电子纸的微室构建与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子纸具有低能耗、可挠便携等优势,成为近年来的研究热点。E-ink率先将微胶囊技术产业化,Sipix的微杯技术制备成本更低、性能更优良,成为最具潜力的显示技术。全彩化、高反射率与高对比度、低电压、快响应、可挠性、低成本量产、环保等成为电子纸的前景目标。
     本论文着眼于采用简易设备与材料,以低成本、环保节能方式,实现高反射、低电压响应、抗蚀可挠式电子纸的构建。其主要工作和创新性如下:
     1.通过对具有高官能度、柔顺链结构和可对基材锚定的材料体系的选择与共混,构筑了对四氯乙烯介质抗蚀、聚酯基材上可挠、微室可用光固化材料体系。
     2.以无需模具的掩膜湿膜光刻法制备微室的微杯,创新地采用氟碳表面流平剂FC-500、羧基丙烯酸酯EM213、含乙二醇单元光引发剂Irgacure 2959为主的材料体系,对微杯以界面光固化实施封装,构筑了耐四氯乙烯介质的微室结构。该微室结构构建的电子纸可耐受80℃持续烘烤,110℃下对四氯乙烯密封性好,具有可自由弯曲可挠的性能,同时解决了溶剂造成的环保问题,且成本低廉。
     3.通过将具有酸性基团的高分子共聚物BYK110、具有颜料锚定基团的高分子量嵌段共聚体BYK161、具有氨基结构的硅烷550复配,以“一锅法”方式代替繁琐的颜料改性工序,对二氧化钛等颜料超分散,制得了电子墨,并以光化学制得修饰电极,实现了电子纸66%的高反射率、140ms/5V的低电压响应的双稳态电泳显示性能。
     在以上工作基础上提出一体化法构筑彩色电子纸微室的新方法设想,初步研究了材料组分的影响因素,希望为低成本构建高性能彩色电子纸提供一定的实验依据。
Owing to ultra low energy-consumption, excellent flexibility, lightweight, electronic paper (E-paper) has attracted most interests recently. Although the microcapsule-type technology was first industrialized by E-ink Corporation, the microcup-type technology of Sipix Corporation seems becoming the one of the most potential display technologies due to its lower cost and better performances. Now, the full-color, high contrast, reflection, low-voltage, fast response, flexible, low-cost, and environmental protection have become the prospects of the future E-paper.
     This doctoral dissertation focused on the low-cost, environment-friendly and energy-saving E-paper, which was fabricated with cheap and easily available materials and equipments. The main contents of this dissertation were given as following: the chief achievements and novelties are presented in the following 3 parts:
     First, by choosing and blending the acrylic resin with multi-functions, flexibility, anchoring groups or segments structures, UV-curing material system has been constructed for solvent resistence, flexibility, tetrachloroethene-media microcontainer on ITO/polyester substrate.
     Secondly, the microcontainer of tetrachloroethene-media has been fabricated by photomask lithography instead of moulding process, followed by interfacial sealing without cosolvent, which can solve the pollution problems in low-cost way. The aforementioned sealing materials consisted of blending of fluorocarbon-base flatting agent, acrylic esters with carboxyl group and photo-initiator with glycol group, i.e., FC-500, EM213, Irgacure 2959, innovatively. The microcontainer of tetrachloroethene-media shows good properties, such as long-term thermal endurance of 80℃, good sealing appearance below 110℃, free bending and excellent flexibility.
     Furthermore, to obtain electronic ink, the blending of acid-containing co-polymer, block polymer of high molecular weight with anchoring group for pigment and silicon coupling agent with amido group, i.e., BYK110, BYK161, KH-550, has been applied to pigments containing titania in one-pot and dispersing way. The electronic ink can display between bi-stability states by electrophoretic, with the high reflection of 66% and responding time of 140ms by 5 voltages.
     The integration method to fabricate full-color E-paper was proposed on the basis of the results of research. Moreover, the related impact factors have been studied, which could become the preliminary research foundation of fabrication of full-color E-paper in a low cost and high properties way.
引文
[1]王秀峰,程冰,现代显示材料与技术(第1版),北京:化工出版社,2007年,1-203.
    [2] Comiskey B, Albert J D, Hidekazu Y, et al., An electrophoretic ink for all-printed reflective electronic displays, Nature, 1998 , 394: 253-254.
    [3] Jo G R , Hoshino K, Kitamura T, Toner display based on particle movements, Chem. Mater., 2002, 14: 664-669.
    [4] Hayes R A, Feenstra B J, Video-speed electronic paper based on electrowetting, Nature, 2003, 425: 383-385.
    [5] Croucher M D, Hair M L, Some Physicochemical Properties of Electrophoretic Display Materials, Int. Eng. Chem. Prod. Res. Dev., 1981, 20: 324-329.
    [6] Lee J Y, Sung J H, Jang I B, et a1., Electrophoretic response of poly(methyl methacrylate)coated TiO2 nanoparticles, Synth. Met., 2005, 153: 221-224.
    [7]Wang Y T, Zhao X P, Wang D W, Electrophoretic ink using urea-formaldehyde microspheres, J. Microencapsu1e, 2006, 23: 762-768.
