金属基、硼基一维微纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维微纳米材料是指在空间有两维限域并处于微/纳米尺度的材料,包括微纳米级的管、线、棒、带及同轴微纳米电缆等。这类材料因其在介观物理领域及构造纳米器件方面独特的应用而受到国内外许多研究小组的广泛关注。由于一维体系是可用于有效的电子输运和光激发的最小的微结构,被认为是纳米级装置的功能和集成的关键所在,因此,如何合理控制材料的定向生长,进而实现对其尺寸、维度、组成、晶体结构乃至物性的调控,对于深入研究结构与物性的关联、并最终实现按照人们的意愿设计合成功能材料以及开发和应用纳米器件有着重要的意义。本论文在金属基和硼基一维微纳米材料的合成新方法及形成机制、所得新型微纳米材料的功能性等方面进行了有益的探索。
     发展了以直链淀粉为模板和还原剂的铂粒子组装一维纳米结构的水热制备新技术,对其组成、结构及铂纳米粒子的组装机理进行了探讨,利用电化学循环伏安技术(CV)和微分脉冲技术(DPV)研究了铂纳米粒子一维组装修饰的玻碳电极在多巴胺(DA)和抗坏血酸(AA)同时检测方面的应用,并与普通裸玻碳电极进行了比较,结果表明,这两种物质在裸玻碳电极上的氧化峰完全重叠而难以辨别,而在纳米铂修饰电极上却能够很清晰地表现出两个完全分开的氧化峰;以二价铜盐和抗坏血酸为原料,发展了无模板、无表面活性剂条件下制备铜纳米线的水热合成新方法,对其组成和晶体结构进行了表征,通过对铜纳米线生长过程的研究提出了选定条件下铜纳米线的生长模式。
     金属磷酸盐是一类集生物相容和可降解性、高效催化性、良好顺/反磁性能等多种优良性能于一身的功能性材料,但由于其本身的脆性较高,限制了它们在实际中的应用,针对这一不足,发展了以抗坏血酸和淀粉为包覆物碳源,一步法制备以金属磷酸盐为芯、含碳化合物为壳的磷酸铁/碳纳米电缆和磷酸钴/碳纳米电缆的水热合成技术,对其组成、形貌和结构进行了表征,通过对纳米电缆制备过程的跟踪提出了选定条件下金属磷酸盐/碳纳米电缆的生长模式,系统地研究了各种反应条件对产物形貌、尺寸和结构的影响,找到了获得形貌、尺寸均一的金属磷酸盐/碳纳米电缆的最佳制备条件。
     硼酸是新近为人们所发现的一种具有优良润滑性能的新型固体润滑剂,有关其一维结构的制备方法和性能研究鲜有报道,本研究建立了一种极其简易的利用硼砂水解制备超长硼酸微米纤维的新方法,对其组成、结构和生长机理进行了探讨,系统地研究了各种反应条件对硼酸纤维形貌的影响,在原子力显微镜(AFM)轻敲模式下研究了硼酸纤维的表面粗糙状态,利用原子力/横向力显微镜(AFM/LFM)接触模式下获得的摩擦力图像和力——距离曲线对其微摩擦性能进行了初步研究,并将其与另一种传统的固体润滑剂——云母——的微摩擦性能进行了比较。
One-dimensional (1D) micro/nanostructures include micro/nanowires,micro/nanotubes, micro/nanobelts and coaxial micro/nanocables, whose lateraldimensions fall anywhere in the range of micro/nanometers. They have attractedcomprehensive attention due to their unique application in mesoscopic physics and thefabrication of nanodevices. Being the minimum units that can be used in effectiveelectron transportation and photons excitation, 1D nanostructures are considered as thekey of the assembly and functionalization of nanodevices. Consequently, how toprecisely control the anisotropic growth in nanoscale and further to realize theregulation of their sizes, dimensinalities, compositions, crystal structures and even theproperties may serve as a powerful tool for the research of the relationship between thestructures and properties of materials and may have signality in the exploitation offunctional materials and nanodevices. In this dissertation, valuable explorations havebeen carried out on the synthesis strategy of metal-based and boron-basedmicro/nanomaterials as well as their formation mechanisms and the functionalities ofas-prepared 1D micro/nanostructures.
     1D assemblies of Pt nanoparticles have been synthesized via a simplehydrothermal route using soluble starch as both template and reducing agent. Theformation mechanism of the product was studied in details. The electrochemicalbehaviors of dopamine (DA) and ascorbic acid (AA) on the preparedone-dimensionally assembled Pt nanoparticles modified glassy carbon electrode werestudied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV)techniques and showed satisfactory results for the simultaneous determination of DAand AA by resolving the overlapping voltammetric responses of DA and AA into twowell-defined voltammetric peaks. Ultralong copper submicron wires has been fabricated by a facile hydrothermal route under templateless and surfactantlessconditions. Vitamin C served as both the reductant and capping agent that can directthe growth of copper submicron wires. The crystallinity, purity, morphology, andstructure features of copper submicron wires were investigated and the growth mode ofthe copper submicron wires was proposed based on the tracking observation of thegrowth process.
