含磷物质修复铅锌矿污染土壤的机理和技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中有害重金属积累到一定程度,不仅会导致土壤退化、农作物产量和品质下降,而且可能直接毒害植物或通过食物链途径危害人体的健康。上虞市东关镇银山畈有一万多亩铅锌矿污染土壤和农作物特别是蔬菜受到了严重的铅(Pb)污染和中度的锌(Zn)污染。因此,研究含磷(P)物质修复铅锌矿污染土壤和蔬菜的机理,解决该修复技术中的一些根本性的基础科学问题及关键技术,具有重要的理论和实用意义,对浙江省经济和社会可持续发展和生态省建设将起积极作用。
     论文在评述矿区重金属污染现状和含磷物质原位修复污染土壤研究进展的基础上,以铅锌矿污染土壤为研究对象,借助X-射线衍射分析技术(XRD)和模型MINTEQ研究了含P物质原位修复污染土壤中Pb的主要机制,通过实验室模拟、盆栽以及田间小区实验,采用重金属形态分级、毒性淋溶提取(toxicity characteristicleaching procedure,TCLP)以及植物吸收等方法对含P物质(包括磷酸二氢钾、过磷酸钙、钙镁磷肥、磷矿粉)原位修复铅锌矿污染土壤的效果进行评估,获得如下主要成果:
     (1)采用X-射线衍射分析技术,从矿物学的角度研究了水和土壤环境中P-Pb相互作用机理,为后续铅锌矿污染土壤的有效修复研究提供理论依据。结果表明,添加P和Pb或者P、氯(Cl)和Pb溶液处理后,膨润土的XRD图谱有明显的新特征峰生成,经过物相鉴定,添加P和Pb处理后主要是生成了羟基磷酸铅盐化合物[Pb_(10)(PO_4)_6(OH)_2,PH]和磷酸氢铅盐化合物[PbHPO_4,HP],而添加P、Cl和Pb处理后,主要是生成了氯磷酸铅盐化合物[Pb_5(PO_4)_3Cl,ClP]。添加P处理后,污染土壤的XRD图谱中有新生成的衍射峰出现,经过物相鉴定,这些衍射峰主要是氯(羟基)磷酸铅盐化合物的特征峰。上述结果说明P处理后,Pb污染环境中容易生成溶解度极低的氯(羟基)磷酸铅盐化合物,并可控制Pb的活性。理论上P可应用于铅污染土壤的修复。
     (2)结合Visual MINTEQ模型考察了P和Cl对铅锌矿污染土壤中Pb的生物有效性的影响。结果发现,在铅锌矿污染土壤中添加水溶性P化合物磷酸二氢钾KH_2PO_4(MPP)后,显著(p<0.05)降低了土壤中Pb的水溶-交换态含量,降低幅度为92%~95%,显著降低了Pb的生物有效性。在相同P添加量水平时,加Cl与不加Cl比较,显著降低了土壤中Pb的水溶-交换态含量,表明添加Cl对含磷物质降低铅毒有促进作用。运用模型Visual MINTEQ计算的结果证实,添加P和Cl处理土壤后,土壤中Pb的活度主要受P的控制,尤其是氯磷酸铅盐化合物[pyromorphite,Pb_5(PO_4)_3Cl]。在使用含P物质修复Pb污染土壤技术时,添加适量的Cl,以达到最佳修复效果。
     (3)实验室条件下,研究了pH和P对土壤淋洗液中重金属Pb、Zn含量的交互影响以及Ca、P及pH对土壤淋洗液中重金属Pb、Zn含量的交互影响。结果表明,环境pH显著(p<0.05)影响了MPP与污染土壤中的重金属Pb、Zn的相互作用,并且在6.0~7.4的pH环境下,MPP对Pb、Zn含量的降低效果最理想。如果同时添加碱性物质和过磷酸钙(SSP)把土壤pH调到6.5~7.5,可以使SSP修复Pb、Zn的效果达到最佳(降低幅度分别高达68%和94%)。添加P的同时添加不同Ca、pH以及P对Pb、Zn含量的交互影响分析发现,中性环境中Ca(0.03~0.60Ca/Pb摩尔比的Ca用量)促进了P对Pb/Zn的固定作用,并且Ca/P的摩尔比例为0.4~1.0(Ca剂量是0.24~0.60 Ca/Pb摩尔比,P用量是0.6 P/Pb摩尔比)时,铅锌复合污染土壤中水溶性Pb、Zn的活性同时地、最大程度地被钝化。
     (4)用Tessier连续分级提取法研究了不同含磷物质(磷肥)对铅锌矿污染土壤中Pb和Zn化学形态的影响。结果表明,磷矿粉(PR)、过磷酸钙(SSP)和钙镁磷肥(CMP)等3种磷肥都具有显著(p<0.05)降低Pb的各种非残渣形态含量的作用。在P/Pb摩尔比例为7的磷肥用量水平时,从非残渣形态Pb总量的降低幅度上看,3种磷肥修复铅污染的效果顺序为:SSP(85%)、CMP(83%)>>PR(16%);把Pb的形态与其生物有效性联系起来比较,3种磷肥修复Pb污染效果顺序为:CMP(94%)、SSP(92%)>PR(61%)。结果同时显示,PR、CMP显著降低了土壤中Zn的水溶态(49%~77%)、交换态(65%~96%)、有机结合态含量(19%~35%),而SSP在降低交换态和有机结合态含量的同时增加了水溶态Zn的含量。磷肥具有原位修复铅锌矿污染土壤的潜能。3种磷肥中以磷矿粉最为经济。
     (5)设了0,0.6,1.2,1.8,3.0,4.0 P/Pb摩尔比等6个P剂量水平梯度,温室条件下采用TCLP、水溶以及交换态提取法评估了不同种类和水平的含P物质对铅锌矿污染土壤中重金属Pb、Zn生物有效性的影响,并参照国际标准探讨足够控制重金属毒性到限制标准以内的P用量水平。结果表明,SSP和MPP都具有显著(p<0.05)降低土壤交换态和TCLP提取Pb含量的作用,降低TCLP含量的幅度大小顺序是:MPP(66%~93%)>SSP(26%~69%)。MPP处理的P剂量水平在0.6、SSP处理在1.2~1.8区间时,一个月内就足以把土壤中TCLP Pb的含量降低到国际限制标准(5 mg·L~(-1))以内,修复铅毒。结果同时表明,MPP对土壤中Zn的TCLP含量无显著影响,而SSP在显著降低了交换态含量的同时,微量增加了TCLP含量,但都远低于国际的限制标准(25 mg·L~(-1))。各种有效性Zn(TCLP、水溶性、交换态)的含量均与土壤pH显著负相关,说明即使添加了含P物质处理,土壤中Zn的活性主要还是受土壤pH控制。上述结果进一步说明了含P物质具有显著降低铅锌矿污染土壤中Pb环境风险的作用。
