胡杨异形叶生态适应的解剖及生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡杨是中亚和中国西北干旱荒漠地区风沙前沿唯一天然分布的乔木树种,具有较强的耐逆性,能够抵御风沙、遏制沙化,在维护区域生态平衡和保护生物多样性方面发挥着重要的生态作用。胡杨具有异形叶性,成年树上着生从披针形到锯齿阔卵形等多种形状的叶片,异形叶的形成,是对所在环境长期适应的结果。比较胡杨异形叶结构及生理特性的异同,研究异形叶产生的分子调控机制,能够从一定角度反应胡杨的生态适应性,对于全面研究胡杨的耐逆性具重要的理论和实践意义。
     本文以披针形、卵圆形及锯齿阔卵形3种胡杨成年树上典型形状的异形叶为研究对象,分别对叶片的形态、解剖结构、生理指标及蛋白质组进行了研究,为了解胡杨叶片发育的细胞与分子调控机制,揭示胡杨的生态适应性积累了有价值的信息。
     对胡杨异形叶的形态及解剖结构进行了观测统计,结果表明:随着叶片形状由披针形向锯齿阔卵形的变化,叶片宽度增加、表面积减小、肉质化程度提高、叶柄变长;同时锯齿阔卵形叶片的角质层、下皮层及栅栏组织厚度等反映叶片耐逆性的指标值都是最大的,披针形叶片则最小,且各叶形间差异非常显著。因此,锯齿阔卵形叶片的耐逆性结构特征最为明显,较其他两种形状的叶片更适合在逆境中生存。
     水势高低及束缚水、可溶性渗透调节物质、叶绿素的含量等生理指标,能够反映叶片的耐逆性及光合能力,通过测定这部分生理指标,发现异形叶间水分含量差异不大,但锯齿阔卵形叶片中束缚水含量最多且水势最低,渗透调节物质含量最高,叶绿素a的含量及总叶绿素含量均高于其他两种形状的叶片,说明其耐逆性及光合能力较强。
     建立了适合胡杨叶片可溶性蛋白质提取的Tris-HCl提取液配方:5%β-巯基乙醇,2%SDS,0.05mol/L Tris-HCl(pH8.8),10%甘油,1mmol/LPMSF。通过对异形叶可溶性蛋白质进行SDS-PAGE分离,发现不同形状叶片间的电泳图谱差异较大,说明随着叶片形状的变化,叶片蛋白质的表达也出现变化。进而通过优化裂解液的成分及配比,得到了适合胡杨叶蛋白质的裂解液配方:7mol/L尿素、2mol/L硫脲、2%CHAPS、60mmol/L DTT、0.2%载体两性电解质;并成功建立了合适的双向电泳条件,能够得到蛋白点分辨率高、干扰少、重复率好的高质量双向电泳图谱,为胡杨异形叶蛋白质组的研究奠定了良好基础。以同一小枝上成熟的披针形及锯齿阔卵形叶片为研究对象,对其叶片蛋白质进行双向电泳分离,对电泳结果进行软件分析,共得到73个差异点,其中在锯齿卵圆形叶片中表达上调的为51个,在披针形叶片中表达上调的为22个。并对其中24个差异最为显著的蛋白点进行串联质谱鉴定及数据库检索匹配,成功鉴定了其中13个蛋白点,代表了12种蛋白质,分别参与了叶片的光合作用、呼吸作用、氮代谢及提高叶片的耐逆性等。分析认为:披针形叶片具有较强的吸收利用光能的能力,能合成ATP等活跃的化学能;而锯齿阔卵形叶片的碳同化能力则较强,能够将活跃的化学能转化为糖类等可贮存的稳定的化学能,为植株的生长发育提供碳骨架及能量。同时,锯齿阔卵形叶片中耐逆相关的蛋白质表达量较高,在发生胁迫时能更快的建立起新的平衡体系,维持生命活动的正常运行,以满足成年胡杨树在干旱荒漠地区生存的需要。
     本文对胡杨异形叶之间解剖及生理学方面的差异进行了系统地研究,较好地解释了胡杨异形叶的形成与其生态适应性之间的关系:披针形叶片的光能吸收能力较强,但由于其光合碳同化能力及耐逆性较差,随着胡杨树体的生长及所处环境的恶化,无法满足植株的需要,所以光合碳同化能力及耐逆性较强的锯齿阔卵形叶片逐渐替代了幼树上占主体地位的披针形叶片,成为胡杨成年树上分布最多的叶片类型。胡杨的异形叶能通过形态、结构、生理代谢及蛋白质表达水平上的变化来更好的适应不同发育时期生存环境的改变,推测这就是其优于其他树种而能在荒漠地带生存至今,成为干旱荒漠地区唯一天然存在的高大乔木的原因。
Populus euphratica Oliv is the only naturally-distributed tall arbor species in arid desert regions of northwestern China and Central Asia.The tolerance to severe drought and high salinity,high alkalinity soil makes it ecologically important in protecting species diversity and maintaining the ecological balance.The long term adaptation to such desert environment induces the formation of heteromorphic leaves of Populus euphratica,and a single adult tree commonly has ploymophic leaves,such as lanceolate,oval and serrated broad-oval leaves.Special research interest has arisen in understanding the eco-adaptability of Populus euphratica for several years.Comparing the structural and physiological characteristics of the heteromorphic leaves and studying on the relative molecular regulatory mechanism would have both theoretical and practical significance in this area.
