PAHs污染土壤植物修复机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去几个世纪以来,人口的迅速增长、矿产的开采、工业化进程的加快等原因,使得土壤环境遭受了严重污染。多环芳烃(Polycyclic AromaticHydrocarbons,PAHs)是一类广泛分布于土壤环境中的持久性有机污染物,对全球的农产品质量和人体健康构成威胁。因此,对被PAHs污染的土壤进行修复势在必行。相比较传统修复技术而言,植物修复技术是一种极具潜力的土壤有机污染物修复技术,成本低,且对环境友好。实验室研究表明,植物修复技术可以显著促进土壤中PAHs的去除,但较为深入的机制并没有得到很好的阐述。虽然植物修复技术相对于其他修复技术具有许多优势之处,但是,由于PAHs较低的水溶性以及土壤颗粒对其具有强吸附性,土壤植物修复的效率始终受到限制。
     在本论文中,我们考察了不同植物及其组合对PAHs的去除效率,研究了PAHs在高羊茅根际的去除机理,同时,通过添加表面活性剂强化修复PAHs污染土壤实验,研究了表面活性剂对PAHs去除效率的影响,本论文的相关试验结果可为植物修复技术在PAHs污染土壤中的实际应用提供理论基础。本研究成果可归纳如下。
     (1)考察了四种植物(高羊茅,黑麦草,紫花苜蓿和甘蓝型油菜)单一盆栽种植或组合种植对PAHs添加污染土壤的植物修复效率。经过65天的植物生长后,测定植物生物量、脱氢酶等参数。结果表明,所添加浓度下PAHs对所有植物的生长均具有一定的抑制作用,其中对苜蓿生长抑制作用最为明显,相对于无PAHs添加对照植物生物量减少35%,油菜对PAHs表现出最大的耐性。相对于无植物对照,种植植物后土壤中水溶性酚显著提高,含量达到3.71-5.63 ug g~(-1),分别比对照高出1.05-1.68倍。植物盆栽处理也提高了土壤的脱氢酶活性。相对于无植物对照,植物处理强化了土壤中PAHs的去除。各植物对PAHs的去除率有所差异,油菜处理PAHs去除率最高(菲和芘去除率分别为98%和86%),其次是黑麦草和高羊茅,苜蓿去除率最低,菲和芘去除率分别为97%和79.8%。植物组合盆栽处理进一步提高了这种强化效果,高羊茅和油菜组合处理PAHs去除率最高,菲和芘去除率分别达到99.1%和95.7%。相关分析表明,不同的植物组合处理中土壤中的生物活性(脱氢酶活性和水溶性酚总量)与土壤中残余的菲、芘量之间具有非常好的负相关关系(P<0.01)。本节结果表明,采用这四种植物对PAHs污染土壤进行植物修复是可行的,不同植物组合栽培可进一步提高植物修复能力。
     (2)添加不同浓度梯度的PAHs(菲,11-344 mg kg~(-1),芘15-335 mg kg~(-1)),较细致地考察了高羊茅对PAHs污染土壤的植物修复潜力。通过分析植物生物量、土壤微生物计数、脱氢酶活性、水溶性酚总量,微生物群落结构等参数,探讨了高羊茅修复土壤PAHs的可能机理。结果表明,较低浓度PAHs不影响植物的生物量,但是随着浓度升高,可观察到生物量明显降低,最高浓度下植物生物量减少至无PAHs添加对照的53.5%(茎)和29.7%(根)。相对于无植物对照,植物处理显著提高了微生物量,水溶性酚类物质量,脱氢酶活性,PAHs去除率显著提高。进一步分析PCR-DGGE结果,植物处理Shannon指数值为3.65-3.79,显著高于无植物处理(3.51-3.68),表明植物处理增加了土壤中的微生物群落结构多样性;同时本研究结果也显示,随着PAHs浓度升高,微生物群落结构多样性降低。植物处理65天后,土壤中菲的去除率为91.70-97.78%,芘的去除率为70.80-89.97%,相对于无植物处理,菲和芘去除率分别提高了1.88-3.19%和8.85-20.69%。综合以上结果分析,土壤中PAHs的去除可能是源于根际土壤生物活性的提高,从而使得PAHs的去除率显著提高。
     (3)研究了高羊茅对菲和芘的吸收和累积,以考察其对根际PAHs去除效率的贡献。结果表明,对于菲和芘初始浓度分别为199.97 mg kg~(-1)和199.34 mg kg~(-1)的污染土壤,植物盆栽处理65天后,根吸收因子(Root concentration factors,RCFs)分别为0.33-0.46和0.56-1.21,茎吸收因子(shoot concentration factors,SCFs)分别为0.15-0.22和0.017-0.083。茎中的菲、芘累积主要来源于根部;尽管茎部也会从大气中吸收菲、芘,但从对照处理可见,菲、芘并没有从茎部向根部迁移。通过植物吸收累积途径去除的PAHs量占PAHs总去除量的0.10-1.42%(菲)和0.18-2.04%(芘)。由此说明,植物根际土壤中PAHs的主要去除途径是生物去除而不是植物吸收累积。本文的结果也表明,生长于PAHs污染土壤中的植物体中会累积一定量的污染物,因此,对于修复后的植物或生长于污染场地的农作物需妥善处理,以防止污染物进入食物链。
     (4)采用盆栽试验方法,研究了添加非离子表面活性剂(Tween 80、Triton x-100),生物表面活性剂(大豆卵磷脂)以及随意甲基化-β-环糊精(RAMEB)四种表面活性剂对高羊茅修复PAHs(芘)污染土壤的影响。芘初始浓度为243 mgkg~(-1),不同表面活性剂添加浓度设置5个梯度,分别为0,200,600,1000和1500mg kg~(-1),同时,设置无植物、不添加表面活性剂及灭菌等对照处理,盆栽60天后收获植物进行植物生物量测试和PAHs残留分析。结果显示,相对于不添加表面活性剂对照,4种表明活性剂添加后均显著提高了植物生物量。在不遮光灭菌和遮光灭菌对照处理情况下PAHs损失量分别为3.9%和3.2%,证明根际土壤中的PAHs去除主要是生物降解作用,光解与挥发作用较小。相对于不添加表面活性剂对照,所有的表面活性剂均显著提高了芘的去除率。在种植植物情况下,RAMEB添加后芘的去除率强化作用最为明显,去除率为无RAMEB添加对照的1.40-1.80倍,其次是Triton x-10,芘去除率为无Triton x-10添加对照的1.34-1.66倍。表面活性剂强化PAHs的去除主要是因为增加了PAHs在土壤中的微生物可利用性。研究表明,添加表面活性剂能够提高PAHs污染土壤的植物修复效率。
Over the past centuries, rapid growth of population, mining, industrialization, etc., have significantly contributed to extensive soil contamination. Polycyclic aromatic hydrocarbons (PAHs), a class of persistent organic pollutants (POPs), are widely distributed in the soil, water and air environment. Soil contamination with PAHs pose great threat worldwide to the agricultural food quality and human health and calls for an immediate action to remediate the contaminated sites. The prospect of phytoremediation for soil organic contaminants is an attractive cost effective alternative to traditional engineering approaches. Many studies have demonstrated that plants have potential to enhance the dissipation of PAHs when compared to unplanted controls. However, the basic mechanisms involved are