    [8]Kim C A, Joung M J, Ahn S D, et a1., Microcapsules as an electronic ink to fabricate color electrophoretic displays, Synthetic Met., 2005, 151: 181-185.
    [9]刘程,表面活性剂性质理论与应用(第1版),北京:北京工业大学出版社,2003,1-1647.
    [10]肖进新赵振国,表面活性剂应用原理,北京:化学工业出版社,2003年5月第1版,1-514.
    [11]许时婴,微胶囊技术原理与应用,北京:化学工业出版社,2006年7月,第1版, 1-333.
    [12] Webber R M, Jacobson J M, Duthaler G M, et al., Electro-optic display and lamination adhesive for use therein, US: 7110163B2, 2006-9-19.
    [13] Doshi H, Honeyman C H, Sohn S, et al., Electro-optic displays, and materials for use therein, US: 7173752B2, 2007-2-6.
    [14] Pullen A E, Whitesides T H, Honeyman C H, et al., Electrophoretic particles, and processes for the production thereof, US: 7247379B2, 2007-7-24.
    [15] Pullen A E, Duthaler G M, Amundson K R, et al., Electrophoretic media containing specularly reflective particles, US: 7312916B2, 2007-12-25.
    [16] Doshi H, Honeyman C H, Sohn S, et al., Electro-optic dispalys, and materials for use therin, US: 7349148B2, 2008-03-25.
    [17] Paolini R J, Miller D D, Comiskey B, et al., Electrophoretic medium and process for the production thereof, US: 7079305B2, 2006-7-18.
    [18] Albert J D, Comiskey B, et al., Non-spherical cavity electrophoretic displays and methods and materials for making the same, US: 7109968B2, 2006-9-19.
    [19] Danner G M, Amundson K R, Zehner R W, et al., Methods for driving electro-optic displays, and apparatus for use therein, US: 7193625B2, 2007-03-20.
    [20] Honeyman C H, Paolini R J, Steiner M L, et al., Electro-optic displays and method for driving same, US: 7206119B2, 2007-4-17.
    [21] Paolini R J, Whitesides T H, O'Neil S J, et al., Electro-optic displays, and processes for the production thereof, US: 7110164B2, 2006-9-19.
    [22] Amundson K R, Denis K L, Drzaic P S, et al., Backplanes for display applications, and components for use therein, US: 7116318B2, 2006-10-03.
    [23] Whitesides T H, McCreary M M, Paolini R J, et al., Electro-optic displays, US: 7116466B2, 2006-10-3.
    [24] Wang J P, Zhao X P, Guo H L, et al., Preparation and response behavior of blue electronic ink microcapsules, Optical Materials, 2008, 30: 1268-1272.
    [25] Guo H L, Zhao X P, Preparation of a kind of red encapsulated electrophoretic ink, Optical Materials, 2004, 26: 297-300.
    [26] Joseph J, Barrett C, Jonathan A, et al., Microencapsulated electrophoretic display, US: 5961804, 1999-10-5.
    [27] Joseph J M, Barrett C, et al., Nonemissive displays and piezoelectric power supplies therefor, US: 5930026, 1999-7-27.
    [28] Jonathan A D, Barrett C, Joseph J M, et al., Multi-color electrophoretic displays and materials for making the same, US: 6017584, 2000-1-25.
    [29] Liang R C, Zang H M, Wang X J, et al., Composition and process for the manufacture of an improved electrophoretic display, US: 7205355B2, 2007-4-17.
    [30] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 6545797, 2003-4-8.
    [31] Liang R C, Wu Z G, Zang H M, et al., Process for manufacture of improved color displays, US: 6788452, 2004-9-7.
    [32] Liang R C, Tseng S C, Wu Z G, et al., Electrophoretic display and novel process for its manufacture, US: 6831770, 2004-12-14.
    [33] Chan P M, Chen X H, Wu Z G, et al., Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web, US: 6906779, 2005-6-14.
    [34] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 6914714, 2005-7-5.
    [35] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 6972893 , 2005-12-6.
    [36] Zang H M, Wang X J, Liang R C, et al., Composition and process for the sealing of microcups in roll-to-roll display manufacturing, US: 7005468, 2006-2-28.
    [37] Liang R C, Tseng S C, Wu Z G, et al., Electrophoretic display, US: 7233429, 2007-6-19.
    [38] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 7385751, 2008-6-10.
    [39] Chen X H, Chan-Park M B, Wang X J, et al., Microcup compositions having improved flexure resistance and release properties, US: 20040013855, 2004-1-22.
    [40]仓理,涂料工艺(第1版),北京:化学工业出版社,2007,1-130.
    [41]杨建文,曾兆结,陈用烈,光固化涂料及应用(第1版),北京:化学工业出版社,2005年,1-390.
    [42]宋心琦,周福添,刘剑波,光化学原理技术应用(第1版),北京:高等教育出版社,2001,1-300.
    [43] Ur?ka ?, Matja? K, Seeded semibatch emulsion copolymerization of methyl methacrylate and butyl acrylate using polyurethane dispersion: effect of soft segment length on kinetics, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 233: 51-62.