     This paper studied three typical heteromorphic leaves of Populus euphratica,including lanceolate, ovate and serrated broad-oval leaves,and mainly focused on the leaves' anatomical structures, physiological characteristics and proteomics.It will greatly help the understanding of cellular and molecular mechanism during leaves development and elucidating the mechanism of the eco-adaptability of Populus euphratica.
     Environmental conditions bave close relationships with leave growth and development.Different leaf shape and anatomical structure characteristics can reflect its adaptive capacity to its habitats. Experiments were conducted in leaf shape morphology and anatomical structure of Populus euphratica. The results showed that as the leaf shape changed from lanceolate to serrated broad-oval,the leaf width increased,surface area decreased,the level of carnification enhanced,and petiole extended;the serrated broad-oval leaves had the most well-developed subcortex and palisade tissue,as well as the thickest corneum,while lanceolate leaves' xeromorphic structure was not as well-developed as serrated broad-oval leaves.This demonstrated that the serrated broad-oval leaves were more suitable for arid environments survival compared to the other two types of leaves.
     The capability of tolerating adverse environment and photosynthesis of leaves can be reflected by several physiological indexes,such as the levels of water potential,bound water,osmolyte,and chlorophyll.Those measurements showed that these three types of leaves had the similar amounts of water,but the serrated broad-oval leaves had lowest water potential,the highest level of bound water, osmolyte and chlorophyll,which explained why the serrated broad-oval leaves had strongest capability of photosynthesis and tolerating adverse environment.
     The soluble proteins of heteromorphic leaves were separated by SDS-PAGE.Established a suitable Tris-HCl buffer:5%β-mercaptoethanol,2%SDS,0.05mol/L Tris-HCl(pH8.8),10%glycerin, 1mmol/L PMSF。The results indicated that protein expressions were different among leaves in different shapes.The more intuitive and comprehensive understanding on the difference in protein expression can be obtained through proteomics research.Establishing a steady method is very crucial in proteomic study in order to assure the reproducibility of the results.In this paper,by optimizing the extraction method of Populus euphratica leaf proteins(7mol/L urea、2mol/Lthiourea、2%CHAPS、60mmol/L DTT、0.2%Bio-lyte) and the conditions of 2-DE,the electrophoretic techniques specific for proteins from leaves of Populus euphratica's was successfully established and high quality 2-DE maps with less tailing,clearly and well distributed protein spots,and high repetition rate were generated,which laid a solid foundation for further proteomics research on Populus euphratica leaves.
     The lanceolate and serrated broad-oval mature leaves were collected from the same branch,leaf proteins were separated by 2-DE,and differential proteins were analyzed through tandem mass spectrum.Got 73 different protein spots,51 of them are expression more in the serrated broad-oval leave,and the other are expression more in the lanceolate leaves.Through tandem mass spectrum and Mascot search for 24 of them,successfully identified 13 spots,and representative 12 kinds of proteins, which participate in photosynthesis and respiration etc.The results suggested that lanceolate leaves had stronger capability in compounding active chemical energy from using solar energy,such as ATP etc; while serrated broad-oval leaves had stronger capability in carbon assimilation,and it can change active chemical energy into stable chemical energy,such as sucrose,and provide carbon skeleton and energy for plant growth and development.Meanwhile,the serrated broad-oval leaves had more types of proteins that can enhance its capability to tolerate adverse environment,which allowed them to be able to build a new balance system more efficiently and maintain the normal metabolism when stress occurred,and then satisfy the requirements for the adult Populus euphratica surviving in arid region.
     Through the studies on the differences in anatomy and physiology of heteromorphic leaves in Populus euphratica,this paper provided more comprehensive understanding in the association between the development and eco-adaptability in Populus euphratica heteromorphic leaves:lanceolate leaves had stronger capability in using solar energy,but it had weaker capability of tolerating adverse environment and carbon assimilation.With the trees growth and environment deterioration,the lanceolate leaves can't meet the requirements for the adult trees.Consequently,the serrated broad-oval leaves,which had stronger capability of photosynthetic carbon assimilation and tolerating the adverse environment,took place of the lanceolate leaves and became the main leaf types in adult trees.Populus euphratica heteromorphic leaves can adapt different environment in different developmental stages through the changes of leaf shape,anatomical structure,physiological metabolism and protein expression,which can be presumed as the major reason for Populus euphratica survival in the arid and semi-arid desert region.
引文
1.包仁艳.油松雌性不育系胚珠败育机制的初步研究.[D].北京林业大学,2007.
    2.白书农.植物发育生物学[M].北京:北京大学出版社,2003.
    3.薄鹏飞,孙秀玲,孙同虎等.NaCI胁迫对海滨木槿抗氧化系统和渗透调节的影响[J].西北植物学报.2008,28(1):113-118.
    4.陈华新,李卫军,安沙舟等.钙对NaCl胁迫下杂交酸模(Rum exK21)幼苗叶片光抑制的减轻作用[J].植物生理与分子生物学学报.2003,29(5):449-454.
    5.陈庆诚,孙仰文,张国良.疏勒河中下游植物群优势种生态-形态解剖特征的初步研究[J].兰州大学学报.1961(3):61-96.
    6.陈少良,李金克,尹伟伦等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报.2002,24(5-6):84-88.
    7.陈亚鹏,陈亚宁,李卫红等.干旱胁迫下的胡杨脯氨酸累积特点分析[J].干旱区地理.2003,26(4):420-424.