     Metal-phosphates have mainly been of interest due to their specificbiocompatibility and proper bio-degradation, catalytic properties, and excellenttrans/vis magnetic properties. However, their use is limited by their brittleness anddifficulty in reshaping post-fabrication. One method of overcoming this disadvantageis to incorporate the phosphates within a composite material, combining themechanical strength of glass with the pliability of a plastics component. In our study,uniform metal-phosphates/C coaxial nanocables with iron-phosphates (FePOs)nanowires and cobalt-phosphates (CoPOs) as cores and carbonaceous matter as shellswere synthesized via a one-step hydrothermal method using ascorbic acid and/orsoluble starch as carbon source. Phase, composition and structure characterizationwere carried out on the products and the influence of the reactant content, reactiontemperature, and reaction time on the formation of the nanocables was investigated.The formation mechanism of the nanocables was studied by monitoring the reactionprocess in details.
     Boric acid has been recently discovered to be a new type of solid lubricant thatoffers extremely low friction efficient. By far, few reports on the synthesis andmicrotribological investigation of 1D boric acid nanostructures can be found in theliterature. Herein, an extremely facile synthesis route to ultralong boric acid submicronfibers was developed via the hydrolysis of borax. Phase, composition and structurecharacterization were carried out on the products. The formation mechanism of 1Dboric acid submicron structures was studied in details. Surface geometry of the boricacid submicron fibers was characterized by AFM in tapping mode and the lubricitywas investigated in comparison with the conventional solid lubricant mica by frictionimages and force-calibration curves using AFM/LFM in contact mode.
引文
[1] Nalwa H. S., Handbook of nanostructured materials and nanotechnology, New York: Academic Press, 2000. 5-7
    [2] Shalaev V. M., Moskovits M., Nanostructured materials: Clusters, composites, and thin films, Washington DC: American Chemical Society, 1997. 1-6
    [3] Edelstein A. S., Cammarata R. C., Nanomaterials: Synthesis, properties, and applications, Philadelphia PA: Institute of Physics, 1996.23-30
    [4] 张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001.16-19
    [5] 张志煜,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2000.9-10
    [6] Birringer R.,Gleiter H..Klein H.P.,et.al,Synthesis of n-metals,Phys.Lett.,1984, 102A(8):365-369
    [7] Zhu X., Birringer R., Herr U., et. al, X-ray diffraction studies of the structure of nanometer-sized crystalline materials, Phys. Rev. B, 1987, 35(17): 9085-9090
    [8] Gleiter H., Nanometer-sized microstructures, Mat. Res. Soc. Symp. Proc., 1991, 206: 466-473
    [9] Stem E. A., Siegel R. W., Newville M., et. al, Are nanophase grain boundaries anomalous?, Phys. Rev. Lea., 1995, 75(21): 3874-3877
    [10] 平德海,纳米材料结构研究[博士论文],中国科学院金属研究所,1994
    [11] Alivisatos A. P., Barbara P. E, Castleman A. W., et. al, From molecules to materials: Current trends and guture directions, Adv. Mater., 1998, 10(16): 1297-1336
    [12] Thiaville A., Miltat J., Small is beautiful, Science, 1999, 284(5422): 1939-1940
    [13] 朱静,纳米材料与器件,北京:清华大学出版社,2003.78-80
    [14] Klein D. L., Roth R., Lim A. K. L., et. al, A single-electron transistor made from a cadmium selenide nanocrystal, Nature, 1997, 389(16): 699-701
    [15] Alivisatos A. P., Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem., 1996, 100(31): 13226-13239
    [16] Alivisatos A. P., Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, 271(5251): 933-937
    [17] Pool R., The smallest chemical plants, Science, 1994, 263(5154): 1698-1699
    [18] Matijevic E., Monodispersed metal (hydrous) oxides-a fascinating field of colloid science, Acc. Chem. Res., 1981, 14(1): 22-29
    [19] Hu J. T., Li L. S., Alivisatos A. P., et. al, Linearly polarized emission from colloidal semiconductor quantum rods, Science, 2001, 292(5524): 2060-2063