    [44] Demir M M, Castignolles P, Akbey U, et al., In-situ bulk polymerization of dilute particle/MMA dispersions, Macromolecules, 2007, 40: 4190-4198.
    [45] Cook W D, Chen F, Pattison D W, et al., Thermal polymerization of thiol-ene network-forming systems, Polym. Int., 2007, 56:1572-1579.
    [46] KIM D, Stansbury J W, Kinetic pathway investigations of three-component photoinitiator systems for visible-light activated free radical polymerizations, Journal of Polymer Science: Part A: Polym. Chem., 2009, 47: 887-898.
    [47] Cho J D, Hong J W, UV-initiated free radical and cationic photopolymerizations of acrylate/epoxide and acrylate/vinyl ether hybrid systems with and without photosensitizer, J. Appl. Poly. Sci., 2004, 93: 1473-1483.
    [48] Cramer N B, Scott J P, Bowman C N, Photopolymerizations of thiol-ene polymers without photoinitiators, Macromolecules, 2002, 35: 5361-5365.
    [49] Kilambi H, Stansbury J W, Bowman C N, Enhanced Reactivity of Monovinyl Acrylates Characterized by Secondary Functionalities Toward photopolymerization and michael addition: contribution of intramolecular effects, J. Polym. Sci.: Part A: Polym. Chem., 2008, 46: 3452-3458.
    [50] Roper T M, Kweea T, Lee T Y, et al., Photopolymerization of pigmented thiol-ene systems, Polymer, 2004, 45: 2921-2929.
    [51] Johnson P M, Stansbury J W., Bowman C N, Photopolymer kinetics using light intensity gradients in high-throughput conversion analysis, Polymer, 2007, 48: 6319-6324.
    [52] Sun F, Jiang S L, Du H G, The Photosensitive properties of polysiloxane acrylate resin containing tertiary amine groups, J. Appl. Polym. Sci., 2008, 107: 2944-2948.
    [53] Shirai M, Tsunooka M, Photoacid and photobase generators: prospects and their use in the development of polymeric photosensitive systems, Bull. Chem. Soc., 1998,71: 2483-2507.
    [54] Hofer M, Moszner N, Liska R, Oxygen scavengers and sensitizers for reduced oxygen inhibition in radical photopolymerization, J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 6916-6927.
    [55] Arsu N, Use of 2-(N-methyl-N-phenylamino)-1-phenylethanol as synergist in UV-curing applications, J Photochem. Photobio, A: Chemistry, 2002, 153: 129–133.
    [56] Wei J, Liu F, Lu Z M, et al., Novel PU-type polymeric photoinitiator comprising side-chain benzophenone and coinitiator amine for photopolymerization of PU acrylate, Polym. Adv. Technol., 2008, 19: 1763-1770.
    [57] O'Brien A K, Cramer N B, Bowman C N, Oxygen inhibition in thiol-acrylate photopolymerizations, J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 2007-2014.
    [58] Andrzejewska E, Zych-Tomkowiak D, Andrzejewski M, et al., Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone, Macromolecules, 2006, 39: 3777-3785.
    [59] Keskin S, Jockusch S, Turro N J, et al., 2-Mercaptothioxanthone as sensitizer and coinitiator for acylphosphine oxide photoinitiators for free radical polymerization, Macromolecules, 2008, 41: 4631-4634.
    [60] Fedorov A V., Ermoshkin A A, Mejiritski A, et al., New method to reduce oxygen surface inhibition by photorelease of boranes from borane/amine complexes, Macromolecules, 2007, 40: 3554-3560.
    [61] Laleve J, Tehfe M, Allonas X, et al., Boryl radicals as a new photoinitiating species: a way to reduce the oxygen inhibition, Macromolecules, 2008, 41: 9057-9062.
    [62] Laleve J, Dirani A, El-Roz M, et al., Silanes as new highly efficient co-initiators for radical polymerization in aerated media, Macromolecules, 2008, 41: 2003-2010.
    [63]òBrien A K, Bowman C N, Modeling the effect of oxygen on photopolymerization kinetics, Macromol. Theory Simul., 2006, 15: 176-182.
    [64]òBrien A K, Bowman C N, Impact of oxygen on photopolymerization kinetics and polymer structure, Macromolecules, 2006, 39: 2501-2506.
    [65] Lee T Y, Guymon C A, J?nsson E S, et al., The effect of monomer structure onoxygen inhibition of (meth)acrylates photopolymerization, Polymer, 2004, 45: 6155-6162.
    [66] Benda D, ?ňupárek J, ?ermák V, Oxygen inhibition and the influence of pH on the inverse emulsion polymerization of the acrylic monomers, Eur. Polym. J., 2001, 37: 1247-1253.
    [67] Li F S, Zhou S X, You B, et al., Kinetic investigations on the UV-Induced photopolymerization of nanocomposites by FTIR spectroscopy, J. Appl. Polym. Sci., 2006, 99: 1429-1436.
    [68] Li F S, Zhou S X, You B, et al., Kinetic Study on the UV-Induced Photopolymerization of Epoxy Acrylate/TiO2 Nanocomposites by FTIR Spectroscopy, J. Appl. Polym. Sci., 2006, 99: 3281-3287.