    8.陈亚鹏,陈亚宁,李卫红等.新疆塔里木河下游生态输水对胡杨叶片MDA含量的影响[J].应用与环境生物学报.2004,10(4):408-411.
    9.程春龙,刘松,廖容苏等.额济纳绿洲胡杨(Populus euphratica)酚类物质含量和分布及其与土壤水分的关系[J].生态学报.2008,28(1):69-75.
    10.程海鹏,明镇寰.肽基脯氨酰异构酶在细胞核内的功能[J].生命的化学.1999,19(3):124-126.
    11.邓彦斌,江彦成.新疆10种藜科植物叶片和同化枝的早生和盐生结构的研究[J].植物生态学报.1998,22(2):164-170.
    12.范海延,陈捷,曲波等.蛋白质组学及其在植物科学研究中的应用[J].生物学通报.2006,41(1):6-8.
    13.付爱红,陈亚宁,李卫红.新疆塔里木河下游胡杨不同叶形水势变化研究[J].中国沙漠.2008(1):83-88.
    14.谷瑞升,蒋湘宁.胡杨细胞和组织结构与其耐盐性关系的研究[J].植物学报.1999,41(6):576-579.
    15.韩娜,葛荣朝,赵宝存等.植物谷氨酰胺合成酶研究进展[J].河北师范大学学报:自然科学版.2004,28(4):407-410.
    16.华鹏.胡杨实生苗在河漫滩自然发生和初期生长的研究[J].新疆环境保护.2003,25(4):14-17.
    17.皇甫海燕,官春云,郭宝顺等.蛋白质组学及植物蛋白质组学研究进展[J].作物研究.2006,20(5):577-581.
    18.黄海.植物叶发育调控机理研究的进展[J].植物学通报.2003,20(4):416-422.
    19.黄留玉.后基因组时代生命科学研究的几点思考[J].生物技术通讯.2001,12(2):13-15.
    20.霍晨敏,赵保存,葛荣朝等.小麦耐盐突变体盐胁迫下的蛋白质组分析[J].遗传学报.2004,31(2):1408-1414.
    21.季方,马英杰.塔里木河冲积平原胡杨林的土壤水分状况研究[J].植物生态学报.2001,25(1):17-21.
    22.姜春宁,郑彩霞,包仁艳.油松胚珠蛋白质提取分离技术的优化[J].北京林业大学学报.2006,28(4):96-99.
    23.李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报.2005,22: 118-127.
    24.李莉,韦翔华,王华芳.盐胁迫对烟草幼苗生理活性的影响[J].种子.2007,26(5):79-83.
    25.李利,张希明.光照对胡杨幼苗定居初期生长状况和生物量分配的影响[J].干旱区研究.2002,19(2):31-34.
    26.李正理.旱生植物的形态和结构[J].生物学通报.1981(4):2-9.
    27.林东霞.胡杨异型叶显微结构与光合特征比较[D].中央民族大学,2006.
    28.刘爱荣,王桂芹,章小华.NaCl处理对空心莲子草营养器官解剖结构的影响[J].广西植物.2007,27(5):682-686.
    29.刘少华,陈国祥,等.菱异形叶光合特性的比较[J].南京师大学报:自然科学版.2002,25(1):78-82.
    30.刘速,黄培佑.胡杨根系与塔里木河流域生态环境的关系[J].干旱区地理.1990,13(2):89-92.
    31.鲁作民.旱生植物绿色组织水分状况的研究[J].植物生理学通讯.1980,4:23-27.
    32.吕萍萍,胡军,陈少良等.抗盐胡杨Na~+/H~+逆向转运蛋白基因PeNhaD1的功能[J].植物生理与分子生物学学报.2007,33(2):173-178.
    33.罗青红,李志军,伍维模等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报.2006,26(5):983-988.
    34.罗泽宇,杨粤军,刘选明.拟南芥蛋白质组研究中双向电泳技术条件的优化[J].激光生物学报.2008,17(4):539-543.
    35.马焕成,王沙生.胡杨膜系统的盐稳定及盐胁迫下的代谢调节[J].西北林学院学报.1998,18(1):15-23.
    36.马剑英,孙惠玲,夏敦胜等.塔里木盆地胡杨两种形态叶片碳同位素特征研究[J].兰州大学学报:自然科学版.2007,43(4):51-55.
    37.毛毅辉,李会勇,王天宇等.玉米液泡ATP酶亚基A基因的克隆及表达分析[J].作物学报.2008,34(1):31-36.
    38.梅杨,李海蓝,谢晋等.核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)[J].植物生理学通讯.2007,43(2):363-368.
    39.木巴热克·阿尤普.塔里木胡杨自然保护区胡杨生态系统脆弱性及其治理措施研究[J].水资源与水工程学报.2007,18(3):30-35.
    40.邱箭.胡杨多态叶气孔与光合作用特性研究[D].北京林业大学,2005.
    41.舒烈波.水稻抗旱耐盐蛋白质组学研究进展[J].生物技术通报.2007,4:31-37.
    42.司建华,常宗强,苏永红等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报.2008,28(1):125-130.
    43.苏培玺,张立新,等.胡杨不同叶形光合特性、水分利用效率及其对加富CO_2的响应[J1.植物生态学报.2003,27(1):34-40.