    [20] Hu J. T., Odom T. W., Lieber C. M., Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes, Acc. Chem. Res., 1999, 32(5): 435-445
    [21] Xia Y. N., Yang P. D., Sun Y. G., et. al, One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15(5): 353-389
    [22] Kobo R., Electronic properties of metallic fine particles, J. Phys. Soc. of Japan, 1962, 17(5): 975-986
    [23] Zhang Z. K., Cui Z. L., Chen K. Z., Structure ofnano-conductive fibers, Chinese Science Bulletin, 1997, 42(18): 1535-1538
    [24] Zheng W. P., Dai Z. R., Wang Z. L., Nanobelts of semiconducting oxides, Science, 2001, 291(5510): 1947-1949
    [25] 董亚杰,李亚栋,一维纳米材料的合成、组装与器件,科学通报,2002,47(9):641-649
    [26] 张志焜,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2000.67-82
    [27] Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354(6348): 56-58
    [28] Fan S. S., Chapline M. G., Franklin N. R., et. al, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 1999, 283(5401): 512-514
    [29] Liu L., Fan S. S., Isotope labeling of carbon nanotubes and a formation of ~(12)C-~(13)C nanotube junctions, J. Am. Chem. Soc., 2001, 123(46): 11502-11503
    [30] Jiang K. L., Li Q. Q., Fan S. S., Nanotechnology: Spinning continuous carbon nanotube yams-Carbon nanotubes weave their way into a range of imaginative macroscopic applications, Nature, 2002, 419(6909): 801-801
    [31] Dai H. J., Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res., 2002, 35(12): 1035-1044
    [32] Ouyang M., Huang J. L., Lieber C. M., Fundamental electronic properties and applications of single-walled carbon nanotubes, Acc. Chem. Res., 2002, 35(12): 1018-1025
    [33] Bethune D. S., Kiang C. H., Devires M. S., et. al, Cobalt-catalysed growth of carbon nanotubes with single-atomic layer walls, Nature, 1993, 363(6430): 605-607
    [34] Iijima S., Ichihashi T., Single-wall carbon nanotubes of 1-nm diameter, Nature, 1993, 363(6430): 603-605
    [35] Thess A., Lee R., Nikolaev P., et. al, Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273(5274): 483-487
    [36] 刘文成,蔡伟,孟祥龙,准一维纳米材料的研究现状,功能材料,2006,37(4):515-523
    [37] Sepold G, Stephen A., Metev S., Influence of UV-laser radiation on the synthesis of DLC films by ECR-plasma-CVD, Diam. Relat. Mater., 1999, 8(8-9): 1677-1681
    [38] Zhang H. Z., Yu D. P., Ding Y., et. al, Dependence of the silicon nanowire diameter on ambient pressure, Appl. Phys. Lett., 1998, 72(23): 3396-3398
    [39] Pan Z. W., Dai Z. R., Wang Z. L., Nanobelts of semiconducting oxides, Science, 2001, 291(5510): 1947-1949
    [40] Li Q., Wang C. R., Fabrication of wurtzite ZnS nanobelts via simple thermal evaporation, Appl. Phys. Lett., 2003, 83(2): 359-361
    [41] Wang Y. W., Zhang L. D., Liang C. H., et. al, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires, Chem. Phys. Lett., 2002, 357(4): 314-318
    [42] Yuan H. J., Xie S. S., Liu D. F., et. al, Formation of ZnS nanostructures by a simple way of thermal evaporation, J. Cryst. Growth, 2003,258(3): 225-231
    [43] Brenner S. S., Sears G. W., Mechanisim of whisker growth. 3. Nature of growth sites, Acta Metallurgica, 1956,4(3): 268-270
    [44] Wagner R. S., Ellis W. C, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 1964,4(5): 89-90
    [45] Yu D. P., Xing Y. J., Hang Q. L., et. al, Controlled growth of oriented amorphous silicon nanowires via solid- liquid- solid (SLS) mechanism, Physica E, 2001, 9(2): 305-309
    [46] Lee S. S., Wang N., Lee C. S., Semiconductor nanowires: Synthesis, structure and properties, Mater. Sci. Eng. A-Struct., 2000, 286(1): 16-23
    [47] Beltran A., Andres J., Longo E., et. al, Thermodynamic argument about SnO_2 nanoribbon growth, Appl. Phys. Lett., 2003, 83(4): 635-637
    [48] Yu H., Duan X. F., Cui Y, et. al, Logic gates and computation from assembled nanowire building blocks, Science, 2001, 294(5545): 1313-1317
    [49] Kong J., Franklin N. R., Dai H. J., Nanotube molecular wires as chemical sensors, Science, 2000,287(5453): 622-625
    [50] Comini E., Faglia G, Sberveglieri G, et. al, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 2002, 81(10): 1869-1871
