SSRF前端挡光元件设计中的若干力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上海同步辐射装置是一台高性能的第三代同步辐射光源,其电子储存环设计能量3.5Gev,仅次于日本的SPring-8、美国的APS和欧洲共同体的ESRF,居世界第四,是我国迄今为止最大的科学研究装置和公共实验平台。挡光元件是光束线前端区处理同步辐射高热负载、为其它元件提供热保护的关键元件。第三代同步具有极高的辐射功率和峰值功率密度,高热负载问题给SSRF前端区设计带来第一、二代光源尚未遇到一系列的困难。
     本文结合作者所在研究组承担的上海同步辐射装置前端高热负载研究项目,围绕前端挡光元件设计中的若干重要力学问题,开展冷却管道对流换热模拟、Glidcop材料热力学性能、前端挡光元件同步辐射循环热负载下疲劳寿命预测等方面的研究,为前端挡光元件的设计及优化提供重要参考。
     对流换热系数和流动阻力是前端挡光元件设计的重要参数,APS、SPring-8等第三代同步辐射装置为了提高管道对流换热系数进行了大量的实验研究。为了降低研究成本、节省研究时间,SSRF采用数值模拟和实验研究相结合的方法研究冷却管道的流体流动和对流换热问题。数值模拟结果表明SSRF弯曲管道的对流换热性能和冷却水流量基本满足前端冷却管道的设计指标;管道的流动阻力主要集中在直角弯曲区域,采用圆弧管道连接可以显著降低管道的流动阻力、提高管道的对流换热性能。为了验证传热数值模拟的正确性,根据牛顿冷却定律设计管道对流换热系数实验测量系统,对流换热系数的实验结果和数值模拟结果吻合良好,说明采用数值方法模拟管道流动和换热是正确可行的。
     第三代同步辐射产生的高热负载会在前端挡光元件表面产生极高的温度和热应力,前端区能否安全、有效发挥作用,与前端区各元件布局是否合理密切相关。本文利用有限元分析得到了各挡光元件在同步辐射热负载作用下的温度和应力场空间的分布,研究了束流漂移对前端挡光元件的最高温度和最大应力的影响。有限元分析结果表明,与前期的竖直倾斜面设计相比,采用水平倾斜面可以降低挡光元件的温度和应力水平,SSRF设计的前端挡光元件可以在300mA储存环流和漂移情况下安全运行。
     为了设计能够承受更高热负载的前端挡光元件,需要得到前端挡光元件的制造材料Glidcop在各种温度情况下的性能参数。本文通过文献调研,得到了Glidcop的比热、热传导系数、热膨胀系数等材料热物性随温度的变化关系。Glidcop的力学性能和材料的形状、尺寸以及热处理工艺相关,本文利用MTS材料测试系统对Glidcop在各种温度下拉伸性能进行了系统的实验研究,得到了材料在不同的温度下的应力应变关系。为了预测前端挡光元件在进入塑性变形后的疲劳寿命,利用MTS材料测试系统对Glidcop的各种温度下的低周疲劳性能进行了实验研究,建立了考虑温度影响的总应变-疲劳寿命关系。
     最后,利用弹塑性有限元方法对APS热疲劳元件在同步辐射循环加卸载下的温度和应力应变进行了详细分析,得到了疲劳元件在循环热负载作用下危险点的应力应变随时间的变化历程。采用多轴低周疲劳的临界面分析方法,分析了挡光元件可能的破坏面以及多种热负载作用下不同预测方法得到的疲劳寿命。研究表明采用基于临界面的多轴疲劳寿命分析方法能够对挡光元件在同步辐射热负载作用下的疲劳寿命进行可靠的预测。对SSRF挡光元件进行疲劳寿命分析表明,SSRF前端元件可以承受400mA束流条件下的同步辐射热负载循环卸载的作用。参照ASME压力容器设计标准,建立了考虑疲劳寿命的新的前端挡光元件设计准则。
Shanghai Synchrotron Radiation Facility(SSRF) is a high performance third-generation of synchrotron radiation light source with an electron storage ring capacity of 3.5Gev,next only to SPring-8 of Japan,APS of USA and ESRF of the European Community.Up to now,SSRF is the biggest scientific platform for science research and technology development in China.The high heat load components on the front end are key components for dealing the high heat load of synchrotron radiation, as well as providing thermal protection to other components.The high heat load problems,resulting from the extremely high radiation power and peak power density in the third generation synchrotron radiation,bring new challenges to the design of SSRF front end that were never encountered in the previous two generations.