     (6)在前一章的基础上,缩小P用量水平(P/Pb摩尔比)范围,设为:0、0.18、0.36、0.72、1.08、1.44,温室条件下开展了MPP对污染土壤中Pb、Zn和Cd在土壤固相-液相之间以及土壤-根系-地上部的迁移累积影响的研究。结果表明,与对照相比,添加MPP处理污染土壤后,显著(p<0.05)降低了空心菜地上部吸收Pb、Zn和Cd的含量,降低幅度分别为53%~92%、35%~71%和59%~86%;降低了根系吸收累积重金属Pb的含量,增加了根系吸收的Zn的含量,但对Cd吸收量无显著影响。增加P的剂量水平,由根系向地上部转运的Pb、Zn和Cd的量的呈指数级下降趋势。地上部吸收的各元素的相关分析结果表明,Pb与Zn、Cd呈显著正相关,其中相关系数最高的是Pb与Zn(r=0.993,p<0.01),其次是Pb与Cd(r=0.986,p<0.01),说明Pb与Zn、Cd在空心菜从根系到地上部分转运的过程中是协作关系。添加MPP后,提高了土壤pH,从而降低了土壤水溶性Cd的含量;Zn变化不显著,但增加了土壤水溶性总Pb含量。模型Visual MINTEQ计算结果表明,土壤平衡液中Pb的主要存在形态是PbHPO_4、PbOH~+、PbH_2PO_4~+等3种络合形态。重金属土壤含量与植物吸收量的相关分析结果表明,根系吸收Pb的量与土壤水溶性Pb含量呈显著的负相关,相关系数为-0.872(p<0.05)。含P物质具有显著降低复合污染土壤中Pb、Zn和Cd植物毒性的作用。
     (7)在田间条件下,以青菜(上海青,Brassica campestris L.chinensis)为指示植物,结合XRD、重金属形态分级、TCLP、土壤无机磷形态分级法,研究了3种磷肥包括SSP、CMP和PR修复铅锌矿污染土壤的田间示范效果,同时探讨了磷肥对铅锌矿污染土壤的修复机理。实验结果表明,磷肥显著(p<0.05)降低了Pb的非残渣态含量(34%~64%)、植物吸收量(16%~58%)和TCLP提取量(25%~59%),并且在0.8 P/Pb摩尔比的P用量水平时,CMP和SSP处理六个月后土壤中Pb的TCLP量低于国际限制标准。XRD分析发现,土壤中有新的氯(羟基)磷酸铅盐化合物[Pb_(10)(PO_4)_6(OH/Cl)_2]、含铁的磷酸铅化合物[PbFe_3(SO_4)(PO_4)(OH)_6]和含钙的磷酸铅化合物[Ca_(2.5)Pb_(7.5)(OH)_2(PO_4)_6]生成。CMP和PR显著(p<0.05)降低了Zn的各种非残渣态含量(27%~79%)、植物吸收量(39%~73%)和TCLP提取含量(4%~39%)。SSP处理在降低Zn的植物吸收量(1%~12%)的同时,增加了TCLP提取量,但都远低于国际限制标准。进一步的相关分析表明,Ca_8-P是降低土壤重金属Pb、Zn的生物有效性即水溶-交换态、植物吸收量、TCLP Pb、Zn含量的磷的主要形式。上述结果说明了田间条件下磷肥具有显著修复铅锌矿污染土壤中重金属Pb毒的作用,其修复机理是通过在土壤中形成氯(羟基)磷酸铅盐化合物和Pb-P-Ca/Fe化合物。
     (8)田间条件下,结合XRD、TCLP和土壤无机磷形态分级法从时间的角度探讨了磷肥SSP、CMP和PR修复铅锌矿污染土壤效果的稳定性。XRD图谱分析结果表明,氯(羟基)磷酸铅盐化合物和Pb-P-Fe化合物的衍射特征峰的峰强逐渐增加,说明随着反应时间的延长,土壤中这两种新生成的化合物的量在不断增加。土壤TCLP评价结果表明,磷肥处理后随着反应时间的延长,土壤中重金属Pb的毒性逐渐降低,并且在处理时间为24个月时,3种磷肥处理均能将TCLP Pb降低到国际限制标准以下,这与XRD分析结果相吻合。上述结果表明,随着处理时间的延长,磷肥原位固定修复中国铅锌矿污染土壤的田间效果是稳定的。从长远和经济的角度考虑,3种磷肥中PR是最经济有效的修复材料,建议推广使用。
Heavy metal such as lead (Pb)is toxic to humans,especially young children,and toanimals.Metal-contaminated soil is a primary source of metals exposure to youngchildren.One of the primary sources of metals contamination is industrial activityincluding mining tailing,leading to metals accumulation in the soils and risk to human'shealth through soil ingestion and the food chain such as vegetables.The previous reportby our research group showed that there were thousands hectares of soil and plant heavilycontaminated by Pb and Zn in Shangyu,Zhejiang Province,China.Therefore,increasingawareness of the hazard that heavy metals can cause to humans make it necessary toremediate metal contaminated soils.