    [51] Li C, Zhang D. H., Liu X. L., et. al, In_2O_3 nanowires as chemical sensors, Appl. Phys. Lett., 2003, 82(10): 1613-1615
    [52] Huang M. H., Room-temperature ultraviolet nanowire nanolasers, Science, 2001, 292(5523): 1897-1899
    [53] Kouklin N., Menon L., Wong A. Z., et. al, Giant photoresistivity and optically controlled switching in self-assembled nanowires, Appl. Phys. Lett., 2001., 79(26): 4423-4425
    [54] 郦剑,李昆仑,倪兆荣,等,纳米线研究进展,材料科学与工程学报,2005,23(2):290-292
    [55] Kruyt H. R., van Arkel A. E., Die ausflockungsgeschwindigkeit des selensols, Kolloid-Z, 1928, 32:29-36
    [56] Mayers B., Xia Y. N., One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach, J. Mater. Chem., 2002, 12(6): 1875-1881
    [57] Mayers B., Xia Y. N., Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds, Adv. Mater., 2002, 14(4): 279-282
    [58] Mo M., Zeng J., Liu X., et. al, Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes, Adv. Mater., 2002, 14(22): 1658-1662
    [59] Wu Y., Yang P., Direct observation of vapor-liquid-solid nanowire growth, J. Am. Chem. Soc., 2001, 123(13): 3165-3166
    [60] Trentler T. J., Hickman K. M., Geol S. C., et. al, Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors: An analogy to vapor-liquid-solid growth, Science, 1995, 270(5243): 1791-1794
    [61] Sun Y. G., Gates B., Mayers B., et. al, Crystalline silver nanowires by soft solution processing, Nano Lett., 2002, 2(2): 165-168
    [62] Sun Y. G., Yin Y. D., Mayers B., et. al, Uniform Silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seed and poly(vinyl pyrrolidone), Chem. Mater., 2002, 14(11): 4735-4745
    [63] Alivisatos A. P., Johnsson K. P., Peng X. G., et. al, Organization of "nanocrystal molecules" using DNA, Nature, 1996, 382(6592): 609-611
    [64] Yin Y. D., Xia Y. N., Self-assembly of spherical colloids into helical chains with well-controlled handedness, J. Am. Chem. Soc., 2003, 125(8): 2048-2049
    [65] Yin Y. D., Lu Y., Gates B., et. al, Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures, J. Am. Chem. Soc., 2001, 123(36): 8718-8729
    [66] Yin Y. D., Lu Y., Xia Y. N., Assembly of monodispersed spherical colloids into one-dimensional aggregates characterized by well-controlled structures and lengths, J. Mater. Chem., 2001, 11(4): 987-989
    [67] Tang Z. Y., Kotov N. A., One-dimensional assemblies of nanoparticles: Preparation, properties, and promise, Adv. Mater., 2005, 17(8): 951-962
    [68] Hornyak G. L., Kroll M., Pugin R., et. al, Gold clusters and colloids in alumina nanotubes, Chem. Eur. J., 1997, 3(12): 1951-1956
    [69] Marinakos S. M., Brousseau L. C., Jones A., et. al, Template synthesis of one-dimensional Au, Au-poly(pyrrole), and poly(pyrrole) nanoparticle arrays, Chem. Mater., 1998, 10(5): 1214-1219
    [70] Minko S., Kiriy A., Gorodyska G., et. al, Mineralization of single flexible polyelectrolyte molecules, J. Am. Chem. Soc., 2002, 124(34): 10192-10197
    [71] Braun E., Eichen Y., Sivan U., et. al, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 1998, 391(6669): 775-778
    [72] Taylor G. F., A method of drawing metallic filaments and a discussion of their properties and uses, Phys. Rev., 1924, 23(5): 655-660
    [73] Xia Y. N., Kim E., Zhao X. M., et. al, Complex optical surfaces formed by replica molding against elastomenc masters, Science, 1996, 273 (5273): 347-349
    [74] Qin D., Xia Y. N., Black A. J., et. al, Photolithography with transparent reflective photomasks, J. Vac. Sci. Technol. B, 1998, 16 (1): 98-103
    [75] Morin S., Lachenwitzer A., Magnussen M., et. al, Potential-controlled step flow to 3D step decoration transition: Ni electro-deposition on Ag (111), Phys.Rev. Lett., 1999, 83(24): 5066-5069
    [76] Zach M. P., NG K. H., Penner R. M., et. al, Molybdenum nanowires by electro-deposition, Science, 2000, 290(5499): 2120-2123
    [77] Wakter E. C., Murray B. J., Favier F., et. al, Noble and coinage metal nanowires by electrochemical step edge decoration, J. Phys. Chem. B, 2002, 106(44): 11407-11411
    [78] Li Y. D., Wang J. W., Deng Z. X., et. al, Bismuth nanotube: A rational low-temperature synthetic route, J. Am. Chem. Soc., 2001, 123(40): 9904-9905