    [69] Nicolas A, Ueno T, Influence of viscosity on photopolymerization in film as studied by real time FTIR, J Photopolym Sci Technol., 2007, 20: 141-142.
    [70] Cai Y, Jessop J L P, Decreased oxygen inhibition in photopolymerized acrylate/epoxide hybrid polymer coatings as demonstrated by Raman spectroscopy, Polymer, 2006, 47: 6560-6566.
    [71] Peinado C., Allen N S, Salvador E F, Chemiluminescence and fluorescence for monitoring the photooxidation of an UV-cured aliphatic polyurethane-acrylate based adhesive, Polym. Degradation and Stability, 2002, 77: 523-529.
    [72] Laleve J, Blanchard N, El-Roz M, et al., New photoinitiators based on the silyl radical chemistry: polymerization ability, ESR spin trapping, and laser flash photolysis investigation, Macromolecules, 2008, 41: 4180-4186.
    [73] Sadykov R A, Gatiyatullina G. V, Battalov E M, et al., ESR study of photopolymerization of epoxy-acrylate oligomers, Russ. J. Appl. Chem., 2003, 76: 629-633.
    [74] Do?ruyol Z, Karasu F, Balta D K, et al., Universality in gelation of epoxy acrylate with various photoinitiators: a photo differential scanning calorimetric study, Phase Transitions, 2008, 81: 935-947.
    [75] Van J D, Gnatowski M, Burczyk A, Solvent resistance and mechanical properties in thermoplastic elastomer blends prepared by dynamic vulcanization, J. Appl. Polym.Sci., 2008, 109: 1535-1546.
    [76] Freeman E S, Carroll B,The Application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate,J. Phys. Chem., 1958, 62: 394-397.
    [77] Newkirk A E,Thermogravimetric measurements,Anal. Chem., 1960, 32: 1558-1563.
    [78] Kong J, Tang Y S, Zhang X J, Gu J W, Synergic effect of acrylate liquid rubber and bisphenol A on toughness of epoxy resins, Polym. Bull., 2008, 60: 229-236.
    [79] Ratna D, Banthia A K, Deb P C, Acrylate-based liquid rubber as impact modifier for epoxy resin, J. Appl. Polym. Sci., 2001, 80: 1792-1801.
    [80] Ratna D, BANTHIA A K, Deb P C, Toughening of epoxy resin using acrylate-based liquid rubbers, J. Appl. Polym. Sci., 2000, 78: 716-723.
    [81] Zand B N, Mahdavian M, Evaluation of the effect of vinyltrimethoxysilane on corrosion resistance and adhesion strength of epoxy coated AA1050, Electrochimica Acta, 2007, 52: 6438-6442.
    [82] Aboudzadeh M A, Mirabedini S M, Atai M, Effect of silane-based treatment on the adhesion strength of acrylic lacquers on the PP surfaces, Int. J. Adhesion and Adhesives, 2007, 27: 519-526.
    [83] Horozov T S, Braz D A, Fletcher P D I, et al., Novel film-calliper method of measuring the contact angle of colloidal particles at liquid interfaces, Langmuir, 2008, 24: 1678-1681.
    [84] Grigoriev D O, Kr?gel J, Dutschk V, et al., Contact angle determination of micro- and nanoparticles at fluid/fluid interfaces: the excluded area concept, Phys. Chem. Chem. Phys., 2007, 9: 6447-6454.
    [85] Vogler M, Wiedenberg S, Mühlberger M, et al., Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography, Microelectronic Engineering, 2007, 84: 984-988.
    [86] Dickey M D., Burns R L, Kim E K, et al., Study of the kinetics of step and flash imprint lithography photopolymerization, Aiche J., 2005, 51: 2547-2555.
    [87] Jeong H E, Kwak R, Kim J K, et al., Generation and self-replication ofmonolithic, dual-scale polymer structures by two-step capillary-force lithography, Small, 2008, 4: 1913-1918.
    [88] Hochbaum A, Fan R, He R R, et al., Controlled growth of Si nanowire arrays for device integration, Nano. Lett., 2005, 5: 457-460.
    [89] Kim M J, Song S, Kwon S J, et al., Trapezoidal structure for residue-free filling and patterning, J. Phys. Chem. C, 2007, 111: 1140-1145.
    [90] Gargas D J, Muresan O, Sirbuly D J, et al., Micropatterned Porous-Silicon Bragg Mirrors by Dry-Removal Soft Lithography, Adv. Mater., 2006, 18: 3164-3168.
    [91] Choi D G, Jang S G, Yu H K, et al., Two-dimensional Polymer Nanopattern by Using Particle-Assisted Soft Lithography, Chem. Mater., 2004, 16: 3410-3413.
    [92] Kaehr B, Shear J B, Mask-directed multiphoton lithography, J. Am. Chem. Soc., 2007, 129: 1904-1905.
    [93] Jang J H, Ullal C K, Gorishnyy T, et al. Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography, Nano. Lett., 2006, 6: 740-743.