     This dissertation is a part of two research projects on the high heat load of the front end we are working for SSRF,it focuses on some major mechanics issues of the high heat load components in the front end,which includes heat transfer coefficient simulation on coolant tube,decreasing heat flux with grazing incidence structure,and establishing new design criteria for high heat load components.
     The heat transfer coefficient and flow resistance characteristics of forced convection in coolant tube are critical parameters to the design of front end components,because they influence significantly on the temperature and thermal stress distribution there.Much experimental investigation for enhancing heat transfer coefficient has been carried out at APS and SPring-8.In order to reduce study cost and time,numerical simulation is employed to assist the study on fluid flow and heat transfer in the coolant tube at SSRF,whose results show that the heat transfer coefficient and coolant water flow capacity can meet the SSRF design criteria,and the flow resistance mainly comes from the orthogonal region.The use of circular connecting tube can significantly reduce the flow resistance and increase the heat transfer coefficient of the coolant tube.In order to verify the results of the numerical simulation,an experimental system that can measure heat transfer coefficient of the tube is designed.The experimental results are in good agreement with numerical results,which implies that the use of numerical simulation of tube heat transfer is correct and feasible.
     The high heat load generated by the third-generation synchrotron radiation device will result in extremely high temperature and thermal stress on the surface of the high heat load components in the front end.The safety and effectiveness of the front end are influenced greatly by its components layout.While studying the temperature and stress field distributions of the synchrotron radiation heat load components,the finite element method(FEM) is used to analyze the influence of beam shift on the highest temperature and maximum stress.FEM results showed that, compared with the preliminary design of vertical grazing incidence,the horizontal grazing incidence design could reduce obviously the temperature and stress level,and the front end component in the current design of SSRF can run safely under a beam current of 300mA.
     In order to design components that can withstand higher heat load,we need to learn the mechanical parameters under various temperatures of the material of the front end components,Glidcop.The temperature dependent variations of several thermal properties of this material,e.g.,heat capacity,heat conduction coefficient and thermal expansion coefficient are obtained through literature study,which reveals that the mechanical properties of Glidcop is related with its shape,size and thermal treatment process,though there is so few literature reports on the stress-strain relationship under high temperature and low cycle fatigue of this material.A material testing system,MTS is employed in this research to carry out systematic study on the tensile properties of Glidcop under various temperatures,and the relationship between the overall strain and fatigue life with temperature influences is established.
     Detailed analysis on the temperature and stress-strain distributions were carried out with elastic-plastic finite element method in this thesis for the thermal-fatigue components used at APS under cycled load-unload synchrotron radiation and the components' temporal evolution of stress and strain was obtained.Besides,the possible destruction surface and fatigue life of the high heat load components under multiple heat loads are predicted with multi-axial low cycle fatigue(LCF) critical plane analysis.The fatigue life analysis on the SSRF high heat load components indicates that these components can be safely subjected to the cycle heat load of the synchrotron radiation under 400mA beam current.By referencing to the ASME design standards of pressure vessels,a new design criteria based on LCF life was established for the front end components.
引文
Alp A(2002).Thermal-Stress Analysis of the High Heat-Load Crotch Absorber at the Aps.2nd International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation(MEDSI 2002),Argonne,IL,USA
    Amano R.1984.Development of a Turbulence near-Wall Model and Its Application to Separated and Reattached Flows[J].Numerical Heat Transfer(ISSN 0149-5720),7.
    Basquin O(1910).The Exponential Law of Endurance Tests.Proc.ASTM,Part Ⅱ.
    Benson C,Trakhtenberg E,Jaski Y,Brajuskovic B,Collins J,Den Hartog P,Erdmann M,Rossi E,Schmidt O,Toter W,Wiemerslage G.2004.Mechanical Design of a Front End for Canted Undulators at the Advanced Photon Source[J].AIP Conference Proceedings,(708):466-469.
    Biasci J C,Chavanne J,Elleaume P,Farvacque L,L.Hardy(2002).Latest Developments at the Esrf Proceedings of EPAC 2002,Paris,France.