     This dissertations aimed to understand the mechanism of phosphorus (P)inducedlead immobilization in the soil contaminated by Pb/Zn mining tailings in Shangyu,Zhejiang Province,China,to assess the effects on the toxicity and bioavailability of Pband Zn after P application,and to figure out the most cost-effective P source and itsapplication rate,using X-ray diffraction (XRD),model MINTEQ,toxicity characteristicleaching procedure (TCLP),sequential extraction procedure,and plant indicator.Themain experiments and conclusion are as follows:
     (1)XRD pattems were analyzed to observe the mineralogy of P with orwithout chlorine (Cl)induced Pb immobilization in water and soil environment.It wasfound that occurrence of pyromorphite [Pb_5(PO_4)_3Cl,ClP] and lead phosphate hydroxide[Pb_(10)(PO_4)_6(OH)_2,PH] was evident in the treated bentonite each for P addition with orwithout Cl 24 hours later.Furthermore,pyromorphite like compounds were alsoidentified in the P treated soils one month later.It was determined that the primarymineralogy of P induced Pb immobilization was through pyromorphite like compoundsformation after P addition.Therefore,it was theoretically proved to apply P materials for remediation of soil which was contaminated by Pb/Zn mining tailings in Shangyu,Zhejiang Province,China.
     (2)Effect of chlorine (Cl)on in situ lead immobilization using phosphorus ina soil contaminated by lead and zinc mining tailings was evaluated.The results showedthat water soluble and exchangeable Pb was reduced by 92.0 %~95.1% in the soil after Papplication.It was also suggested that application dosage of phosphorus at the P / Pbmolar ratio of 0.6,was enough to remediate Pb toxicity in the soil.Compared to withoutCl treatment at the level of molar ratio of 0.6 P / Pb,water soluble and exchangeable Pbin the soil treated with Cl was reduced markedly.It was concluded that the effectschlorine addition on in situ lead (Pb)immobilization using phosphate were improved.Visual MINTEQ model was employed to figure out Pb and P species distribution andsaturation indices for minerals in the soils treated by P and Cl.The results showed that Pbactivity was controlled by lead phosphate in the soil,especially pyromorphite[Pb_5(PO_4)_3Cl],which would be the reason for Pb bioactivity reduction in the soil afterapplication of Cl and P.The effective Pb bioactivity reduction indicated that addition ofCl was necessary to improve in situ lead immobilization using phosphorous in thelead-contaminated soil.
     (3)The objective of this work was to evaluate the efficiency of calcium (Ca),pH,and phosphorus on the leachability of Pb and Zn in the contaminated soil.It wasfound out that the effects of phosphorus on the leachability of Pb and Zn wassignificantly affected by pH,and pH of 6.0~7.4 would be the best condition for metalimmobilization by phosphorus.It was worthwhile to noted that there would be a biggestreduction of Pb and Zn leachability (up to 68 % and 94 %)when the condition pH wasadjust to 6.5~7.5 after SSP application,and that would be useful for in situ technique.Itwas evidently that Zn was mobilized by Ca treatments with various pH conditions,but noPb.In neutral condition,the bioavailability of Pb and Zn in the contaminated soil couldbe synchronously farthest reduced after combined used of Ca and P with a 0.4~1.0 mole ratio of Ca/P application rate.
     (4)The effects of three phosphorus fertilizers (single superphosphate-SSP,calcium magnesium phosphate-CMP,and phosphate rock-PR)on chemical fractions oflead (Pb)in a soil contaminated by Pb/Zn mining tailings using a sequential extractionprocedure were evaluated.All three phosphorus fertilizers reduced Pb solubility andbioavailability effectively.It was suggested that application rate of phosphorus fertilizersat the level of 7.0 molar ratio of P / Pb,was enough to remediate Pb toxicity in the soil.At the level of 7.0 molar ratio of P / Pb,the effect of Pb remediation by phosphorusfertilizers followed the order in terms of the sum of decreased nonresidual fractions:SSP(85 %)≈CMP (83 %)>>PR (16 %).If linking up chemical fractions of Pb in soil withits bioavailability,the effect of Pb remediation by three phosphorus fertilizers followedthe order:CMP (94 %)≈SSP (92 %)>PR (61%).Meanwhile,all three phosphorusfertilizers treatments effectively transformed soil Zn from water soluble (excluding SSP),exchangeable,and organic fractions to the residual fraction relative to the control.PR wasthe most economic amendment in terms of the most bioavailable (exchangeable)fractionof Pb (up to 79 %),and Zn (up to 66 %)in soil.It was suggested that the effectiveconversion of Pb and Zn from potentially available fractions to the residual fractionindicated a potential of phosphorus fertilizers for in-situ Pb immobilization in soilscontaminated by Pb/Zn mining tailings.
     (5)A pot experiment was conducted to evaluated the effects of P amendmentson the toxicity and bioavailability of Pb and Zn in a soil contaminated by mining tailingsusing toxicity characteristic leaching procedure (TCLP)and water soluble,exchangeableleaching procedure,and to find out the appropriate application rate to reduced the soilTCLP Pb to below the EPA regulatory limit level.The results showed that TCLP Pbconcentrations were significantly decreased by up to 93.3 % for MPP treatments and upto 68.5 % for SSP treatments after P application,and the dose required to reduceleachable Pb below the EPA regulatory limit level was found to be around the molar ratio P/Pb=0.6 for MPP and 1.8 for SSP.Both MPP and SSP were found to reduce theexchangeable Pb and Zn concentrations,but variable in water soluble Pb and Zn.It wassuggested that all bioavailable Zn concentrations including water soluble,exchangeable,and TCLP in soil were significantly negative correlated to soil pH values,which mayindicate that the activity of Zn in the soil was mostly controlled by soil pH value evenafter P application.These results suggest that P as MPP and SSP successfully decreasedthe toxicity and bioavailability of Pb and Zn in the contaminated soil.