    [79] Li Y. D., Li X. L., Deng Z. X., et. al, From surfactant inorganic mesostructures to tungsten nanowires, Angew Chem., 2002, 114(2): 343-345
    [80] Wang J. W., Li Y. D., Rational synthesis of metal nanotubes and nanowires from lamellar structures, Adv. Mater., 2003, 15(5): 445-447
    [81] 张立德,准一维纳米材料家族的新成员——同轴纳米电缆,中国科学院院刊,1999,5:350-352
    [82] Suenaga K., Colliex C., Demoncy N., et. al, Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon, Science, 1997, 278(5338): 653-655
    [83] Zhan J., Bando Y., Hu J., et. al, Synthesis and field-emission properties of Ga_2O_3-C nanocables, Chem. Mater., 2004, 16(24): 5158-5161
    [84] Liang X. R., Tan S. S., Tang Z. Y., et. al, Investigation of transversal conductance in semiconductor CdTe nanowires with and without a coaxial silica shell, Langmuir, 2004, 20(4): 1016-1020
    [85] Yu S. H., Cui X. J., Li L. L., et. al, From starch to metal/carbon hybrid nanostructures: Hydrothermal metal-catalyzed carbonization, Adv. Mater., 2004, 16(18): 1636-1640
    [86] Li Q., Wang C. R., One-step fabrication of uniform Si-core/CdSe-sheath nanocables, J. Am. Chem. Soc., 2003, 125(31): 9892-9893
    [87] 宋国君,陈东,李建江,等,同轴纳米电缆研究进展,材料导报,2006,20(11):1-5
    [88] Ku J. R., Vidu R., Talroze R., et. al, Fabrication of nanocables by electrochemical deposition inside metal nanotubes, J. Am. Chem. Soc., 2004, 126(46): 15022-15023
    [89] Yang Y. W., Li L., Huang X. H., et. al, Fabrication of InSb-core/alumina-sheath nanocables, Mater. Lett., 2006, 60(4): 569-571
    [90] Xi Y. Y., Zhou J. Z., Guo H. H., et. al, Enhanced photoluminescence in core-sheath CdS-PANI coaxial nanocables: A charge transfer mechanism. Chem. Phys. Lett., 2005, 412(1): 60-64
    [91] Jang J., Lim B., Lee J., et. al, Fabrication of a novel polypyrrole/polymethylmethacrylate coaxialnanocable using mesoporous silica as a nanoreactor, Chem. Commun., 2001, (1): 83-84
    [92] Sloan J., Hammer J., Zwiefka-Sibley M., et. al, The opening and filling of single walled carbon nanotubes (SWTs), Chem. Commun., 1998, (3): 347-348
    [93] Zhan J., Bando Y., Hu J., Synthesis and field-emission properties of Ga_2O_3-C nanocables, Chem. Mater., 2004, 16 (24): 5158-5161
    [94] 张立德,等,纳米材料和纳米结构.北京:化学工业出版社,2005.1126
    [95] Yang Z. X., Wu Y. J., Zhu F. Z., et. al, Helical nanocables with SiC core and SiO_2 shell, Physica E, 2005, 25(4): 395-398
    [96] Yin Y. D., Yu L., et. al, Sun Y. G., Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica, Nano Lett., 2002, 2(4): 427-430
    [97] Stober W., Fink A., Bohn E. J., Controlled growth of mono-disperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, 26(1): 62-69
    [98] Zhang Y., Suenaga K., Colliex C., et. al, Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nit ride and carbon, Science, 1998, 281(5379): 973-975
    [99] Seung Y. B., Hee W. S., Single- and double-shelled coaxial nanocables of GaP with silicon oxide and carbon, J. Phys. Chem. B, 2005, 109(17): 8496-8502
    [100] 薛茂权,熊党生,闫杰,纳米润滑材料的摩擦学研究,机械工程材料,2004,28(3):47-50
    [101] Hisakado T, Tsukizoo T, Yoshikawa H., Phase transformation of nanoparicles, Lubric Tech., 1983, 105: 245-248
    [102] 夏延秋,金寿日,孙维明,等,纳米级金属粉对润滑油摩擦磨损性能的影响,润滑与密封,1999,(3):33-34
    [103] 陈爽,李楠,刘维民,DDP修饰PbO纳米微粒的摩擦学性能研究,吉林化工学院学报,2002,19(3):4-6
    [104] 陈爽,刘维民,修饰ZnS纳米粒子的减摩抗磨性能研究,润滑与密封,2003,(1):18-19
    [105] 欧忠文,徐滨士,丁培道,等,纳米润滑材料应用研究进展,材料导报,2000,14(8):28-30
    [106] 何春霞,史丽萍,沈惠平,纳米Al_2O_3填充聚四氟乙烯摩擦磨损性能的研究,摩擦学学报,2000,20(2):153-155
    [107] 张平余,薛群基,张治军,等,WS_2纳米微粒LB膜的摩擦学性能研究,摩擦学学报,1996,16(3):272-276
    [108] Zhang P. Y., Xue Q. J., Du Z. L., et.al, The tribological behavior of LB films of fatty acids and nanoparticles, Wear, 2000, 242(1): 147-151
    [109] Erdemir A., Tribological properties of boric acid and boric acid forming surface, Lubr. Eng., 1991, 47(3): 168-178
    [110] Erdemir A., Erck R. A., Robles J., Relationship of hertzian contact pressure to friction behavior of self-lubricating acid films, Surf. Coat. Technol., 1991, 49(2): 435-438