    [94] Martensson T, Carlberg P , Borgstrom M, et al., Nanowire arrays defined by nanoimprint lithography,Nano. Lett., 2004, 4: 699-702.
    [95] Moon J H, Jang S G, Lim J M, et al., Multiscale Nanopatterns Templated from Two-Dimensional Assemblies of Photoresist Particles, Adv. Mater., 2005, 17: 2559-2562.
    [96] Edwards E W, Montague M F, Solak H H, et al., Precise control over molecular dimensions of block-copolymer domains using the interfacial energy of chemically nanopatterned substrates, Adv. Mater., 2004, 16: 1315-1316.
    [97] Huang Z P, Fang H, Zhu J, Fabrication of silicon nanowire arrays with controlled diameter, length, and density, Adv. Mater., 2007, 19: 744-745.
    [98] Jiang P, Large-scale fabrication of periodic nanostructured materials by using hexagonal non-close-packed colloidal crystals as templates, Langmuir, 2006, 22: 3955-3958.
    [99] Kuo C W, Shiu J Y, Chen P,et al. Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution, J. Phys. Chem. B, 2003, 107:9950-9953.
    [100] Xu D W, Graugnard E, King J S, et al. Large-scale fabrication of ordered nanobowl arrays, Nano. Lett., 2004, 4: 2223-2226.
    [101] Hicks E M, Lyandres O, Hall W P, et al. Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography, J. Phys. Chem. C, 2007, 111: 4116-4124.
    [102] Anderson M E, Srinivasan C, Hohman J N, et al., Combining Conventional Lithography with Molecular Self-Assembly for Chemical Patterning Adv. Mater., 2006, 18: 3258-3260.
    [103] McLellan J M, Geissler M, Xia Y N, Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings, J. Am. Chem. Soc., 2004, 126: 10830-10831.
    [104] Wu H K, Odom T W, Whitesides G M, Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask, J. Am. Chem. Soc., 2002,124: 7288-7289.
    [105]李祥高,冯亚青,李刚,微格法电泳显示器的制备,微格法电泳显示器的制备,200610014306.8,CN: 1862351,2006-11-15.
    [1] Kim M K, Kim C A, Ahn S D, et al., Density compatibility of encapsulation of white inorganic TiO2 particles using dispersion polymerization technique for electrophoretic display, Synthetic Metals, 2004, 146: 197-199.
    [2] Park J H, Ah L M, Park B J, et al., Preparation and electrophoretic response of poly (methyl methacrylate-co-methacrylic acid) coated TiO2 nanoparticles for electronic paper application, Current Applied Physics, 2007, 7: 349-351.
    [3] Yu D G, An J H, Bae J Y, et al., Preparation and Characterization of Acrylic-Based Electronic Inks by In Situ Emulsifier-Free Emulsion Polymerization for Electrophoretic Displays, Chem. Mater., 2004, 16: 4693-4698.
    [4] Jang I B, Sung J H, Choi H J, et al., Synthesis and characterization of titania coated polystyrene core-shell spheres for electronic ink, Synthetic Metals, 2005, 152: 9-12.
    [5] Yu D G, An J H, Bae J Y, et al., Negatively Charged Ultrafine Black Particles of P (MMA-co-EGDMA) by Dispersion Polymerization for Electrophoretic Displays, Macromolecules, 2005, 38: 7485-7491.
    [6] Park B J, Lee J Y, Sung J H, et al., Microcapsules containing electrophoretic suspension of TiO2 modified with poly (methyl methacrylate), Current Applied Physics, 2006, 6: 632-635.
    [7] Lee J Y, Sung J H, Jang I B, et al., Eletrophoretic resonse of poly (methyl methacrylate) coated TiO2 nanoparticles, Synthetic Metals, 2005, 153: 221-224.
    [9] Qiao R, Zhang X L, Qiu R, et al., Synthesis of functional microcapsules by in situ polymerization for electrophoretic image display elements, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 313: 347-350.
    [10] Guo H L, Zhao X P, Preparation of a kind of red encapsulated electrophoretic ink, Optical Materials, 2004, 26: 297-300.
    [11] Park L S, Park J W, Choi H Y, et al., Fabrication of charged particles for electrophoretic display, Current Applied Physics, 2006, 6: 644-648.
    [12] Croucher M D, Hair M L, Some Physicochemical Properties of Electrophoretic Display Materials, Ind. Eng. Chem. Prod. Res. Dev., 1981, 20: 324-329.
    [13] Baur R, Macholdt H T, Charge Control Agents and Triboelectrically-Adjusted Pigments in Electrophotographic Toner, Journal of Electrostatics, 1997, 40: 621-626.
    [14]程能林,溶剂手册(第4版),北京:化学工业出版社,2008,1-1309.
    [15] Mao Qi, Sun G Q, Wang S L, et al., Application of hyperdispersant to the cathode diffusion layer for direct methanol fuel cell, Journal of Power Sources, 2008, 175: 826-832.
    [16] Schofield J D, Extending the boundaries of dispersant technology, Progress in Organic Coatings, 2002, 45: 249-257.
    [17]肖进新,赵振国,表面活性剂应用原理(第1版),北京:化学工业出版社,2003,1-514.