     (6)A pot experiment was conducted to determine the influence of phosphorus(P)application on the translocation and accumulation of lead (Pb),zinc (Zn),andcadmium (Cd)in a soil solid-liquid-plant system using a plant Swamp Morningglory(Ipomoea aquatica,Forsk)as indicator and Visual MINTEQ model.A contaminated soilcontaining 22830 mg·kg~(-1)Pb,746 mg·kg~(-1)Zn,and 10 mg·kg~(-1)Cd was amended with P asKH_2PO_4 at 0:1,0.18:1,0.36:1,0.72:1,1.08:1,and 1.44:1 P:Pb mole ratios.The resultsshowed that Pb concentration in the root was significantly decreased after P application,while the Zn concentration were increased,but no impact on Cd concentration after Papplication,compared to the control.Further more,concentrations of Pb,Zn,and Cd inplant tissue were sharply reduced after P application by 53 %~92 %,35 %~71%,and 59%~86 %,respectively;Concentrations decreased exponentially with increasing amount ofP;Relationship between Pb and Zn (r=0.993,p<0.01),between Pb and Cd (r=0.986,p<0.01)suggested that there was a positive relationship between the mechanismscontrolling the phytoavailability of Pb,Zn,and Cd.It was suggested that Cdconcentrations in the soil solution were reduced generally by P application as a result ofthe increased soil pH,and Zn concentrations were no changed,but Pb concentrationswere increased.Species distribution showed that PbHPO_4,PbOH~+ and PbH_2PO_4~+ werethe main complexation species of Pb in the soil equilibrium solution after P application.Itwas also suggested that Pb accumulation by root were negatively correlated to Pb in soilsolution with coefficient of-0.872 (p<0.05),and that water soluble Zn and Cd concentrations were reduced while the concentrations in root tissues were increased afterP addition.These results indicate the difference between Zn,Cd and Pb and suggest thatP as KH_2PO_4 successfully decreased the phytotoxicity of Pb,Zn,and Cd in thecontaminated soil.
     (7)A field demonstration was conducted at a mining tailings-contaminatedsite to assess the effectiveness of P-induced Pb immobilization using XRD,TCLP,sequential extraction procedure,inorganic P fractionation procedure,and cabbage(Brassica campestris L.chinensis)as a plant indicator.Three phosphorus fertilizers(single superphosphate-SSP,calcium magnesium phosphate-CMP,and phosphaterock-PR)were applied as P amendments in the field demonstration.Lead immobilizationwas attributed to the P-induced formation of pyromorphite like compounds[Pb_(10)(PO_4)_6(OH/Cl)_2] and Pb-P-Ca/Fe compounds,which were identified in the treatedsoils.It was found that the addition of all three P fertilizers significantly decreased thepercentage of non-residual fraction (by 34 %~64 %)and TCLP (7 %~59 %)soil Pb,andthen reduced the uptake of Pb (16 %~58 %)by the cabbage compared to the control (CK).In addition,at a 0.8 molar ratio of P / Pb application rate,SSP and CMP treatmentsreduced TCLP Pb to below EPA regulatory limits level in the soils.The results showedthat the concentration of Zn in non-residual fraction (by 27 %~79 %),TCLP (4 %~39 %),and plant uptake (39 %~73 %)were significantly reduced after CMP and PR application.Zn concentrations in plant uptake (1%~12 %)were decreased after SSP application,while the TCLP concentrations were slightly increased,which were far below the EPAregulatory limits level.Results of regression analysis indicated that Ca_8-P was theprimary form of P fertilizers to decrease the bioavailability of Pb and Zn in the soil-plantsystem.Therefore our field trial demonstrated that it was effective and feasible to reducePb,Zn availability in soil and cabbage contaminated by mining tailings using P fertilizersin China.
     (8)The objective of this study was to assess the stability of P-induced lead immobilization in the field scale using XRD,TCLP,and inorganic P fractionationprocedure.Lead immobilization was attributed to the P-induced formation ofpyromorphite like compounds [Pb_(10)(PO_4)_6(OH/Cl)_2] and Pb-P-Ca/Fe compounds,whichwere identified in the treated soils.Intensity of those peaks was increased along with theincreasing of treated time from 1 m to 6 m~24 m.It was found that there was an increasein TCLP Pb reduction along with the increasing of treated time from 1 m to 6 m~24 m,and that all three P fertilizers reduced TCLP Pb concentration in the treated soils to belowthe EPA regulatory limits level 24 months after P fertilizers application,which stronglydemonstrated that it was stable for P-induced lead and zinc immobilization in thecontaminated soil in the field.It was concluded that PR was the most cost-effectivematerial for lead immobilization considering both its long-term effectiveness and price.