    44.谈建中,刘美娟,张国英等.桑突变体Cty-Ym叶片蛋白质的双向电泳及质谱分析[J].蚕业科学.2005,31(1):8-13.
    45.汪月霞,孙国荣,王建波等.Na_2CO_3与NaCl胁迫下星星草幼苗叶绿体保护酶活性的比较[J].草业学报.2007,16(1):81-86.
    46.王改萍,彭方仁,李生平.银杏叶片蛋白质含量动态变化的电泳分析[J].南京林业大学学报.2006,30(4):114-118.
    47.王岚,刘骁勇,张华宁等.生物质谱技术在蛋白质组学研究中的应用[J].生物技术通讯.2007, 18(1):166-168.
    48.王瑞刚,陈少良,刘力源等.盐胁迫下3种杨树的抗氧化能力与耐盐性研究[J].北京林业大学学报.2005,27(3):46-52.
    49.王世绩.胡杨林[M].北京:中国环境科学出版社,1995.
    50.王世绩.全球胡杨林的现状及保护和恢复对策[J].世界林业研究.1996,9(6):37-44.
    51.王希,朱友林.现代质谱技术在蛋白质组学中的应用及最新进展[J].生物技术通讯.2006,17(3):465-467.
    52.王怡.三种抗旱植物叶片结构的对比观察[J].四川林业科技.2003,24(1):64-67.
    53.王玉琪,彭新湘.适于水稻叶片蛋白质组分析的双向电泳技术[J].植物生理与分子生物学学报.2006,32(2):252-256.
    54.伍维模,李志军,罗青红等.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J].林业科学.2007,43(5):30-35.
    55.夏铭,王小兵,李海波等.水稻液泡ATPase B亚基基因的克隆及其在低磷胁迫下的表达特征分析[J].植物学报(英文版).2002,44(5):573-578.
    56.肖正清,王树东,古丽加帕尔等.塔里木河流域中下游胡杨典型叶片光谱响应特征[J].干旱区地理.2007,30(5):680-687.
    57.徐明波,孟文华,马贤凯.脯氨酰顺2反异构酶的纯化及对重组蛋白质折叠反应的催化性能[J].生物化学与生物物理进展.1994,21(3):247-251.
    58.许世玲,冯金朝,姜玲等.额济纳旗胡杨幼叶糖类物质变化[J].中央民族大学学报:自然科学版.2007,16(3):210-216.
    59.严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[D].上海:中国科学院上海生命科学研究院植物生理生态研究所,2006.
    60.杨黎.参与PTGS/TGS的重要成员ARGONAUTE1在叶片发育中的功能[D].上海交通大学,2004.
    61.杨丽.天然胡杨树体水分输移关系及影响因子研究[D].内蒙古农业大学,2006.
    62.杨梅,陈伟,林思祖等.杉木叶片蛋白质组的双向电泳技术优化[J].热带亚热带植物学报.2007,15(5):438-442.
    63.杨树德,陈国仓,张承烈等.胡杨披针形叶与宽卵形叶的渗透调节能力的差异[J].西北植物学报.2004,24(9):1583-1588.
    64.杨树德,郑文菊,陈国仓等.胡杨披针形叶与宽卵形叶的超微结构与光合特性的差异[J].西北植物学报.2005,25(1):14-21.
    65.杨粤军,李彦,唐冬英等.利用蛋白质组学技术研究拟南芥隐色素突变体cry1的差异表达蛋白[J].湖南师范大学自然科学学报.2007,30(2):108-112.
    66.袁书艳,胡青,等.茉莉酸在胡杨细胞耐盐性中的作用[J].北京林业大学学报.2002,24(3):66-69.
    67.曾凡江,张希明,等.新疆策勒绿洲胡杨水分生理特性研究[J].干旱区研究.2002,19(2):26-30.
    68.张建锋,邢尚军,郗金等.树木耐盐的生理指标测定[J].东北林业大学学报.2003,31(6):90-93.
    69.张明生,谈锋.甘薯可溶性蛋白,叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学.2003,36(1):13-16.
    70.张晓然,吴鸿,胡正海等.沙地10种重要沙生植物叶的形态结构与环境的关系[J].西北植物学报.1997,17(5):54-60.
    71.张云霞,石勇,王瑞刚等.初始盐胁迫下ABA与CaM对胡杨叶片气体交换的调控[J].林业科学.2008,44(1):57-64.
    72.赵从建,郭尧君,刘少君等.中枢神经蛋白质组分析中双向电泳技术的建立[J].生物化学与生物物理进展.2000,27(1):645-650.
    73.赵翠仙,黄子璨.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报.1981,23(4):278-283.
    74.赵广东,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅰ,叶片养分,叶绿素,可溶性糖和淀粉的变化[J].植物生态学报.2003,27(2):228-234.
    75.赵利辉,罗庆云,章文华等.大麦幼苗根系液泡膜质子泵对苗的发育和盐胁迫的响应[J].植物生理学通讯.2001,37(2):95-97.
    76.郑彩霞,邱箭,姜春宁等.胡杨多形叶气孔特征及光合特性的比较[J].林业科学.2006,42(8):19-24.
    77.朱会娟,王瑞刚,陈少良等.NaCl胁迫下胡杨(Populus euphratica)和群众杨(P.popularis)抗氧化能力及耐盐性[J].生态学报.2007,27(10):4113-4121.
    78.Alexandersson E,Saalbach G and Larsson C et al.Arabidopsis plasma membrane proteomics identifies components of transport,signal transduction and membrane trafficking[J].Plant Cell Physiology.2004,45(11):1543-1556.