    [18]普鲁特曼,Plueddemann E P,硅烷和钛酸酯偶联剂,上海:上海科学技术文献出版社,1987, 1-303.
    [1] Vogler M, Wiedenberg S, Mu¨hlberger M, et al., Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography, Microelectronic Engineering, 2007, 84: 984-988.
    [2] Dickey M D, Burns R L, Kim E K, et al., Study of the Kinetics of Step and Flash Imprint Lithography Photopolymerization, Aiche Journal, 2005, 51: 2547-2555.
    [3] Jeong H E, Kwak R, Kim J K, et al., Generation and Self-Replication of Monolithic, Dual-Scale Polymer Structures by Two-Step Capillary-Force Lithography, Small, 2008,4: 1913-1918.
    [4] Kim M J, Song S, Kwon S J, et al., Trapezoidal structure for residue-free filling and patterning, J. Phys. Chem. C, 2007, 111:1140-1145.
    [5] Gargas D J, Muresan O, Sirbuly D J, et al., Micropatterned Porous-Silicon Bragg Mirrors by Dry-Removal Soft Lithography, Adv. Mater., 2006, 18, 3164-3168.
    [6] Martynova L, Locascio L E, Gaitan M, et al., Fabrication of Plastic Microfluid Channels by Imprinting Methods, Anal. Chem., 1997, 69: 4783-4789.
    [7] Wu H K, Odom T W, Chiu D T, et al., Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS, J. Am. Chem. Soc., 2003, 125: 554-559.
    [8] Chan P, Zhang Jun, Yan Y H, et al., Fabrication of Large SU-8 Mold with High Aspect Ratio Microchannels by UV Exposure Dose Reduction, Sensors and Actuators B, 2004, 101: 175-182.
    [9] Jiang W T, Ding Y C, Liu H Z, et al., Two-Step Curing Method for Demoulding in UV Nanoimprint Lithography, Microelectronic Engineering, 2008, 85: 458-464.
    [10] Chen X H,Zang H M,Wu Z A,et al., Process for Imagewise Opening and Filling Color Display Components and Color Displays Manufactured Thereof, US: 20030063370, 2003-4-3.
    [11] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 6545797, 2003-4-8.
    [12] Liang R C, Wu Z G, Zang H M, et al., Process for manufacture of improved colordisplays, US: 6788452, 2004-9-7.
    [13] Liang R C, Tseng S C, Wu Z G, et al., Electrophoretic display and novel process for its manufacture, US: 6831770, 2004-12-14.
    [14] Chen X H, Chan-Park M B, Wang X J, et al., Microcup compositions having improved flexure resistance and release properties, US: 20040013855, 2004-1-22.
    [15] Chiang A A, Electrophoretic display composition, US: 4285801, 1981-8-25.
    [16] Chan-Park M B, Yan Y, Neo W K, et al., Fabrication of high aspect ratio poly(ethylene glycol)-containg microstructures by UV embossing, Langmuir, 2003, 19: 4371-4380.
    [17] Van Dyke J D, Gnatowski M, Burczyk A, Solvent Resistance and Mechanical Properties in Thermoplastic Elastomer Blends Prepared by Dynamic Vulcanization, Journal of Applied Polymer Science, 2008, 109:1535–1546.
    [18] Freeman E S, Carroll B, The Application of Thermoanalytical Techniques to Reaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate, J. Phys. Chem., 1958, 62: 394-397.
    [19] Newkirk A E,Thermogravimetric Measurements, Anal. Chem., 1960, 32: 1558-1563.
    [20]张学敏,郑化,魏铭,涂料与涂装技术(第1版),北京:化学工业出版社,2006,1-578.
    [21] Jeong H E, Kwak R, Kim J K, Suh K Y, Generation and Self-Replication of Monolithic, Dual-Scale Polymer Structures by Two-Step Capillary-Force Lithography, Small, 2008, 4: 1913-1918.
    [22] Jung J A, Kim B K, Controls of solubility parameter and crosslinking density in polyurethane acrylate based holographic polymer dispersed liquid crystal, Optics Communications, 2005, 247: 125-132.
    [23]杨建文,曾兆结,陈用烈,光固化涂料及应用(第1版),北京:化学工业出版社,2005,1-390.
    [24] Kong J, Tang Y S, Zhang X J, et al, Synergic Effect of Acrylate Liquid Rubber and Bisphenol A on Toughness of Epoxy Resins, Polymer Bulletin 60, 2008, 60: 229-236.
    [25] Ratna D, Banthia A K, DEB P C, Acrylate-Based Liquid Rubber as Impact Modifier for Epoxy Resin, Journal of Applied Polymer Science, 2001, 80: 1792-1801.
    [26] RATNA D, Banthia A K, DEB P C, Toughening of Epoxy Resin Using Acrylate-Based Liquid Rubbers, Journal of Applied Polymer Science, 2000, 78: 716-723.
    [27] Wang F, Hu J Q, Tu W P, Study on microstructure of UV-curable polyurethane acrylate films, Progress in Organic Coatings, 2008, 62: 245-250.