引文
白中科,赵景逵.工矿土地复垦与生态重建.北京:中国农业科学出版社,2000
    陈宏,陈玉成,杨学春.土壤中铅的植物可利用性化学调控研究[J].生态环境,2004,13(1):9~10
    陈世宝,朱永官,马义兵.不同磷处理对污染土壤中有效态铅及磷迁移的影响[J].环境科学学报,2006,26(7):1140~1144
    陈世宝,朱永官,杨俊诚.土壤-植物系统中磷对重金属生物有效性的影响机制[J].环境污染治理技术与设备,2003,4(8):1~6
    陈世宝,朱永官.不同含磷化合物对中国芥菜(Brassica Oleracea)铅吸收特性的影响[J].环境科学学报,2004,24(4):707~712
    陈晓婷,王果,梁志超,华村章,方玲。钙镁磷肥和硅肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响[J].福建农林大学学报(自然科学版),2002a,31(1):109~112。
    陈晓婷,王果,张亭旗,黄汉水,方玲.石灰与泥炭配施对重金属污染土壤上小白菜生长和营养元素吸收的影响[J].农业环境保护,2002b,21(5):453~455
    崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366~370
    党志,刘丛强,尚爱安.矿区土壤重金属活动性评估方法的研究进展[J].地球科学进展,2001,16(1):86~92
    郭朝晖,朱永官.典型矿冶周边地区土壤重金属污染及有效性含量[J].生态环境,2004,13(4):553~555
    郭观林,周启星.土壤-植物系统复合污染研究进展[J].应用生态学报,2003,14(5):823~828
    郭焕成。我国的土地恢复[J].生态学报,1990,10(1):24~26
    国家环境保护局.土壤环境质量标准(GB15618——1995)
    国家环境保护局.有色冶金工业废气治理[M]。北京:中国环境科学出版社,1993
    何冰,杨肖娥,魏幼璋。铅污染土壤的修复技术[J].广东微量元素科学,2001,8(9):12~ 17
    何益波,李立清,曾清如.重金属污染土壤修复技术的进展[J].广州环境科学,2006,21(4):26~31
    胡红青,杨少敏,王贻俊,刘凡,丁树文.大冶龙角山矿区几种植物的重金属吸收特征[J].生态环境,2004,13(3):310~311
    黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161~167。
    蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179~183
    蒋玉根.农艺措施对降低污染土壤重金属活性的影响[J].土壤,2002,3:145~148
    可欣,李培军,巩宗强,尹炜,苏丹.重金属污染土壤修复技术中有关淋洗剂的研究进展[J].生态学杂志,2004,23(5):145~149
    匡少平,徐仲,张书圣,2002.农村土壤环境激素污染与防治[J].环境工程,20(增刊1):66~69
    蓝崇钰,束文圣,孙庆业。采矿地的复垦。见:陈昌笃主编.持续发展与生态学。北京:中国科技出版社,1993,132~138
    李瑞美,方玲,王果,张潮海,华村章.重金属污染土壤的有机-中性化修复技术试验[J].福建农业学报,2004,19(1):50~53
    刘玉荣,党志,尚爱安.污染土壤中重金属生物有效性的植物指示法研究[J].环境污染与防治,2003,25(4):215~218
    刘远金,卢瑛,陈俊林等.广州城郊菜地土壤磷素特征及流失风险分析[J].土壤与环境,2002,11(3):237~240
    刘羽,彭明生.磷灰石结构替换的研究进展[J].岩石矿物学杂志,2003,22(4):413~415
    刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1(1):9~11
    梁文懂,刘强、用改性磷灰石去除废水中重金属离子的研究[J].武汉科技大学学报(自然科学学报),2000,23(3):242~244
    龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13 (6):757~762
    龙梅,胡锋,李辉信,赵海燕,吕文琦,魏正贵.低成本含磷材料修复环境重金属污染的研究进展[J].环境污染.治理技术与设备,2006,7(7):1~10
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业出版社,1999:305~336
    马业禹,艾国栋.关于有色金属矿产资源的开发利用及其与环境问题的思考[J].广东有色金属学报,2005,15(4):4~8
    秦万德,煤炭工业发展中的环境问题和对策[A].中国煤炭学会,1992年年会论文集.郑州.1992:12~18
    束文圣,张志权,蓝崇钰。中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):25~29
    宋和付,夏畅斌,何湘柱,陈安国,黄念东.天然沸石对Pb(Ⅱ)Ni(Ⅱ)离子的吸附作用研究[J].矿产与地质,2000,14(4):276~278.
    孙铁珩,周启星,李培军。污染生态学[M].北京:科学出版社,2001
    孙卫玲,赵蓉,张岚,邓宝山,倪晋仁.pH对铜在黄土中吸持及其形态的影响[J].环境科学,2001,22(3):78~83
    孙叶芳,谢正苗,徐建明,李静,赵科理.TCLP法评价矿区土壤重金属的生态环境风险[J].环境科学,2005,26(3):152~156.
    唐清.铅污染与儿童健康[J].城市环境与城市生态,2003,16(5):48~50
    王新,吴燕玉,1995.改性措施对复合污染土壤重金属行为影响的研究[J].应用生态学报,6(4):440~444.
    王新,吴燕玉,梁仁禄,马越强.各种改性剂对重金属迁移、积累影响的研究[J].应用生态学报,1994,5(1):89~94
    吴留松,顾宗濂.添加物对土壤提取液中铜、镉生物毒性的影响[J].土壤学报,1992,29(4):377~382
    吴求亮,杨玉爱,谢正苗.铅的环境质量[M].微量元素与生物健康,贵阳:贵州科技出版社,2000:208~281
    谢正苗,李静,王碧玲,陈建军.基于地统计学和GIS的土壤和蔬菜重金属的环境质量评价[J].环境科学,2006,27(10):2110~2116
    谢正苗.土壤环境中铅的化学[J].广东微量元素科学,1996,3(11):24~28
    徐应明,李军幸,孙国红,戴晓华,张泽.新型功能膜材料对污染土壤铅镉汞钝化作用研究[J].农业环境科学学报,2003,22(1):86~89
    薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展.土壤与环境,2002,11(1):90~93.