    79.Asada K.Ascorbate peroxidase-a hydrogen peroxide-scavenging enzymein plant[J].Physiol Plant.1992,85:235-241.
    80.Bakhtiar R and Nelson R.Mass spectrometry of the proteome[J].Mol Pharmacol.2001,60:405-415.
    81.Bjellqvist B,Ek K and Righetti P G et al.Isoelectric focusing in immobilized pH gradients:principle,methodology and some applications[J].Biochem.Biophys.Methods.1982,6(4):317-339.
    82.Blackman S A.Maturation proteins and sugars in desiccation to lerance of developing soybean seeds[J].Plant Physiol.1992,100:225-230.
    83.Blackstock W P and Weir M P.Proteomics:quantitative and physical mapping of cellular proteins[J].Trends Biotechnol.1999,17(3):121-127.
    84.Boston R S,Viitanen P V and Vierling E.Molecular chaperones and protein foldingin plants[J].Plant Mol Biol.1996,32:122-191.
    85.Bowman J L,Eshed Y and Baum S F.Establishment of polarity in angiosperm lateral organs[J].Trends Genet.2002,18:134-141.
    86.Burk D H,Liu B and Zhong R et al.Katanin-like protein regulates normal cell wall biosynthesis and elongation[J].Plant Cell.2001,13:807-827.
    87.Canovas F M,Dumas-Gaudot E and Recorbet G et al.Plant proteome analysis[J].Proteomics.2004,4(2):285-298.
    88.Castro-Diez P,Puyravaud J and Comelissen J.Leaf structure and anatomy as related to leaf mass per area variation in seedlings of wide range of woody plant species and types[J].Oecologia.2000,124:476-486.
    89.Celis J E and Gromov P.2D protein electrophoresis:can it be perfected?[J].Cur Opin Biotechnol.1999,10(1):16-21.
    90.Chamrad L.Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data[J].Proteomics.2004,4:619-628.
    91.Chartzoulakis K,Patskas A and Kofidis G et al.Water stress affects leaf anatomy,gas exchange, water relations and growth of two avocado cultivers[J].Sci Hortic-Amsterdam.2002,95:39-50.
    92.Chen S L,Fritz E and Wang S S et al.Cellular distribution of ions in salt-stressed cells of Populus euphratica and P.tomentosa[J].For Stu China.2000,2(2):8-16.
    93.Chen S L,Li J K and Wang T H et al.Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar[J].J Plant Growth Regul.2002,21:224-233.
    94.Chen Y.Roles of carbohydrates in desiccation to lerance and memberane behavior in maturing maize seed[J].Crop Sci.1990,30:971-975.
    95.Cheng Y,Dai X and Y Zhao.Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis[J].Genes Dev.2006,20:1790-1799.
    96.Chertov O,Michiel D F and Xu L et al.Identification of defensin-1,defensin-2,and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils[J].J.Biol.Chem.1996,271(6):2935-2940.
    97.Chlenov M A,Kandyba E I and Nagornaya L V et al.High-performance liquid chromatography of human glycoprotein hormones[J].J.Chromatogr.1993,631(1-2):261-267.
    98.Cui S X,Huang F and Wang J et al.A proteomic analysis of cold stress responses in rice seedlings[J].Proteomics.2005,5(12):3162-3172.
    99.David J.L,Zivy M and Cardin M.L et al.Protein evolution in dynamically managed populations of wheat:adaptative responses to macro-environmantal conditions[J].Theorl Appl Genet.1997,95(5-6):932-941.
    100.Dietz K J,Tavakoli N and Kluge C et al.Significance of the V-rype ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemicallevel[J].J Exp Biol.2001,52:1969-1980.
    101.Dong X J and Zhang X S.Some observations of the adaptations of sandy shrubs to the arid environment in the Wu Us sandland leaf water relations and anatomic feature[J].J Arid Environ.2001,48:41-48.
    102.Dunn M J and Burghes A H M High resolution two-dimensional polyacrylamide gel electrophoresis.I.Methodological procedures[J].Electrophoresis.1983,4(2):97-116.
    103.Eshed Y,Baum S F and Perea L V et al.Establishment of polarity in lateral organs of plants[J].Curr Biol.2001,11:1251-1260.
    104.Finnie C,Maeda K.and Ostergaard O et al.Aspects of the barley seed proteome during development and germination[J].Biocheml Soc Trans.2004,32(3):517-519.
    105.Foyer G H and Halliwell B.The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acidmetabolism[J].Planta.1976,133:21-22.
    106.Ganesh Kumar Agrawal,Randeep Rakwal and Masami Yonekura et al.Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice(Oryza sativa L.)seedlings[J].Proteomics.2002,2(8):947-959.
    107.Gasparic V,Bjellqvist B and Rosengren A.:Swedish,No.75140491[P].1975.
    108.Gh Hosseini S,Siopongco J and Leonard J.Wade et al.Proteomic analysis of rice leaves during drought stress and recovery[J].Proteomics.2002,2(9):1131-1145.
    109.Gorg A,Obermaier C and Boguth G et al.A method for the two-dimensional electrophoresis of leaf proteins very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins[J].Electrophoresis.1997,18(3-4):328-337.
    110.G(o|¨)rg A,Obermaier C and Boguth G et al.The current state of two-dimensional electrophoresis with immobilized pH gradients[J].Electrophoresis.2000,21:1037-1053.