    [111] Erdemir A., Fenske G. R., Erck R. A., et. al, Ion-beam-assisted deposition of silver on zirconia ceramics for improved tribological behavior, Lubr. Eng., 1991, 47(3): 179-184
    [112] Erdemir A., Fenske G. R., Erck R. A., et. al, Proc. Jpn. Int. Tribol. Conf., Nagoya, 1990 (Japanese Soc. Tribologists, Nagoya 1990), 1797
    [113] 张余平,杨生荣,原子力显微镜在纳米摩擦学中的应用,现代仪器,2000,(6):17-19
    [114] 白春礼,田芳,罗克,扫描力显微术,北京:科学出版社,2000.138
    [115] Duan X. F., Huang Y., Cui Y., et. al, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devicesm, Nature, 2001,409(6816): 66-69
    [116] Cui Y., Lieber C. M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 2001, 291 (5505): 851-853
    [117] Huang Y., Duan X. F., Wei Q. Q., et. al, Directed assembly of one-dimensional nanostructures into functional networks, Science, 2001, 291(5504): 630-633
    [118] Service R. F., Molecules get wired, Science, 2001, 294(5551): 2442-244
    [119] Morales A. M., Lieber C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279(5348): 208-211
    [120] Duan X. F., Lieber C. M., General synthesis of compound semiconductor nanowires, Adv. Mater., 2000, 12(4): 298-302
    [121] Huang M. H., Wu Y. Y., Feick H., et. al, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater., 2001, 13(2): 113-116
    [122] Huang M. H., Mao S., Feick H., et. al, Room-temperature ultraviolet nanowirenanolasers, Science, 2001,292(5523): 1897-1899
    [123] Goldberger J., He R. R., Zhang Y. F., et. al, Single-crystal gallium nitride nanotubes, Nature, 2003, 422(6816): 599-602
    [124] Fan R., Wu Y. Y., Li Y. D., et. al, Fabrication of silica nanotube arrays from vertical silicon nanowire templates, J. Am. Chem. Soc., 2003, 125(18): 5254-5255
    [125] Wu Y. Y., Fan R., Yang P. D., Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires, Nano Lett., 2002, 2(2): 83-86
    [126] 刁鹏,梅岗,张琦,纳米粒子组装体系的研究进展,化学研究与应用,2005,(5):577-581
    [127] Tang Z. Y., Kotov N. A., One-dimensional assemblies of nanoparticles: Preparation, properties, and promise, Adv. Mater., 2005, 17(8): 951-961
    [128] Liu C. Y., Hu J. F., Hu J. M., et. al, Electrocatalytic Oxidation of dopamine at a nanocuprous oxide-nethylene blue composite glassy carbon electrode, Electroanalysis, 2006, 18(5): 478-484
    [129] Martin C. R., Kohli P., The emerging field of nanotube biotechnology, Nature Rev. Drug Discov., 2003, 2(1): 29-37
    [130] Xu J. Z., Zhu J. J., Wu Q., et. al, Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes, Chinese J. Chem., 2003, 21(8): 1088-1091
    [131] Jiang L. Y., Liu C. Y., Jiang L. P., et. al, A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid, Anal. Sci., 2004, 20(7): 1055-1059
    [132] Lu G. H., Jiang L. Y., Song F., et. al, Determination of uric acid and norepinephrine by chitosan-multiwall carbon nanotube modified electrode, Electroanalysis, 2005, 17(10): 901-905
    [133] Wang X. L., Kang Z. H., Wang E. B., Preparation, electrochemical property and application in chemically bulk-modified electrode of a hybrid inorganic-organic silicomolybdate nanoparticles, Mater. Lett., 2002, 56(4): 393-396
    [134] Chu D. B., Shen G. X., Zhou X. F., et al., Electrocatalytic activity of nanocrystalline TiO2 film modified Ti electrode, Chem. J. Chin. Univ., 2002, 23(4): 678-681
    [135] Huang J. C, Liu Z. L., Liu X. M., et. al, Platinum nanoparticles from the hydrosilylation reaction: Capping agents, physical characterizations, and electrochemical properties, Langmuir, 2005, 21(2): 699-704
    [136] Cura J. A., Jansson P.-E., Krisman C. R., Amylose is not strictly linear, Starch/Staerke 1995,47(6): 207-209
    [137] Raveendran P., Fu J., Wallen S. L., Completely "green" synthesis and stabilization of metal nanoparticles, J. Am. Chem. Soc., 2003,125(46): 13940-13941
    [138] Penn R. L., Banfield J. F., Imperfect oriented attachment: Dislocation generation in defect-free nanocrystal, Science, 1998, 281(5379): 969-971
    [139] Banfield J. F., Hamers R. J., Geomicrobiology: Interactions between microbes and minerals, vol. 35 of Reviews in Mineralogy, J. F. Banfield and K. H. Nealson, Eds. (Mineralogical Society of America, Washington, DC, 1997), 86-122.