    杨茹莱,赵正言,陈彩霞,李乐飞,陈汉云,章蓉珍,胡江萍.浙江省1320名学龄前儿童血铅水平分析[J].浙江大学学报(医学版),1999,28(4):160~162
    杨茹莱,竺智伟,赵正言.浙江省学龄前儿童血铅水平的历史对照研究[J].浙江大学学报(医学版),2006,35(6):658~661
    杨元根,刘丛强,张国平,吴攀,朱维晃.铅锌矿山开发导致的重金属在环境介质中的积累[J].矿物岩石地球化学通报,2003,22(4):305~309
    叶玲霞.环境铅污染与人体健康[J].安徽预防医学杂志,2001,7(2):159~160
    曾清如,廖柏寒,杨仁斌,William H.Hendershot.EDTA容易萃取污染土壤中的重金属及其回收技术[J].中国环境科学,2003,23(6):597~601
    张强,李支援.海泡石对镉污染土壤的改良效果.湖南农业大学学报,1996,22(4):346~350
    张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应.土壤学报,2001,38(5):212~218
    章明奎,方利平,周翠.污染土壤重金属的生物有效性和移动性评价:四种方法比较[J].应用生态学报,2006,17(8):1501~1504
    中国环境监测总站,1990.中国土壤元素背景值[M].北京:中国环境科学出版社:329~380
    周东美,王玉军,仓龙,郝秀珍,陈怀满.土壤及土壤-植物系统中复合污染的研究进展[J].环境污染治理技术与设备,2004,5(10):1~8
    周启星,宋玉芳,孙铁珩.生态修复研究与应用进展[J].自然科学进展,2004b,14(7):721~728
    周启星,宋玉芳.污染土壤的修复方法与原理[M].2004a,北京:科学出版社
    朱训.21世纪中国矿业城市形势与发展战略思考[J].资源产业,2002(增刊):3~10
    朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J].环境科学学报,2003,23(2):205~210
    朱兆洲,刘丛强,王中良,李军,周志华.巢湖、龙感湖水体中稀土元素的无机形态研究[J].中国稀土学报,2006,24(1):110~115
    Agbenin J.O.Phosphate-induced zinc retention in a tropical semi-arid soil[J].EuropeJournal Soil Science,1998,49:693~700
    Basta N T,Gradwohl R,Snethen K L,Schronder J L.Chemical immobilization of lead,zinc and cadmium in smelter-contaminated soils using biosolids and rock phosphate[J].Journal of Environmental Quality,2001,30:1222~1230
    Basta N T,McGowen S L.Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J].Environmental Pollution,2004,127:73~82
    Bilge A,Mehmet A Y.Remediation of lead contaminated soils by stabilization/solidification[J].Water,Air and Soil Pollution,2002,133:253~263
    Bolan,N.S.,Adriano,D.C.,Naidu,R.Role of phosphorus in im-and mobilization and bioavailability of heavy metals in the soil-plant system[J].Reviews of Environmental Contamination and Toxicology,2003,177:1~44.
    Brown S,Chaney R,Hallfrisch J,Ryan J A,Berti W R.In situ soil treatments to reduce the phyto-and bioavailability of lead,zinc and cadmium[J].Journal of Environmental Quality,2004,33:522~531
    Brown S,Christensen B,Lombi E,McLaughlin M,McGrath S,Colpaert J,Vangronsveld J.An inter-laboratory study to test the ability of amendments to reduce the availability of Cd,Pb,and Zn in situ[J].Environmental pollution,2005,138:34~45
    Cao X D,Ma L Q,Singh S P,Zhou Q X.Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions[J].Environmental pollution,2007,145:1~9
    Cao X D,Ma Q Y,Chen M,Singh S P,Harris W G.hnpacts of phosphate amendments on lead biogeochemistry at a contaminated site[J].Environmental Science& Technology,2002,24:5296~5304
    Cao X D, Ma Q Y, Rhue D R. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environmental Pollution, 2004, 131: 435-444
    Cao X D, Ma Q Y, Singh S P, Zhou Q X. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions[J]. Environmental Pollution, 2008, 152: 184-192
    Chang E E,Chiang P C. comparisons of metal leachability for various wastes by extraction and leaching methods[J]. Chemosphere, 2001, 45:91-99
    Chen M, Ma Q Y, Singh S P, Cao X D, Ricardo M. Field demonstration of in situ immobilization of soil Pb by using P amendments[J]. Advances in Environmental Research, 2003, 8:93-102
    Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil[J]. Ecotoxicology and Environmental Safety, 2007, 67: 278-285
    Chen X B, Wright J V, Conca J L. Effects of pH on heavy metal sorption on mineral apatite[J]. Environmental Science&Technology, 1997, 31:624-631
    Chen X, Wright J V, and Conca J L et al. effects of pH on heavy metal sorption on mineral mineral apatite[J]. Environmental Science&Technology, 1997, 31:624-631
    Christopher A, Impellitteri. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site[J]. Science of the Total Environment, 2005,345: 175-190
    Chrysochoou M, Dermatas D, Grubb D G. Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate [J]. Journal of Hazardous Materials, 2007, 144:1 - 14
    Cotter-Howells J, Capron S. Remediation of contaminated land by formation of heavy metal phosphates[J]. Appllied Geochemistry, 1996, 11:335-342
    Davies D J A, Thornton 1, Watt J M, Culbard E B, Harvey P G, Delves H T, Sherlock J C, Smart G A, Thomas J F A, Quinn M J. Lead intake and blood lead in two-year-old dusts using an in vitro model[J]. Environmental Science&Technology, 1990,90: 13-29
    Deydier E, Guilet R, Cren S, Pereas V, Mouchet F, Gauthier L. Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: "Chemical and ecotoxicological studies"[J]. Journal of Hazardous Materials, 2007, 146:227-236
    Diels L, van der Lelie N, Bastiaens L. New develoments in treatment of heavy metal contaminated soils[J]. Reviews in Environmental Science Biotechnology, 2002, 1: 75-82
    Dudlka S, Adriano D C. environmental impacts of metal ore mining and processing: a review[J]. Journal of Environmental Quality, 1997, 26:590-602
    Eeva T, Lehikoin E. Rich calcium availability diminishes heavy metal toxicity in Pied Flycatcher[J]. Functional Ecology, 2004, 18:548-553
    Fayiga A O, Ma L Q. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata[J]. Science of the Total Environment, 2006, 359:17-25
    Gupta S K and Chen KY. Partitioning of trace metals in selective chemical fractions of nearshore sediments[J]. Environmental Lett, 1975, 10: 129 - 158
    Gworek B. Inactivation of cadmium in contaminated soils using synthetic zeolites[J]. Environmental pollution, 1992, 75:269-271
    Halim C E, Scott J A, Amala R, Short S A, Beydoun D, Lowe G, Cattle J. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils[J]. Jounral of Hazardous Materials, 2005, B120:101 -111
    Hettiarachchi G M, Pierzynski G M, Oehme F W, Sonmez O, Ryan J A. Treatment of contaminated soil with phosphorus and manganese oxide reduces lead absorption by Sprague-Dawley rats[J]. Journal of Environmental Quality, 2003, 32:1335-1345
    Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil lead using phosphorus and manganese oxide[J]. EnvironmentalScience&Technology, 2000, 34:4614-4619
    Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil lead using phosphorus[J]. Journal of Environmental Quality, 2001, 30:1214-1221
    Hettiarachchi G M, Pierzynski G M. In situ stabilization of soil lead using phosphorus and manganese oxide: Influence of plant growth[J]. Journal of Environmental Quality, 2002, 31:564-572
    Impellitteri C A. Effects of pH and phosphate on metal distribution with emphasis on As
    speciation and mobilization in soils from a lead smelting site[J].Science of the Total Environment,2005,345:175~190
    Janusa M A,Chain pagnc C A,Fanguy,T C,Heard G E,Laine P L,Landry A A.Solidification/ stabilization of lead with the aid of bagasse as an additive to Port-land cement[J].Microchemical Jounral,1998,65:255~259
    Krishnamurti G S R,Huang P M,Kozak L M.Sorption and desorption kinetics of cadmium in soils:Influence of phosphate[J].Soil Science,1999,164:888~898
    Leusch A,Holan Z R,Volesky B.Soultion and particle effects on the biosorption of heavy metals by seaweed biomass[J].Applied Biochemistry and Biotechnology,1996,61(3):231~249.