not well elucidated. Although using plants for remediation of persistent contaminants have advantages over other methods, efficiency of phytoremediation of PAH contaminated soil is always limited by the poor water solubility and strong adsorption of PAHs to soil particles, resulting in lower biodegradation rates and longer time to achieve the standards. The use of surfactants to enhance the apparent aqueous solubility, desorption of organic compounds from solids and microbial bioavailability of PAHs in soil solution has been well documented. However, there is a lack of experimental data to elucidate the effect of surfactants on the phytoremediation efficiency of PAHs.
     In this dissertation, we examined the PAH removal in the presence of plants to contribute to the technology for field phytoremediation in practice. The PAH dissipation mechanisms were investigated to determine if phytodegradation, especially rhizodegradation plays a role in PAH removal. In addition, the effect of surfactants on the phytoremediation efficiency was also addressed. The present study can be summarized as follows.
     The capability of four plant species (Festuca arundinacea, Lolium perenne, Medicago sativa and Brassica napus) was investigated for phytoremediation of PAH contaminated soil. The plants were grown alone and in combination to see the effect of combined plantation on phytoremediation process. After 65 day of plant growth, plants were harvested and plant biomass, dehydrogenase activity, water-soluble phenolic (WSP) compounds and residual concentrations of phenanthrene and pyrene were determined. The results showed that PAHs had an inhibitive effect on the biomass yield of all plants. The greatest reduction in biomass was observed in Medicago sativa, which produced approximately 35% of the biomass of control. Brassica napus was the most resistant to the presence of PAHs. Significant higher WSP compounds were observed in planted soils than unplanted controls in PAHs polluted soils. WSP compounds of the PAH polluted soils were 3.71-5.63 ug vanillic acid g~(-1) of soil, which were 1.05-1.68 times higher than in uncontaminated soil (i.e. 3.06-4.03 ug vanillic acid g~(-1) soil). Similarly, higher dehydrogenase activities were observed in the planted soil compared to unplanted soil. The results also indicated higher rates of PAHs loss in planted soils (i.e., with a rhizosphere) than in unplanted control soils. This effect was especially marked with the combined plant cultivation. Rape seed, tall fescue and rye grass were statistically at par in degradation of PAHs; however, the degradation rates were different. Rape seed displayed the highest PAHs degradation rate (98% of phenanthrene and 86% of pyrene) followed by rye grass and tall fescue whereas alfalfa showed the lowest degradation rate, i.e. 97 % of phenanthrene and 79.8% of pyrene. Among combined plant cultivation, the combination of tall fescue and rape seed had the highest removal rate of PAHs, i.e. 99.1% for phenanthrene and 95.7% for pyrene. The correlation analysis indicated a significant inverse relation (P < 0.01) between biological activities (dehydrogenase activity and water-soluble phenolic compounds) and residual concentrations of phenanthrene and pyrene in soils planted with different plant combinations. Phytoremediation with tall fescue, alfalfa, and rape seed could be a feasible choice for PAHs contaminated soils. Moreover, the combined plant cultivation has potential to enhance the process.