    [28] Jang J H, Ullal C K, Gorishnyy T, et al.Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography, Nano. Lett., 2006, 6: 740-743.
    [29]李善君,纪才圭,于同隐,高分子光化学原理及应用(第二版),上海:复旦大学出版社,2004,1-464.
    [30] Zand B N, Mahdavian M, Evaluation of the effect of vinyltrimethoxysilane on corrosion resistance and adhesion strength of epoxy coated AA1050, Electrochimica Acta, 2007, 52: 6438–6442.
    [31] Aboudzadeh M A, Mirabedini S M, Atai M, Effect of silane-based treatment on the adhesion strength of acrylic lacquers on the PP surfaces, International Journal of Adhesion and Adhesives, 2007, 27: 519-526.
    [1] Chan P M, Chen X H, Wu Z G, et al., Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web, US: 6906779, 2005-6-14.
    [2] Liang R C, Tseng S C, Wu Z G, et al., Electrophoretic display and novel process for its manufacture, US: 6831770, 2004-12-14.
    [3] Liang R C, Zang H M, Wang X J, et al., Composition and process for the manufacture of an improved electrophoretic display, US: 7205355B2, 2007-4-17.
    [4] Zang H M, Wang X J, Liang R C, et al., Composition and process for the sealing of microcups in roll-to-roll display manufacturing, US: 7005468, 2006-2-28.
    [5] Liang R C, Tseng S C, Wu Z G, et al., Electrophoretic display and novel process for its manufacture, US: 6831770, 2004-12-14.
    [6] Chiou B S, Khan S A, Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers, Macromolecules 1997, 30: 7322-7328.
    [7] Jung J A, Kim B K, Controls of solubility parameter and crosslinking density in polyurethane acrylate based holographic polymer dispersed liquid crystal, Optics Communications, 2005, 247: 125-132.
    [8]杨建文,曾兆结,陈用烈,光固化涂料及应用(第1版),北京:化学工业出版社,2005,1-390.
    [9] Van J D, Gnatowski M, Burczyk A, Solvent resistance and mechanical properties in thermoplastic elastomer blends prepared by dynamic vulcanization, Journal of Applied Polymer Science, 2008, 109: 1535-1546.
    [10] Newkirk A E, Thermogravimetric measurements, Anal. Chem., 1960, 32: 1558-1563.
    [11]刘程,表面活性剂性质理论与应用,北京工业大学出版社(北京),2003年6月第1版,1-1647.
    [12] Kong J, Tang Y S, Zhang X J, et al., Synergic effect of acrylate liquid rubber and bisphenol A on toughness of epoxy resins, Polymer Bulletin, 2008, 60: 229-236.
    [13] Ratna D, Banthia A K, Deb P C, Acrylate-based liquid rubber as impact modifier for epoxy resin, Journal of Applied Polymer Science, 2001, 80: 1792-1801.
    [14] Ratna D, Banthia A K, Deb P C, Toughening of epoxy resin using acrylate-based liquid rubbers, Journal of Applied Polymer Science, 2000, 78: 716-723.
    [15] Wang F, Hu J Q, Tu W P, Study on microstructure of UV-curable polyurethane acrylate films, Progress in Organic Coatings, 2008, 62: 245-250.
    [16] Zand B N, Mahdavian M, Evaluation of the effect of vinyltrimethoxysilane on corrosion resistance and adhesion strength of epoxy coated AA1050, Electrochimica Acta, 2007, 52: 6438-6442.
    [17] Aboudzadeh M A, Mirabedini S M, Atai M, Effect of silane-based treatment on the adhesion strength of acrylic lacquers on the PP surfaces, Int. J. Adhesion and Adhesives, 2007, 27: 519-526.
    [1] Liang R C, Zang H M, Wang X J, et al., Composition and process for the manufacture of an improved electrophoretic display, US: 7205355B2, 2007-4-17.
    [2] Paniagua S A, Hotchkiss P J, Jones S C, et al., Phosphonic acid modification of indium-tin oxide electrodes: Combined XPS/UPS/contact angle studies, J. Phys. Chem. C, 2008, 112: 7809-7817.
    [3] Kim J S, Friend R H, Cacialli F, Surface energy and polarity of treated indium-tin-oxide anodes for polymer light-emitting diodes studied by contact-angle measurements, J. Appl. Physi.,1999, 86: 2774-2778.
    [4] Jang J H, Ullal C K, Gorishnyy T, et al. Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,Nano. Lett.,2006, 6: 740-743.
    [5]杨建文,曾兆结,陈用烈,光固化涂料及应用(第1版),北京:化学工业出版社,2005,1-390.
    [6] Sarvat Z, Uffana R, Sharif A, Water-borne Melamine-formaldehyde-cured epoxy-acrylate corrosion resistant coatings, J. Appl. Poly. Sci., 2008, 107: 215-222.
    [7] Connell K M, Petersen R A, et al., Cyclic voltammetry, J. Chem. Educ., 290-291
    [8] Park L S, Park J W, Choi H Y, et al., Fabrication of charged particles for electrophoretic display, Curr. Appl. Phys., 2006, 6: 644-648.