    Lindsay W L.Chemical Equilibria in Soils [M].John Wiley & Sons,New York,1979,NY.
    Liu R Q,Zhao D Y.Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles[J].Water Research,2007,41:2491~2502
    Ma Q Y,Choate A L,Rao G N.Effects of incubation and phosphate rock on lead extractability and speciation in contaminated soils[J].Journal of Environmental Quality,1997b,26:801~807
    Ma Q Y,Logan T J,Traina S J,Ryan J.A.Effects of NO_3~-,Cl~-,F~-,SO_4~(2-),and CO_3~(2-)on Pb~(2+)immobilization by hydroxypatite[J].Environmental Science& Technology,1994,28:408~418
    Ma Q Y,Logan T J,Traina S J.Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks[J].Environmental Science& Technology,1995,29:1118~1126
    Ma Q Y,Rao G N.Aqueous Pb reduction in Pb-contaminated soils by Florida phosphate rocks[J].Water Air and Soil Polluction,1999,110 (1-2):1-16.
    Ma Q Y,Rao G N.Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils[J].Journal of Environmental Quality,1997a,26:788~794
    Ma Q Y,Traina S J,Logan T J.In situ lead immobilization by apatite[J].Environmental Science&Technology,1993,27:1803~1810
    McGowen S L.In-situ chemical treatments for reducing metal solubility and transport in smelter contaminated soils[M].Plant andS oil Sciences,2000.Oklahoma State Univ.,Stillwater.OK.
    McGowen SL,Basta NT,Brown GO 0 Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil[J] Journal of Environmental Quality, 2001, 30:493-500
    McGrath S P, Sanders J R, Shalaby M H. The effects of soil organic matter levels on soil solution concentration and extractabilities of Mn, Zn and Cu[J]. Geoderma, 1988,42: 77-18
    Melamed R, Cao X, Chen M, Ma Q Y. Field assessment of lead immobilization in a contaminated soil after phosphate application[J]. The Science of the Total Environment, 2003, 305:117-127
    Millter W P and Mefee W W. Distribution of cadmium, zinc, copper, and lead in soils of industrial northwestern lndiana[J]. Journal of Environmental Quality, 1983, 12:29-33
    Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and ground water: An evaluation[J]. Engineering Geology, 2001, 60:193-207
    Nriagu J O. A silent epidemic of environmental metal poisoning[J].Environmental pollution, 1988, 50(1): 139-161
    Nriagu J O. Lead orthophosphates: Ⅳ. Formation and stability in the environment[J]. Geochimica ET Cosmochimica Acta, 1974, 38: 887-898
    Ownby D R, Galvan K A, Lydy M J. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils[J]. Environmental pollution, 2005, 136:315-321
    Page R A, Swires H E. A safe level for lead in soil and dust, In contaminated soil [A]. Assink J W and Van W J den Brenkeds. Martinus Nijhoff Publishers [C], 1986, 233 - 241
    Pearson MS, Maenpaa K, Pierzynski GM. Effects of soil amendments on the bioavailability of lead, zinc, and cadmium to earthworms[J]. Journal of Environmental Quality ,2000, 29:1611-1617
    Peralta-Videaa J R, Gardea-Torresdeya J L, Gomezc E, Tiemanna K J, Parsonsa J G, Carrillod G. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake[J]. Environmental pollution, 2002, 119:291-301
    Rahmani G N H , Steinberg S P K. Bioremoval of lead from water using Lemna minor[J].Bioresource Technology, 1999, 70(3):225 - 230
    Raicevica S, Kaludjerovic-Radoicicb T, Zouboulisc A I. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification[J]. Jounral of Hazardous Materials,2005,B 117:41~53
    Rodsand T,Aear Y B.Electrokinetic extraction of lead from spiked norwegian marineday[J].Geoenvironment,1995,2:1518~1534.