     Tall fescue (Festuca arundinacea) was grown in soil artificially contaminated with varying concentrations of phenanthrene (11-344 mg kg~(-1)) and pyrene (15-335 mg kg~(-1)) to evaluate its phytoremediation potential for PAHs contaminated soil. After 65 day of tall fescue growth, plant biomass, microbial viable counts, dehydrogenase activity, water soluble phenolic compounds, bacterial diversity by using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and PAHs residual concentrations were determined. The results showed that target PAHs (phenanthrene and pyrene) did not affect plant biomass at lower concentrations but a reduced biomass (only 53.46% of shoot and 29.74 % of root compared to control) was observed at higher concentrations. Higher biological activities (microbial viable counts, water soluble phenolic compounds, dehydrogenase activity) and PAHs degradation rates were detected in planted soils than those of unplanted controls. Shannon diversity index for planted soils were 3.65-3.79 which were significantly higher compared to unplanted soils i.e. 3.51-3.68 suggesting that presence of plants increased the bacterial diversity. It is also evident from the results that increasing levels of PAHs reduced the bacterial diversity. After harvest, 91.70-97.78% of phenanthrene and 70.80-89.97% of pyrene degraded in planted soils which were 1.88-3.19% and 8.85-20.69% larger than those in corresponding unplanted soils. This enhanced dissipation of target PAHs in planted soils might be derived from increased biological activities in the rhizosphere.
     Uptake, accumulation and translocation of phenanthrene and pyrene were comparatively investigated to assess the uptake and accumulation contribution in plant promoted degradation of PAHs. Root concentration factors (RCFs) of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene of 199.97 mg kg~(-1) and pyrene of 199.34 mg kg~(-1) were 0.33-0.46 and 0.56-1.21, whereas the shoot concentration factors (SCFs) of these compounds were 0.15-0.22 and 0.017-0.0837, respectively. Alfalfa exhibited the highest root concentrations of phenanthrene (8.17 mg kg~(-1)) and pyrene (105.8 mg kg~(-1)), followed by rape seed which accumulated 5.33mg kg~(-1) of phenanthrene and 70.48 mg ~(-1) of pyrene, while tall fescue contained the lowest portion of these compounds (phenanthrene of 1.6 mg kg~(-1) and pyrene of 25.62 mg kg~(-1)). The contributions of plant off-take of these chemicals to the plant promoted dissipation were only 0.10-1.42% for phenanthrene and 0.18-2.04% for pyrene. Plants promoted the biodegradation of PAHs mainly were the predominant contribution to the remediation enhancement for soil phenanthrene and pyrene in the presence of vegetation.
     In order to enhance the phytoremediation process, a study was conducted to evaluate the effects of two non ionic surfactants (Tween 80 and triton x-100) a biosurfactant (Soya Lecithin) and randomly methylated-β-cyclodextrins (RAMEB) on the removal of pyrene from soil cultivated with tall fescue (Festuca arundinacea). Soils with pyrene concentration of about 243 mg kg~(-1) grown with the tall fescue and were individually amended with 0, 200, 600, 1000 and 1500 mg kg~(-1) of tween 80, triton x-100, biosurfactant, and RAMEB. Unplanted (with and without surfactants) and sterile microcosms (covered and uncovered) were prepared as the controls. Plant biomass dehydrogenase activity and pyrene concentrations were quantified after 60 d of plant growth. The results indicated that all surfactants have significant greater yields of plant biomass compared to unamended soil. Results of dehydrogenase activities showed that with the application of all surfactants, significant higher microbial activities were recorded; however, some surfactants (triton x 100 and RAMEB) inhibited the microbial activities at higher concentration levels. Only 3.9% and 3.2% of pyrene was disappeared in the uncovered and covered abiotic sterile controls, indicating that the removal mechanism of PAHs in soil was mainly due to microbial degradation of the PAHs in soil. In the planted treatment receiving no surfactant amendment, the removal rate of pyrene was 45% which is significantly higher than that of corresponding unplanted control soil, suggesting that the cultivation of tall fescue alone could significantly improve the overall removal of pyrene in soil. All surfactants had significantly higher rates of PAH degradation compared to the unamended planted soil. Overall RAMEB displayed the highest degradation rates (1.4-1.8 times higher than unamended planted control) followed by the triton X-100 (1.34-1.66 times higher than unamended planted control). The positive effect of surfactants on pyrene removal could probably due to their capacities to enhance bioavailability in soil. This study suggests that the addition of surfactants could facilitate phytoremediation of PAH contaminated soil.