    Biasci J C,Plan B,Zhang L.2002.Design and Performance of Esrf High-Power Undulator Front-End Components[J].Journal of Synchrotron Radiation,9(1):44-46.
    Boiler A,Code P.1992.Section Iii,“RuIes for Construction of Nuclear Power Plant Components,”[M],American Society of Mechanical Engineers,New York,NY.
    Brown M,Miller K(1973).A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions.Proceedings of the Institute of Mechanical Engineers.
    Brown M,Miller K.1979.Initiation and Growth of Cracks in Biaxial Fatigue[J].Fatigue & Fracture of Engineering Materials & Structures,1(2):231-246.
    Cheng E,Peng Y,Cerbone R,Fogarty P,Galambos J,Mogahed E,Nelson B,Simnad M,Sviatoslavsky I,Tillack M.1998.Study of a Spherical Tokamak Based Volumetric Neutron Source[J].Fusion Engineering and Design,38(3):219-256.
    Choi M(1990).Crotch Thermal Studies.Accelerator advisory committee meeting,Chicago.
    Choi M,Gonczy J D,Howell J W,Niemann R C(1991).Anl Advanced Photon Source Crotch Absorber Design.Particle Accelerator Conference,1991.Accelerator Science and Technology.,Conference Record of the 1991 IEEE.
    Coffin L.1954.A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal[M].KAPL-853,Knolls Atomic Power Lab.
    Collins J,Conley C,Attig J,Baehl M(2002).Enhanced Heat Transfer Using Wire-Coil Inserts for High-Heat-Load Applications.2nd International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation(MEDSI 2002),Argonne,ILUSA.
    Den Hartog P K,Decker G A,Emery L J(2003).Dual Canted Undulators at the Advanced Photon Source.Particle Accelerator Conference,2003.PAC 2003.Proceedings of the.
    Durbin P.2006.A Reynolds Stress Model for near-Wall Turbulence[J].Journal of Fluid Mechanics Digital Archive,249:465-498.
    Fatemi A,Socie D.1988.A Critical Plane Approach to Multiaxial Fatigue Damage Including out-of-Phase Loading[J].Fatigue & Fracture of Engineering Materials & Structures,11(3):149-165.
    Forsyth P(1961).A Two-Stage Process of Crack Growth.Proceedings of the Symposium on Crack Propagation,Cranfield,England.
    Gnielinski V.1976.New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow[J].Int.Chem.Eng,16(2):359-368.
    Hahn T A.1970.Thermal Expansion of Copper from 20 to 800 K---Standard Reference Material 736[J].Journal of Applied Physics,41(13):5096-5101.
    Han C,Chen X,Kim K.2002.Evaluation of Multiaxial Fatigue Criteria under Irregular Loading[J].International Journal of Fatigue,24(9):913-922.
    Herbeaux C(2002).Status of the Storage Ring Vacuum System.Soleil 2nd MAC meeting,Aubin,France.
    Hunsche A,Neumann P.1986.Quantitative Measurement of Persistent Slip Band Profiles and Crack Initiation[J].ACTA METALLURG.,34(2):207-217.
    Jaski Y,Trakhtenberg E,Collins J,Benson C,Brajuskovic B,Den Hartog P(2002).Thermomechanical Analysis of High-Heat-Load Components for the Canted-Undulator Front End.International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation(MEDSI2000),Wurenlingen,Switzerland.
    Kim K.1986.Angular Distribution of Undulator Power for an Arbitrary Deflection Parameter K[J].Nuclear Instruments and Methods in Physics Research A, 246:67-70.
    Kim K,Park J.1999.Shear Strain Based Multiaxial Fatigue Parameters Applied to Variable Amplitude Loading[J].International Journal of Fatigue,21(5):475-483.
    Kim K,Park J,Lee J.1999.Multiaxial Fatigue under Variable Amplitude Loads[J].Journal of Engineering Materials and Technology,121:286.
    Kuzay T,Collins J,Khounsary A,Morales G(1991).Enhanced Heat Transfer with Wool-Filled Tubes ASME/JSME 3rd Joint Heat Conference,Reno,Nevada.