    Ruby M V,Davis A,Link T E,Schoof R,Chaney R L,Freeman G B,Bergstrom P.Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead[J].Environmental Science& Technology,1993,27:2870~2877
    Ruby M V,Davis A,Schoof R,Eberle S,Sellstone C M.Estimation of bioavailability using a physiologically based extraction test[J].Environmental Science&Technology,1996,30:420~430
    Ruby M V,Davis A,Schoof R,Eberle S,Sellstone C M.In situ formation of lead phosphates in soils as a method to immobilise lead[J].Environmental Science& Technology,1994,28:646~654
    Ryan J A,Zhang P C,Hesterberg D,et al.Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite[J].Environmental Science&Technology,2001,35:3798~3803
    Salt D E,Smith R D,Raski I.Phytoremediation[J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:643~648
    Salt D E,Blaylock M,Kumar P B A N,et al.Phytoremediation:a novel straegy for the removal of toxic metals from the environment using plants[J].Biotechnology,1995,13,468~474
    Scamoor J L.Phytoremediation.Technology Evaluation Report,TE-98~01,GWRTAC SERIES.1997.
    Scheckel K G,Ryan J A.Effects of aging and pH on dissolution kinetics and stability of chloropyromophite[J].Environmental Science& Technology,2002,36:2198~3324
    Singh B,Alloway B J,Bochereau F J M.Cadmium sorption behavior of natural and synthetic zeolites[J].Communications in Soil Science and Plant Analysis,2000,31:2775~2786
    Singh J P,Karwasra S P S,Singh M.Distribution and forms of copper,iron,manganese and zinc in calcareous soils of India[J].Soil Science,1988,146:359~366
    Singh S P,Ma L Q,Hendry M J.Characterization of aqueous lead removal by phosphoric clay:Equilibrium and kinetic studies[J].Jounral of Hazardous Materials,2006,B 136:654~662 Sneddon I R, Orueetxebarria M, Hodson M E, Schofield P F, Valsami-Jones E. Use of bone meal amendments to immobilize Pb, Zn and Cd in soil: A leaching column study[J]. Environmental pollution, 2006, 144:816-825
    Spuller C, Weigand H, Marb C. Trace metal stabilization in a shooting range soil:Mobility and phytotoxicity[J]. Jounral of Hazardous Materials, 2007, 141:378-387
    Tang X Y, Zhu Y G, Chen S B, Tang L L, Chen X P, 2004. Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test[J]. Environmental International, 2004, 30:531-537
    Tessier A and Campbell P G C. Partitioning of trace metals in sediments[M]. In J R Kramer and H E Allen(ed). Metal speciation: Theory, Analysis and Application. Lewis Publication. Chelsea.MI. 1988, p 183-199.
    Tessier A, Campbell P G C, Bission M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analysis Chemistry, 1979, 51: 844-851
    Theodoratos P, Papassiopi N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion[J]. Jounral of Hazardous Materials, 2002,B94:135-146
    Thornton I. bioavailability of the elements in food chain. In proceeding of the 5~(th) international conference on the biogeochemistry of trace elements, Vienna, 1999, 11-15 July.
    Tsadilas C D, Dimoyiannis D, Samaras V. Effect of zeolite application and soil pH on cadmium sorption in soils[J]. Communications in Soil Science and Plant Analysis, 1997, 28: 1591-1602
    US EPA, Environmental Protection Agency. EPA-902-B-01-001. Best management practices for lead at outdoor shooting ranges[S]. Washington, D C,2001
    US EPA. Method 3051, Microwave assisted acid digestion of sediments, sludges, soils, and oils. http://www. epa.gov/epaoswer/hazwaste/test/pdfs/3051.pdf. 1994
    US EPA. Method 3051, Microwave assisted acid digestion of sediments, sludges, soils, and oils. U S Government Pprinting Office, Washington, DC, 1997
    US EPA. Temporary suspension of toxicity characteristics rule for specified lead-based paint debris,EPA 40 CRF,Parts 260 and 261[S].Fed Reg,1998,63,28555~70249
    US EPA.Test Methods for Evaluating Solid Wastes.Physical/chemical methods,method 1311;EPA/530/SW-846,U.S.Environmental Protection Agency,1991
    US EPA.Test Methods for Evaluation of Solid Wastes,Vol IA.Laboratory Manual Physical/chemical methods,SW 846,40 CFR Parts 403 and 503.3~(rd)ed.U S Government Pprinting Office,Washington,DC,1995
    Valsami-Jones E,Ragnarsdottir K V,Putnis A,Bosbach D,Kemp A J,Gressey G.The dissolution of apatite in the presence of aqueous metal cations at pH 2~7[J].Chemical Geolology,1998,151:215-233.
    Wheeler P.Leach repellent[J].CroundEngngeneer,1995,28~22
    Xian X.Effect of chemical forms of cadmium,Zinc and lead in polluted soils on their uptake by cabbage plants[J].Plant soil,1989,113:257~264
    Xie Z M,Xu J M,Smith L,Raidu R.Why a fern growing on heavy metals contaminated soil does not accumulate arsenic[J].Physics France Ⅳ,2003,107:1409~1411
    Yang J,Mosby D E,Casteel S W,Blancher R W.Lead immobilization using phosphoric acid in a smelter~contaminated urban soil[J].Environmental Science& Technology,2001,35:3553~3559
    Yang J,Mosby D.Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil[J].Science of the Total Environment,2006,366:136~142
    Zhang P C,Ryan J A,Yang J.In vitro soil Pb solubility in the presence of hydroxyapatite[J].Environmental Science& Technology,1998a,32:2763~2768
    Zhang P C,Ryan J A.Formation of chloropyromorphite from galena (PbS)in the presence of hydroxyapatite[J].Environmental Science& Technology,1999a,33:618~624
    Zhang P C,Ryan J A.Formation of pyromorphite in anglesite-hydroxiapatite suspension under varying pH conditions[J].Environmental Science& Technology,1998b,32:3318~3324
    Zhang P C,Ryan J A.Transformation of Pb (Ⅱ)from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying pH conditions[J].Environmental Science&Technology,1999b.33:625~630 Zwonitzer J C, Pierzynski G M, Hettiarachchi G M. Effects of phosphorus additions on lead, cadmium, and zinc bioavailabilities in a metal-contaminated soil[J]. Water Air and Soil Pollution, 2003, 143:193-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700