    111.Gorg A,Weiss W and Dunn M.J.Current two-dimensional electrophoresis technology for proteomics[J].Proteomics.2004,4(12):3665-3685.
    112.Graves P R and Haystead T A.Molecular biologist's guide to proteomics[J].Micro Mol Biol.2002,66(1):39.
    113.Gray W M.Hormonal regulation of plant growth and development[J].PLoS Biol.2004,2:E311.
    114.Gu R S,Liu Q L and Pei D et al.Understanding saline and osmotic tolerance of Populus euphratica suspended cells[J].Plant Cell Tiss Org Cult.2004,78:261-265.
    115.Guimil S and Dunand C.Patterning of Arabidopsis epidermal cells:epigenetic factors regulate the complex epidermal cell fate pathway[J].Trends Plant Sci.2006,11:601-608.
    116.Hajduch M,Gapathy A and Stein J W et al.A systematic proteomic study of seed filling in soybean.Eestablishment of high-resolution two-dimensional reference maps,expression profiles,and an interactive proteome database[J].Plant Physiol.2005,137(4):1397-1419.
    117.Hajheidari M,Abdollahian-Noghabi M and Askari H et al.Proteome analysis of sugar beet leaves under drought stress[J].Proteomics.2005,5(4):950-960.
    118.Hakimi A,Monneveux P and Galiba G.Soluble sugars,proline,and relative water content(RWC)as traits for improving drought tolerance and divergent selection for RWC from T.polonicum to T.durm[J].Journal of Genetics & Breeding.1995,49(3):237-243.
    119.Hari V.A method for the two-dimensional electrophoresis of leaf proteins[J].Anal.Biochem.1981(113):332-335.
    120.Hari V.A method for the two-dimensional electrophoresis of leaf proteins[J].Anal.Biochem.1981,113:332-335.
    121.Haruta M,Major I T and Christopher M E et al.A Kunitz trypsin inhibitor gene family from trembling aspen {Populus tremuloides Michx.):cloning,functional expression,and induction by wounding and herbivory[J].Plant Mol Biol.2001,46:347-359.
    122.Heazlewood J L,Howell K A and Whelan J et al.Towards an analysis of the rice mitochondrial proteome[J].Plant Physiol.2003,132:230-242.
    123.Henningsen R,Gale B L and Straub K M et al.Application of zwitterionic detergents to solubilization of intergral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry[J].Proteomics.2002,2:1479-1488.
    124.Higuchi H,Sakuratani T and Utsunomiya N.Photosynthesis,leaf morphology,and shoot growth as affected by temperatures in cherimoya(Annona cherimola Mill.)trees[J].Sci Hortic-Amsterdam.1999,80:91-104.
    125.Hirosato K,Kiyoshi I and Setsuko K.A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization[J].Proteomics.2001,1(9):1162-1171.
    126.Horiguchi G,Kim G T and Tsukaya H.The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J].Plant J.2005,43:68-78.
    127.Miflin J B and Lea J P.Ammonia assimilation[M].The biochemistry of plants,J.Miflin B,New York:Academic Press,1980.
    128Janicka-Russak M and Klobus G.Modification of plasma membrane and vacuolar H~+-ATPase in response to NaCl and ABA[J].J Plnnt Physiol.2006,147:97-107.
    129.Kaplan D R and Hagemann W.The relationship of cell and prganism in vascular plants[J].Bioscience.1991,41:693-703.
    130.Keller C P and Volkenbrugh Van E.Auxin-induced epinasty of tobacco leaf tissues.A nonethylene-mediated response[J].Plant Physiol.1997,113:603-610.
    131.Kerstetter R K and Poethig R S.The specification of leaf identity during shoot development[J].Annu Rev Cell Dev Bi.1998,14:373-398.
    132.Kim M and Sinha N.Regulating shapes and sizes[J].Dev Cell.2003,4:441-447.
    133.Klaus W and Wieczorek B H.The V-type H+-ATPase:molecular structure and function,physiological roles and regulation[J].J Exp Biol.2006,29:577-589.
    134.Klose J.Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues.A novel approach to testing for induced point mutations in mammals[J].Human Genetik.1975,26(3):231-243.
    135.Klose J and Kobalz U.Two-dimensional electrophoresis of proteins:An updated protocol and implications for a functional analysis of the genome[J].Electrophoresis.1995,16(1):1034-1059.
    136.Koller A,Washburn M P and Lange B M et al.Proteomic survey of metabolic pathways in rice[J].Natl.Acad.Sci.2002,99:11969-11974.
    137.Kozaki A and Takeba G.Photorespiration protects C3 plants from photooxidation[J].Nature.1996,384:557-560.
    138.Kruft V,Eubel H and Jansch L et al.Proteomic approach to identify novel mitochondrial proteins in Arabidopsis[J].Plant Physiol.2001,127:1694-1710.
    139.Krusa M,Torre M and Marina M.L.A reversed-phase high-performance liquid chrotomagraphic method for the determination of soya bean proteins in bovine milks[J].Anal.Chem.2000,72(8):1814-1818.
    140.Lam H M,Coschigano K T and Oliveira I C et al.The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J].Annu Rev Plant Physiol Plant Mol Biol.1996,47:569-593.
    141.Laurie A,Powell G B and Stevens T H.Composition and assembly of the yeast vacuolar type I-F-ATPase complex[J].J Exp Biol.2000,203:61-70.