    [140] Selvaraju T., Ramaraj R., Electrochemically deposited nanostructured platinum on nafion coated electrode for sensor applications, J. Electroanal. Chem., 2005, 585(2): 290-300
    [141] Lopez O. L., Smith G, Meltzer C. C, et. al, Dopamine systems in human immunodeficiency virus-associated dementia, Neuropsy. Neuropsy. Be., 1999, 12(3): 184-192
    [142] Kumar S. S., Mathiyarasu J., Phani K. L., Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine, J. Electroanal. Chem., 2005, 578(1): 95-103
    [143] Mark H. B., Atta N., Petticrew K. L., et. al, The electrochemistry of neurotransmitters at conducting organic polymer electrodes: Electroanalysis and analytical applications, Bioelectrochem. Bioenerg., 1995, 38(2): 229-245
    [144] Yang G. J., Xu J. J., Wang K., et. al, Electrocatalytic oxidation of dopamine and ascorbic acid on carbon paste electrode modified with nanosized cobalt phthalocyanine particles: Simultaneous determination in the presence of CTAB, Electroanalysis, 2006, 18(3): 282-290
    [145] Kumar S. S., Mathiyarasu J., Phani K. L. N., Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine, J. Electroanal. Chem., 2005, 578(1): 95-103
    [146] Liu J. C, Raveendran P., Qin G. W., et. al, Self-assembly of β-D glucose-stabilized Pt nanocrystals into nanowirelike structures, Chem. Commun., 2005, (23): 2972-2974
    [147] Wang L., Wang E. K., Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode, Electrochem. Commun., 2004,6(1): 49-54
    [148] Liu S. Q., Ju H. X., Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles, Electroanalysis, 2003,15(18): 1488-1493
    [149] Lisiecki I., Filankembo A., Sach-Kongehl H., K. Eeiss, Pileni M. P., Urban J., Structural investigations of copper nanorods by high-resolution TEM, Phys. Rev. B, 1999, 61(7): 4968-4974
    [150] Tanori J., Pileni M. P., Change in the shape of copper nanoparticles in ordered phases, Adv. Mater. 1995, 7(10): 862-864
    [151] Tanori J., Pileni M. P., Control of the shape of copper metallic particles by using a colloidal system as template, Langmuir, 1997,13(4): 639-646
    [152] Toimil Molares M. E., Buschmann V., Dobrev D., Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Adv. Mater., 2001,13(1): 62-65
    [153] Gao T., Meng G. W, Wang Y. W, Electrochemical synthesis of copper nanowires, J. Phys: Condens. Matter, 2002,14(3): 355-363
    [154] Zhang D. F., Sun L. D., Yin J. L., et. al, Attachment-driven morphology evolvement of rectangular ZnO nanowires, J. Phys. Chem. B, 2005,109(18): 8786-8790
    [155] Davies M. B., Reactions of L-ascorbic acid with transition metal complexes, Polyhedron, 1992,11 (3): 285-321
    [156] Jabs W., Gaube W., Verbindungen der L-Ascorbinsaure mit Metallen. IV: Ligandeigenschaften des Monoanions der L-Ascorbinsaure, C[6]H[7]O[6][-] (Composes metalliques de l'acide L-ascorbique. IV: Proprietes de coordinat du monoanion de l'acide L-ascorbique, C_6H_7O_6) (Compounds of L-ascorbic acid with metals. IV: Ligand properties of the monoanion of L-ascorbic acid, C_6H_7O_6), Z. Anorg. Allg. Chem., 1986, 538(7): 166-176
    [157] Ferrer E. G, Williams P. A. M., Baran E. J., Interaction of the vanadyl(IV) cation with L-ascorbic acid and related systems, Z. Naturforsch B, 1998, 53(2): 256-262
    [158] Cardin C. J., Roy A., Anticancer activity of organometallic compounds. 2. Synthesis and spectroscopic characterization of L-ascorbic-acid complexes of cyclopentadienyltitanium and dialkyltins, Inorg. Chim. Acta, 1985,107(4): L37-L39