    Kuzay T,Collins J,Koons J.1999.Boiling Liquid Nitrogen Heat Transfer in Channels with Porous Copper Inserts[J].International Journal of Heat and Mass Transfer,1999(42):1189-1204.
    Kuzay T M.1994.A Review of Thermomechanical Considerations of High-Temperature Materials for Synchrotron Applications[J].Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment,347(1-3):644-650.
    Launder B,Spalding D.1972.Lectures in Mathematical Models of Turbulence[M].Academic press.
    Launder B,Spalding D.1974.The Numerical Computation of Turbulent Flows[J].Comput Methods Appl Mech Eng,1974(3):269-289.
    Leedy K D,Stubbins J F,Singh B N,Garner F A.1996.Fatigue Behavior of Copper and Selected Copper Alloys for High Heat Flux Applications[J].Journal of Nuclear Materials,233-237(Part 1):547-552.
    Liu K C,Loring C M,Jr.1984.Low-Cycle Fatigue Behavior of Oxygen-Free High-Conductivity Copper at 300 Degrees C in High Vacuum[J].Journal of Nuclear Materials,122(1-3):783-788.
    Ma B,Laird C.1989a.Overview of Fatigue Behavior in Copper Single CrystalsIi.Population,Size Distribution and Growth Kinetics of Stage I Cracks for Tests at Constant Strain Amplitude[J].Acta metall.,37(2):337-348.
    Ma B,Laird C.1989b.Overview of Fatigue Behavior in Copper Single Crystals.I.Surface Morphology and Stage I Crack Initiation Sites for Tests at Constant Strain Amplitude[J].Acta metall.,37(2):325-336.
    Manson S.1954.Behavior of Materials under Conditions of Thermal Stress[M].National Advisory Committee for Aeronautics.
    Manson S,Hirschberg M(1964).Fatigue Behavior in Strain Cycling in the Low-and Intermediate-Cycle Range.Proceedings of the 10th Sagamore Army Materials Research Conference,NewYork,Syracuse University Press.
    Marion P,Zhang L(2004).High Power Primary Slits for the Esrf Beamlines.Eighth International Conference on Synchrotron Radiation Instrumentation,San Francisco,California(USA),AIP.
    Markatos N.1983.The Mathematical Modeling of Turbulence Flows[J].Applied Mathematical Modelling,(10):192-220.
    Menter F.1994.Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J].AIAA journal,32(8):1598-1605.
    Miller K,Brown M.1985.Multiaxial Fatigue[M].ASTM STP853.
    Miller T J,Zinkle S J,Chin B A.1991.Strength and Fatigue of Dispersion-Strengthened Copper[J].Journal of Nuclear Materials,179:263-266.
    Mochizuki T,Sakurai Y,Shu D,Kuzay T M,Kitamura H.1998.Design of Compact Absorbers for High-Heat-Load X-Ray Undulator Beamlines at Spring-8[J].Journal of Synchrotron Radiation,5(4):1199-1201.
    Murakami Y,Miller K.2005.What Is Fatigue Damage? A View Point from the Observation of Low Cycle Fatigue Process[J].International Journal of Fatigue,27(8):991-1005.
    Ravindranath V,Sharma S,Rusthoven B,Collins J(2008).Thermal Fatigue of High-Heat-Load Synchrotron Components.medsi2008,Saskatoon,Saskatchewan,Canada.
    Ravindranath V,Sharma S,Rusthoven B,Gosz M,Zhang L,Biasci J(2006).Thermal Fatigue Life Prediction of Glidcop Al-15.International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation 2006,Egret Himeji,Hyogo,Japan
    Robles J,Anderson K,Groza J,Gibeling J.1994.Low-Cycle Fatigue of Dispersion-Strengthened Copper[J].Metallurgical and Materials Transactions A,25(10):2235-2245.
    Schwinger J.1949.Frequency Character of Synchrotron Radiation[J].Physical Review,(75):1912.
    Scm Metal I.1988.Glidcop Grade Al-15 Dispersion Strengthened Copper//Technical Data Sheet[M];North Carolina,USA.
    Sharma S,Rotela E,Barcikowski A(2000).High Heat-Load Absorbers for the Aps Storage Ring.MEDSI 2000,Villigen(CH).
