaussian‐type orbitals local density functional model cluster analysis of high‐resolution electron energy loss spectroscopy data [J]J. Chem. Phys. 1994, 100(3): 2310-2321.
    [6] K.L. Kostov, p. Jakob , D. Menzel. Interactions of NO in different binding states with coadsorbed CO on Ru (001) [J], Surf. Sci., 1995 , 331-333 ,11-17.
    [7] P. Jakob, M. Sticher, D. Menzel. The adsorption of NO on Ru(001) and on O(2×1)/Ru(001) revisited [J]. Surf. Sci., 1997, 370(1):L185-L192.
    [8] Over H, Crystallographic study of interaction between adspecies on metal surfaces [J] Prog. Surf. Sci. 1998, 58(4):249-376.
    [9] Stichler M and Menzel D. The geometry of the saturated (2×2)-NO adlayer on Ru(001): a structure with three different sites [J], Surf. Sci. 1997, 391(1-3): 47-58.
    [10] M. Staufer, U. Birkenheuer, T. Belling, M. Stichler, et.al. Simulations of crystal growth from Lennard-Jones melt: Detailed measurements of the interface structure [J]., J. Chem. Phys., 1999, 111(10),4704-4703.
    [11] M. Stichler, C.Keller ,C. Heske , M. Staufer, U. Birkenheuer,N.Ro¨sch, W. Wurth, D.Menzel. X-ray emission spectroscopy of NO adsorbates on Ru(001) [J], Surf. Sci. 2000, 448(2-3), 164–178.
    [12] Esch F, Ladas S, Kennou S, Siokou A and Imbihl R. Identification of different surface species of NO adsorbed on Ru(0001) with NEXAFS [J]. Surf. Sci. 1996, 355(1-3), L253-L258.
    [13] Marek Gajdoˇs, J¨urgen Hafner and Andreas Eichler. Ab initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorption [J], J. Phys.: Condens. Matter 2006, 18(1): 13–40.
    [14] Marc T. M. Koper Rutger A. van Santen. Sally A. Wasileski and Michael J. Weaver. Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces [J]. J. Chem. Phys., 2000, 113(10):4329-4344.
    [15] B. Hammer. Adsorption, diffusion, and dissociation of NO, N and O on flat and stepped Ru(0001) [J]. Surf. Sci., 2000, 459(3), 323–348.
    [16]张寒洁,颜朝军,李海洋,何丕模,鲍世宁,汪健,徐纯一,徐亚伯. NO在清洁和Cs覆盖的Ru(100)表面上吸附的热脱附谱[J],物理学报,2000,49,57.
    [17] J. Gu, Y.Y. Yeo, L. Mao 1, D.A. King. NO adsorption and dissociation on Co{1010} [J], Surf. Sci., 2000, 464(2-3):68–82.
    [18] Zhao Yu Diao, Ling Li Han, Ze Xin Wang. The adsorption and dissociation of O2 on Cu low-index surfaces [J], J. Phys. Chem. B 2005, 109, 5739-5745.
    [19] Wang Z X,Qiao Q A,Chen S G, et alThe adsorption of O and CO on low index Ni planes and stepped nickel surfaces. [J] Surf Sci, 2002, 517(1-3):29-42.
    [20] Wang Zexin, Pang Xuehui, Wang Rui. The dynamic study of O2 adsorption and dissociation on Pd low-index surfaces [J], J. Phys. Chem. A,2004, 108(25): 5424-5430.
    [21] Huber G A,; Herzberg G.. Mol.Spect.Mol.Struct Iv. D Van Nostcand [M]. New York: Reinhild, 1979.
    [22]刁兆玉,庞雪辉,王泽新,郝策原子氧在Ru低指数面及(11-21)、(11-21)台阶面上的吸附[J]化学学报, 2005, Vol.63. (17): 1581-1586.
    [23] [2] Yates, J. T.; Jr. Chemisorption on surfaces—an historical look at a representative adsorbate: carbon monoxide [J]. Surf. Sci. 1994, 299-300, 731-741.
    [24] Hideo Orita, Naotsugu Itoh, Yasuji Inada. A comparison of CO adsorption on Pt(2 1 1), Ni(2 1 1), and Pd(2 1 1) surfaces using density functional theory [J]. Surf. Sci. 2004, 571(1-3): 161-172.
    [25] Markus Lischka, Christian Mosch, Axel Grob. CO and hydrogen adsorption on Pd(2 1 0) [J]. Surf. Sci. 2004, 570(3): 227-236.
    [26] Conrad. H.; Ertl. G.; Koch. J.; Latta. E. E. Adsorption of CO on Pd single crystalsurfaces [J]. Surf. Sci. 1974, 43(2):462-480.
    [27] Behm. R. J. Vorlesung Oberflachenchemie-7.
    [28] Schilbe. P.; Farias. D.; Rieder. K. H. An HREELS study of CO adsorption on Pd(311) [J]. Chem. Phys. Lett. 1997, 281(4-6):366-371.
    [29] N. Sheppard.; T. T. Nguyen. Advances in Infrared and Raman Spectroscopy [M] Heyden, London 1978, 5, 67-148.
    [30] Ramsier. R.D.; Lee, K.W.; Yates, Jr. J. T. CO adsorption on stepped Pd (112): studies by thermal and electron stimulated desorption[J]. Surf. Sci. 1995, 322(1-3), 243-255.
    [31] Hammer, B. The NO+CO Reaction Catalyzed by Flat, Stepped, and Edged Pd Surfaces [J] J.Catal. 2001, 199(2):171-176.
    [32] Wang, Z. X; .Jia, X. F.; Tian, F. H.; Chen, S. G. The Study of Microdynamics for an Oxygen Atom Adsorbing and Diffusing on Pd low-index Surfaces and (311) stepped Surface [J] Chin. J. Chem. 2004, 22(2): 152-158.
    [33] Diao, Zh. Y; Han, L. L.; Wang, Z. X.; Dong, Ch. Ch.; The adsorption and dissociation of O2 on Cu low-index surfaces [J] J. Phys. Chem. B 2005,109:5739-5745.
    [34]张积树,张文霞,王泽新.氢原子在钯低指数表面上的吸附和扩散[J].物理化学学报,1996,12 (9):773-780.
    [35] Wang, Z. X; .Jia, X. F.; Wang, R. The dynamic study of O2 adsorption and dissociation on Pd low-index surfaces [J]. J. Phys. Chem. A. 2004, 108(25): 5424-5430.
    [36] P.Hu; D.A.King; S.Crampin; M.H.Lee; M.C.Payne. Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110} [J]. Chem.Phys.Lett. 1994, 230(6):501-506.
    [37] D.Loffreda; D.Simon; P.Sautet. Dependence of stretching frequency on surface coverage and adsorbate–adsorbate interactions: a density-functional theory approach of CO on Pd (111) [J]. Surf. Sci. 1999, 425(1): 68-80.
    [38] K.Haroliina; P.Pirila; K.Laasonen.CO and NO adsorption and co-adsorption on the Pd(1 1 1) surface [J]. Surf. Sci. 2001, 489(1-3):72-82.
    [39] Svensson, K.; Ruckardsson, I.; Nyberg, C.; Andersson, S. Step site adsorption and ordering of CO on Ni(510) and Pd(510) [J]. Surf. Sci. 1996, 366(1):140-148.
    [40]张静,原子、分子在金属表面上的微观动力学研究济南:山东师范大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700