    [159] Wang Y. L., Jiang X. C, Herricks T., et. al, Single crystalline nanowires of lead: large-scale synthesis, mechanistic studies, and transport measurements, J. Phys. Chem. B, 2004,108(25): 8631-8640
    [160] Moore P. B., Crystal chemistry of the basic iron phosphates, Am. Mineral., 1970, 55: 135-169
    [161] Marasinghe G. K., Karabulut M., Ray C. S., et. al, Structural features of iron-phosphate glasses, J. Non-Cryst. Solids, 1997, 222: 144-152
    [162] Eds. W. W. Schulz and N. J. Lombardo, Immobilization of high-Level radioactive sludges in iron phosphate glasses, Plenum Publishing Corp., 1998. 379-390
    [163] Marasinghe G. K., Karabulut M., Ray C. S., et. al, Redox characteristics and structural properties of iron phosphate glasses: A potential host matrix for vitrifying of high level nuclear waste, Environment issues and waste management technologies III: Ceramic transactions, 1998, 87: 261
    [164] Mogus-Milankovic A., Day D. E., Santic B., DC conductivity and polarization in iron phosphate glasses, Phys. Chem. Glasses, 1999, 4(2): 69-74
    [165] Mesko M. G., Day D. E., Immobilization of spent nuclear fuel in iron phosphate glass, J. Nuclear Matls., 1999, 273(1): 27-36
    [166] Karabulut M., Marasinghe G. K., Ray C. S., et. al, Local environment of iron and uranium ions in vitrified iron phosphate glasses studied by Fe K and U LIII-edge X-ray absorption fine structure spectroscopy, J. Mater. Res., 2000, 15(9): 1972-1984
    [167] Ahmeda C. A., Collinsb M. P., Lewisa I., et. al, Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, Biomaterials, 2004, 25(16): 3223-3232
    [168] Parsons J., vans M. E, Rudd C. D. et. al, Synthesis and degradation of sodium iron phosphate glasses and their in vitro cell response, J. Biomed. Mater. Res. A, 2004, 71A(2): 283-291
    [169] Sun X. M., Li Y. D., Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew. Chem. Int. Ed., 2004,43(5): 597-601
    [170] Sakaki T., Shibata M., Miki T., et. al, Reaction model of cellulose decomposition in near-critical water and fermentation and fermentation of products, Bioresour. Technol., 1996, 58(2): 197-202
    [171] Wang Q., Li H., Chen L. Q., et. al, Monodispersed hard carbon spherules with uniform nanopores, Carbon, 2001, 39(14): 2211-2214
    [172] Sun X. M., Li Y. D., Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew. Chem. Int. Ed., 2004, 43(5): 597-601
    [173] 孟河,具有开放骨架结构磷酸铁单晶的合成与性能研究,吉林大学博士论文
    [174] Cheetham A. K., FeArey G. R., Loiseau T., Open-framework inorganic materials, Angew. Chem. Int. Ed., 1999, 38(22): 3268-3292
    [175] Peloux C. du, Dolbecq A., Mialane P., et. al, A new family of layered molybdenum(v) cobalto-phosphates built up of [H14(Mo16032)Co16(PO4)24(H20)20]10 wheels, Angew. Chem., 2001, 113(13): 2521-2523
    [176] 朱建华,魏新明,马淑芬,等,硼资源及其加工利用技术进展,现代化工,25(6):26-31
    [177] Li J. W., Wang C., Shang G. Y., et. al, Friction coefficients derived from apparent height variations in contact mode atomic force microscopy images, Langmuir, 1999, 15(22): 7662-7669
    [178] Liu E., Blanpain B., Celis J.-P., Calibration procedures for frictional measurements with a lateral force microscope, Wear, 1996,192(1-2): 141-150
    [179] Labardi M., Allegerini M., Salerno M., et. al, Dynamical friction coefficient maps using a scanning force and friction microscope, Appl. Phys. A, 1994, 59(1): 3-10
    [180] Liu E., Blanpain B., Celis J.-P., et. al, Comparative study between macrotribology and nanotribology, J. Appl. Phys., 1998, 84(9): 4859-4865

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700