    Simon N,Drexler E,Reed R.1992.Properties of Copper and Copper Alloys at Cryogenic Temperatures[M],US National Institute of Standards and Technology(USA):850.
    Socie D,Waill L,Dittmer D.1985.Biaxial Fatigue of Inconel 718 Including Mean Stress Effects[M]//K.J.MILLER,M.W.BROWN,Multiaxial Fatigue.ASTM STP853,Philadelphia:463-478.
    Srivatsan T,Narendra N,Troxell J D.2000.Tensile Deformation and Fracture Behavior of an Oxide Dispersion Strengthened Copper Alloy[J].Materials & Design,21(3):191-198.
    Srivatsan T S,Al-Hajri M,Troxell J D(2001).The Tensile Deformation,Cyclic Fatigue and Final Fracture Behavior of Dispersion Strengthened Copper.Symposium on Fatigue of Advanced Materials,San Diego,California,Elsevier Science Bv.
    Takahashi S,Sano M,Mochizuki T,Oura M,Watanabe A,Kitamura H(2004).Present Status of High-Heat-Load Components for Spring-8 Front Ends.SYNCHROTRON RADIATION INSTRUMENTATION:Eighth International Conference on Synchrotron Radiation Instrumentation,San Francisco,California(USA),AIP.
    Takahashi S,Sano M,Mochizuki T,Watanabe A,Kitamura H.2008.Fatigue Life Prediction for High-Heat-Load Components Made of Glidcop by Elastic-Plastic Analysis[J].Journal of Synchrotron Radiation,15:144-150.
    Takiya T,Mochizuki T,Kitamura H.2001.Development of Enhanced Heat Transfer Coolant Channels for the Spring-8 Front End Components[J].SPring-8 document.
    Thomas Nian H L,Albert Sheng I C,Kuzay T M.1992.Thermal Analysis of a Photon Shutter for Aps Front Ends[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,319(1-3):197-206.
    Touloukian Y.1970.Thermophysical Properties of Matter,Volume 1:Thermal Conductivity-Metallic Elements and Alloys[J].
    Troxell J D(1989a).Glidcop Dispersion Strengthened Copper,Potential Application in Fusion Power Generators.IEEE Thirteenth Symposium on Fusion Engineering,Knoxville,TN,USA.
    Troxell J D(1989b).Glidcop Dispersion Strengthened Copper,Potential Application in Fusion Power Generators.Fusion Engineering,1989.Proceedings.,IEEE Thirteenth Symposium on.
    Troxell J D,Nadkarni a V,Solomon R R.1996.Properties and Performance of Glidcop(R) Dsc in Temperature Range of 20-350 Degrees C[J].Processing and Fabrication of Advanced Materials V:755-776.
    Valdiviez R,Schrage D,H.Haagenstad,Szalczinger J.2002.The Thermal Expansion of Some Common Linac Materials[J].Proceedings of LINAC2002,Gyeongju,Korea:P767-769.
    Viswanath R.2006.Thermal Fatigue of Glidcop A1-15[D]:PHD Thesis.Illinois:Illinois Institute of Technology
    Wang C,Brown M.1993.A Path-Independent Parameter for Fatigue under Proportional and Non-Proportional Loading[J].Fatigue & Fracture of Engineering Materials & Structures,16(12):1285-1297.
    Wang C H,Brown M W.1996.Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue---Part 1:Theories[J].Journal of Engineering Materials and Technology,118(3):367-370.
    White G,Colloco S.1984.Heat Capacity of Reference Materials:Cu and W[J].J.Phys.Chem.Ref.Data,13(4).
    Yokobori T,Yamanouchi H,Yamamoto S.1965.Low Cycle Fatigue of Thin-Walled Hollow Cylindrical Specimens of Mild Steel in Uni-Axial and Torsional Tests at Constant Strain Amplitude[J].International Journal of Fracture,1(1):3-13.
    Zhang L,Biasci J C,B.Plan(2002).Esrf Thermal Absorbers:Temperature,Stress and Material Criteria.MEDSI02,Argonne,Illinois U.S.A..
    Zhang L,Biasci J C,S.Sharma,Ravindranath V,Rusthoven B(2006).Thermal Fatigue Test of Glidcop with Undulators Power.International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation 2006,Egret Himeji,Hyogo,Japan
    程林.1995.换热器内流体诱发振动[M].科学出版社
    邓彪,余笑寒,徐洪杰.2007.同步辐射硬x射线微束技术[J].核技术,30(5):397-402.