    142.Leslie E.Sicbnrth auxin is required for leaf vein paaemin Arabidopsis[J].Plant Physiol.1999,121:1179-1190.
    143.Li Zh X and Zheng C X.Structural characteristics and eco-adaptability of heteromorphic leaves of Populus euphratica[J].Forestry Studies in China.2005,7(1):11-15.
    144.Lindermayr C,Saalbach G and Dun I J.Proteomic identification of nitrosylated proteins in Ara Mdopsis[J].Plant Physiol.2005,137(3):921-930.
    145.Lubec G,Afjehi-Sadat L and Yang J W et al.Searching for hypothetical proteins:Theory and practice based upon original data and literature[J].Prog Neurobiol.2005,77.
    146.Major I T and Constabel C P.Functional analysis of the kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores 1[J].Plant Physiol.2008,146(3):888-903.
    147.Mann M.Quantitative protenmis[J].Nature Biotechnol.1999,17(10):954-955.
    148.Marion M B.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal Biochem.1976,72(1-2):248-254.
    149.Martin A,Lee J and Kichey T et al.Two cytosolicglutamine synthetase isoforms of maize are specificallyinvolved in the control of grain production[J].Plant Cell.2006,18:3252-3274.
    150.Mathesius U,Keijzers G and Natera S H et al.Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting[J].Proteomics.2001,1(11):1424-1440.
    151.Mcnally S F,Hirel B and Gadal P et al.Glutamine synthetases of higher plants.Evidence for a specific isoform content related to their possible physiological role and their compartmentation within the leaf[J].Plant Physiol.1983,72:22-25.
    152.Medzihradszky K F,Campbell J M and Baldwin M A et al.The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer[J].Anal Chem.2000,72(3):552.
    153.Molloy M P,Herbert B R and Walsh B J et al.Extraction of membrane proteins by differential solubilization[J].Electrophoresis.1998,19(1):837-844.
    154.Monribot C and Boucherie H.Two-dimensional electrophoresis with carrier ampholytes[M].Proteome research:two-dimensional gel electrophoresis and identification methods,Thierry Rabilloud,New York:Springer,2000,31.
    155.Mrema A F and Granhall U.Sennerby-forsse plant growth,leaf water potential,nitrogenase activity and nodule anatomy in Leucaena leucocephala as affected by water stress and nitrogen availability[J].Trees-Struct Funct.1997,12(1):42-48.
    156.Nakano Y and Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant Cell Physiol.1981,22:867-880.
    157.Narasimhan M L and Hasegawa P M.NaCl regulation of tono plast ATPase 70 kilodalaton subunit in RNA in tobacco cells[J].Plant Physiol.1991,97:562-568.
    158.Narita N N,Moore S and Horiguchi G et al.Over-expression of a novel small peptide ROTUNDIFOLIA4 decreases of cell proliferation and alters leaf shape in Arabidopsis[J].Plant J.2004,38:699-713.
    159.Ndimba B K,Chivasa S and Simon W J et al.Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry[J].Proteomics.2005,5(16):4185-4196.
    160.Neuhoff V,Arold N and Taube D et al.Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250[J].Electrophoresis.1988,9(6):255-262.
    161.Nishi T and Forgac M.The vacuolar H+-ATPase.Nature's most versatile proton pumps[J].Nat Rev Mol Cell Biol.2002,3:94-103.
    162.O'farrell P J.High resolution two-dimensional electrophoresis of proteins[J].Biol.Chem.1975,250:4007-4021.
    163,Ottow E A,Polle A and Brosche M et al.Molecular characterization of PeNhaDl:the first member of the NhaD Na~+/H~+ antiporter family of plant origin[J].Plant Mol Biol.2005,58:75-88.
    164.Pandey A and Mann M.Proteomics to study genes and genomes[J].Nature.2000,405:837-846.165.Pekker I,Alvarez J P and Eshed Y.Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity[J].Plant Cell.2005,17:2899-2910.
    166.Peltier J B,Friso G and Kalume D E et al.Efficient,small scale electroelution of high molecular weight DNA from agarose gels by a miniature vertical electrophoresis cell[J].Electrophoresis.2000,12(4):317-320.
    167.Prime T A,Sherrier D J and Mahon P et al.A proteomic analysis of organelles from Arabidopsis thaliana[J]Electrophoresis.2000,21(16):3488-3499.
    168.Rabilloud T.Solubilization of proteins for electrophoretic analyses[J].Electrophoresis.1996,17(5):813-829.
    169.Rabilloud T,Adessi C and Giraudel A et al.Advances in two-dimensional electrophoretic method improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients[J].Electrophoresis.1997,18(3-4):307-316.
    170.Raharjo T J,Widjaja I and Roytrakul S et al.Comparative proteomics of Cannabis sativa plant tissues[J].Journal of Biomolecular Techniques.2004,15(2):97-106.
    171.Ratajczak R.Structure,function and regulation of the plant vacuolar H+ translocating ATPase[J].Biochim Biophys Acta.2000,1465:17-36.
    172.Riccardi F,Gazeau P and Zivy M et al.Protein changes in response to progressive water deficit in maize:Quantitative variation and polypeptide identification[J].Plant Physiol.1998,117:1253-1263.
    173.Rouquie D,Peltier J.B and Marquis-Mansion M et al.Construction of a directory of tobacco plasma membrane proteins by combined two-dimensional gel electrophoresis and protein sequencing[J].Electrophoresis.1997,18(3-4):654-660.