    [9] Croucher M D, Hair M L, Some Physicochemical Properties of Electrophoretic Display Materials, Int. Eng. Chem. Prod. Res. Dev., 1981, 20: 324-329.
    [10]刘程,表面活性剂性质理论与应用(第1版),北京:北京工业大学出版社,2003,1-1647.
    [11] Schofield J D, Extending the boundaries of dispersant technology, Progress in Organic Coatings, 2002, 45: 249-257.
    [12]普鲁特曼,Plueddemann E P等,硅烷和钛酸酯偶联剂,上海:上海科学技术文献出版社,1987, 1-303.
    [13] Park L S, Park J W, Choi H Y, et al., Fabrication of charged particles for electrophoretic display, Current Applied Physics, 2006, 6: 644-648.
    [14] Liang R C, Zang H M, Wang X J, et al., Composition and process for the manufacture of an improved electrophoretic display, US: 7205355B2, 2007-4-17.
    [15] Liang R C, Tseng S C, Wu Z G, et al., Electrophoretic display and novel process for its manufacture, US: 6831770, 2004-12-14.
    [16] Chan P M, Chen X H, Wu Z G, et al., Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web, US: 6906779, 2005-6-14.
    [17] Zang H M, Wang X J, Liang R C, et al., Composition and process for the sealing of microcups in roll-to-roll display manufacturing, US: 7005468, 2006-2-28.
    [18] Liang R C, Tseng S C, Wu Z G, et al., Electrophoretic display, US: 7233429, 2007-6-19.
    [19] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 7385751, 2008-6-10.
    [20] Chen X H, Chan-Park M B, Wang X J, et al., Microcup compositions having improved flexure resistance and release properties, US: 20040013855, 2004-1-22.
    [1] Liang R C, Wu Z G, Zang H M, et al., Process for manufacture of improved color displays, US: 6788452, 2004-9-7.
    [2] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 6545797, 2003-4-8.
    [3] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 6914714 , 2005-7-5.
    [4] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof , US: 6972893 , 2005-12-6.
    [5] Chen X H, Zang H M, Wu Z G, et al., Process for imagewise opening and filling color display components and color displays manufactured thereof, US: 7385751, 2008-6-10.
    [6] Son Y, Kim C, Yang D H, et al., Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low weber and reynolds numbers, Langmuir, 2008, 24: 2900-2907.
    [7]姚海根,计算机集成印刷,上海:上海科学技术出版社,2003,1-391.
    [8]吕新广,计算机直接制版(CTP)技术(第1版),北京:化学工业出版社,2004,1-291.
    [9] Lee J Y, Sung J H, Jang I B, et a1., Electrophoretic response of poly(methyl methacrylate) coated TiO2 nanoparticles, Synth. Met., 2005, 153: 221-224.
    [10] Wang Y T, Zhao X P, Wang D W, Electrophoretic ink using urea-formaldehyde microspheres, J. Microencapsu1., 2006, 23: 762-768.
    [11] Kim C A, Joung M J, Ahn S D, et a1., Microcapsules as an electronic ink to fabricate color electrophoretic displays, Synth. Met., 2005, 151: 181-185.
    [12]许时婴,微胶囊技术原理与应用(第1版),北京:化学工业出版社,2006,1-333.
    [13] Yu D G, An J H, Bae J Y, et al., Preparation and characterization of acrylic-based electronic inks by in situ emulsifier-free emulsion polymerization for electrophoretic displays, Chem. Mater., 2004, 16: 4693-4698.
    [14] Qiao R, Zhang X L, Qiu R, et al., Synthesis of functional microcapsules by in situ polymerization for electrophoretic image display elements, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 313: 347-350.
    [15] Cheng W T, Chih Y W, Yeh W T, In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent, Int. J. Adhesion and Adhesives, 2007, 27: 236-243.
    [16] Roel P, Stephen I. K, Henk de K, Giovanni N, Dirk J B, Single-substrate liquid-crystal displays by photo-enforced stratification, Nature,2002, 417: 55-58.
    [17] Van J D, Gnatowski M, Burczyk A, Solvent resistance and mechanical properties in thermoplastic elastomer blends prepared by dynamic vulcanization, J.Appl.Polym.Sci., 2008, 109: 1535-1546.
    [18] Wu H P, Liu J F, Wu X J, et al., High conductivity of isotropic conductive adhesives filled with silver nanowires, Int. J. Adhesion and Adhesives, 2006, 26: 617-621.
    [19] Cheng W T, Chih Y W, Yeh W T, In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent, Int. J. Adhesion and Adhesives, 2007, 27: 236-243.
    [20] Webber R M, Jacobson J M, Duthaler G M, et al., Electro-optic display and lamination adhesive for use therein, US: 7110163B2, 2006-9-19.
    [21] Wang W, Gu B H, Liang L Y, et al., Fabrication of near-infrared photonic crystals using highly-monodispersed submicrometer SiO2 spheres, J. Phys. Chem. B, 2003, 107: 12113-12117.
    [22] Jiang P, Large-scale fabrication of periodic nanostructured materials by using hexagonal non-close-packed colloidal crystals as templates, Langmuir, 2006, 22: 3955-3958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700