    方守贤.1999.我国粒子加速器的现状和发展[J].物理,28(9):557-566.
    葛新石,王义方,郭宽良.1985.传热的基本原理[M].合肥:中国科学技术大学出版社.
    蒋迪奎,陈丽萍,等.2002.Ssrf光子吸收器的研制[J].真空科学与技术,22(3):167-172.
    蒋迪奎,殷立新.1997.多极扭摆磁铁同步辐射光的功率分布[J].中国科学 技术大学学报,27(4):440-444.
    居荣初,曾心传.1984.弹性结构与液体的耦联振动理论[M].地震出版社
    李美霞,郭志猛,赵奇特.2008.氧化铝弥散强化铜的研究进展及其应用[J].粉末冶金工业,18(1):36-40.
    刘萍,魏梅红,闫丰.2007.Al203弥散强化铜基复合材料的制备及物理性能的研究[J].热处理,22(1):44-47.
    马礼敦,杨福家.2001.同步辐射应用概论[M].复旦大学出版社;上海.
    孟继安,李志信,过增元,魏澍.2002.螺旋扭曲椭圆管层流换热与流阻特性模拟分析[J].工程热物理学报.
    平修二,郭廷伟.1984.热应力与热疲劳(基础理论与设计应用)[M].北京:国防工业出版社.
    钱惠华,李海.2003.涡轮导向叶片热疲劳分析[J].航空动力学报,18(002):186-190.
    尚德广,王德俊.2007.多轴疲劳强度[M].科学出版社;北京.
    隋晓峰,孟继安,陈泽敬,李志信.2005.螺旋内肋管内对流换热的三维数值模拟[J].工程热物理学报,26(2):292-294.
    唐鄂生.1991.北京同步辐射装置十年回顾与十年展望(上)[J].现代物理知识,6:3-5.
    唐鄂生.1995.同步辐射的科学应用与第三代sr光源[J].物理,24(7):385-391.
    陶文铨.2001.数值传热学[M].西安交通大学出版社;西安.
    王玲,赵浩峰,蔚晓嘉.2005.金属基复合材料及其浸渗制备的理论与实践[M].冶金工业出版社;北京.
    王纳秀.2006.同步辐射光束线热缓释技术研究及冷却技术的应用[D]:博士.上海:上海应用物理研究所
    王勖成.2003.有限单元法[M].清华大学出版社;北京.
    王中光(译),S.Suresh.1999.材料的疲劳[M].国防工业出版社;北京.
    吴冠原,王纳秀,张小哲.2006.Ssrf前端区工程设计报告[M];上海.
    冼鼎昌.1995.同步辐射应用的发展[J].物理,24(11):642-650.
    冼鼎昌.1999.同步辐射应用在中国的发展[J].物理,28(11):641-647.
    徐洪杰.1996.新一代同步辐射光源及其应用[J].核物理动态,13(4):25-27.
    杨世铭,陶文铨.2006.传热学(第四版)[M].高等教育出版社;北京.
    岳灿甫,王永朝,郭海霞,雷竹芳,陈会东.2007.内氧化法制备al2o3弥散强化铜合金及其组织与性能[J].材料开发与应用,22(4):7-10.
    曾昭权.2008.同步辐射光源及其应用研究综述[J].云南大学学报,30(5):477-483.
    张家敏,亢若谷,彭茂公,田卫平,刘辉,单玉友.2004.产业化制备弥散强化铜材料的性能及工艺研究[J].云南冶金,33(6):25-30.
    张琳,钱红卫,宣益民,俞秀民.2005.内置纽带换热管三维流动与传热数值模拟[J].机械工程学报,41(7):66-70.
    赵飞云,王纳秀,徐朝银,王秋平.2003.Nsrl前端活动水冷光屏的结构及热分析[J].核技术,26(7):501-504.
     赵飞云,徐朝银.1999.合肥光源超导wiggler前端区[J].真空科学与技术,19(5):340-344.
    赵小风,徐洪杰.1996.同步辐射光源的发展和现状[J].核技术,19(9):568-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700