    174.Saieed N Th,Saieed N Th.Natural variation of Populus euphratica Oliv:1-Variation in morphological leafcharacters[J].Mesopotamia Journal of Agriculture.1993,25(4):91-102.
    175.Salekdeh G H,Siopongco J and Wade L J et al.Proteomic analysis of rice leaves during drought stress and recovery[J].Proteomics.2002,2:1131-1145.
    176.Sanchez F J,Manzanares M and Andre E F et al.Turgormaintenance,osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress[J].Field Crops Res.1998,59:225-235.
    177.Sandra K,Devreese B and Beeumen J Van et al.The Q-Trap mass spectrometer,a novel tool in the study of protein glycosylation[J].J Am Soc Mass Spectrom.2004,5(3):413.
    178.Santoni V,Kieffer S and Desclaux D et al.Membrane proteomics:Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties[J].Electrophoresis.2000,21(16):3329-3344.
    179.Santoni V,Rabilloud T and Doumas P et al.Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels[J].Electrophoresis.1999,20(4-5):705-711.
    180.Scarpella E,Marcos D and Friml J et al.Control of leaf vascular patterning by polar auxin transport[J].Genes Dev.2006,20:1015-1027.
    181.Schluter H.Protein Liquid Chromatography[M].New York:Elsevier Science,1999:223-234.
    182.Schruff M C,Spielman M and Tiwari S et al.The auxin response factor2 gene of Arabidopsis links auxin signalling,celldivision,and the size of seeds and other organs[J].Development.2006,133:251-261.
    183.Scot M M and Johann P G.Multi site polyadenylation and transcriptional response to stress of a vacuolar type H~+-ATPase subunit A gene in Arabidopsis thaliana[J].BMC Plant Biol.2002,2(1):3.
    184.Sebastien C C,Erwin W and Kri L et al.Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel-electrophoresis analysis[J].Proteomics.2005,5(10):2497-2507.
    185.Shapior A L,Vinuela E and Maizel J V.Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels[J].Jr-Biochemical and biophysical research communications.1967,28(5):815-820.
    186.Singh T N,Aspinall F and Paley L G.Proline accumulation and variet al adaptability to drought resistance[J].Nature New Biol.1972,236:188-190.
    187.Skylas D J,Copeland L and Rathmell W G et al.The wheat-grain proteome as a basis for more efficient cultivar identification[J].Proteomics.2001,1(12):1542-1546.
    188.Steskuko K,Afzal M and Randeep R.Separation and characterization of proteins from green and etiolated shoots of rice(Oryza Sativa L):Towards a rice prateome[J].Electrophoresis.1999,20:630.
    189.Stevens T H and Forgac M.Structure,function and regulation of the vacuolar(H).ATPase[J].Cell Dev Biol.1997,13:779-808.
    190.Thiellement H,Bahrman N and Damerval C et al.Proteomics for genetic engineering studies in plants[J].Electrophoresis.1999,20:2013-2026.
    191.Thitamadee S,Tsachihara K and Hashimoto T.Microtubule basis for left-handed helical growth in Arabidopsis[J].Nature.2002,417(193-196).
    192.Tsiantis M S,Bartholamew D M and Smith J A C.Salt regulation of tran script levels for the c subunit of a leaf vacuolar H-ATPase in the halophyte Mesembryanthemum crystallimum[J].Plant J.1996,9:729-736.
    193.Tsugita A,Kamo M and Kawakami T et al.A method for the two-dimensional electrophoresis of leaf proteins[J].Electrophoresis.1996,17(5):855-865.
    194.Tsukaya H.Organ shape and size:alessonfrom studiesof leafmorphogenesis[J].Curr Opin Plant Biol.2003,6:57-62.
    195.Urbas P.Adaptive and inevitable morphological of three herbaceous species in a multi-species community:field experiment with manipulated nutrients and light[J].Acta Oecologic.2000,21:139-147.
    196.Valentina M.Activities of SOD and the ascorbate glutathion cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii[J].Plant Physiol.2000,33:65-77.
    197.Volgler H and Kuhlemeier C.Simple hormones but comlex signaling[J].Curr Opin Plant Biol.2003,6:51-56.
    198.Wallsgrove RM,Turner J C and Hall N P et al.Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis[J].Plant Physiol.1987,83:155-158.
    199.Wasinger V C,Cordwell S J and Cerpa-Poljak A et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J].Electrophoresis.1995,16:1090-1094.
    200.Weber K and Osborn M.The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis[J].J Biol Chem.1969,244:4406-4412.
    201.Wei W,Monica S and Rita V et al.Protein extraction for two-dimensional electrophoresis form olive leaf,a plant tissue containing high levels of interfering compounds[J].Electrophoresis.2003,24(14):2369-2375.
    202.Wilkins M R,Sanchez J C and Gooley A A et al.Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J].Biotechnol Genet Eng Rev.1996,13:19-50.
    203.Wmtes R and Hudson A.Phantastica:a gene required for dorsoventrality of leaves in Antirrhinum majus[J].Development.1995,121:2143-2154.
    204.Zgurski J M,Sharma R and Bolokoski D A et al.Asummetic auxin response precedes asymmetric growth and differentiation of asymmetric leaf and asymmetric leaf Arabidopsis leaves[J].Plant Cell.2005,17:77-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700