引文
Adam, G., Duncan, H. (2002). Influence of diesel fuel on seed germination. Environ. Pollut. 120:363-370.
    Akmal, M., Wang, H. Z., Wu, J. J., Xu, J. M., Xu, D. F. (2005). Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution. J. Environ. Sci. 17: 802-807.
    Alexander, M., (1999). Biodegradation and Bioremediation. Academic Press Inc, San Diego, USA
    Alkorta, I., Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource. Technol. 79: 273-276.
    Ambrosoli, R., Petruzzelli, L., Minati, J. L., Marsan, F. A. (2005). Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60:1231-1236.
    Anderson, T. A., Kruger, E. L., Coats, J. R. (1994). Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicides-tolerant plant, Chemosphere 28: 1551-1557.
    Ankley, G. T., Collyard, S. A., Monson, P. D., Kosian, P. A. (1994). Influence of Ultraviolet-Light on the Toxicity of Sediments Contaminated with Polycyclic Aromatic-Hydrocarbons. Environmental Toxicology and Chemistry 13(11): 1791- 1796.
    Antizar-Ladislao, A., Lopez-Real, J. M., Beck, A. J. (2004). Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Crit Rev Environ. Sci. Technol. 34: 249-289.
    Antizar-Ladisiao, B., Lopez-Real, J., Beck, A. J. (2005a). In-vessel composting bioremediation of aged coal tar soil: effect of temperature and soil/green waste amendment ratio. Environ. Int. 31: 173-178.
    Antizar-Ladisiao, B., Lopez-Real, J., Beck, A. J. (2005b). Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Manag. 25: 281-289.
    Antizar-Ladisiao, B., Lopez-Real, J., Beck, A. J. (2006). Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions. Environ. Pollut. 141: 459-468.
    Aprill, W., Sims, R. C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20: 253-265.
    Bacci, E., Cerejeira, M. J., Gaggi, C, Chamello, G., Calamari, D., Vighi, M. (1990). Bioconcentration of organic chemical vapours in plant leaves: the Azalea model. Chemosphere 21: 525-535.
    Bachoon, D. S., Hodson, R. E., Araujo, R. (2001). Microbial community assessment in oil-impacted salt marsh sediment microcosms by traditional and nucleic acid-based indices. J. Microbiol. Methods 46: 37-49.
    Banks, M. K., Banks, E., Lee., Schwab, A. P. (1999). Evaluation of dissipation mechanisms for benzo[a]pyrene in the rhizosphere of tall fescue, J. Environ. Qual. 28 (1),:294-298.
    Banks, M. K., Govindaraju, R. S., Schwab, A. P., Kulakow, P. (1999). Phytoremediation of Hydrocarbon Contaminated Soil, Lewis Publishers, CRC Press.
    Banks, M. K., Govindaraju, R. S., Schwab, A. P., Kulakow, P. (2000). Field demonstration, in: S. Fiorenza, C.L. Oubre, C.H. Ward (Eds.), Phytoremediation of Hydrocarbon-Contaminated Soil, CRC Press, Boca Raton, 3-88.
    Betancur-Galvis, L. A., Alvarez-Bernal, D., Ramos-Valdivia, A.C., Dendooven, L. (2006). Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline- alkaline soils of the former Lake Texcoco. Chemosphere 62: 1749-1760.
    Bient, P., Portal, J. M., Leyal, C. (2000). Dissipation of 3-6-ring polycyclic aromatic hydrocarbon in the rhizosphere of ryegrass, Soil Biol. Biochem. 32: 2011-2017.
    Binet P., Portal, J. M, Leyval, C. (2001). Application of GC-MS to the study of anthracene disappearance in the rhizosphere of ryegrass. Org. Geochem. 32: 217-222.
    Bogan, B. W., Sullivan, W. R., Cruz, K. H., Paterek, J. R., Ravikovitch, P. I., Neimark, A. V. (2003). Humic coverage index as a determining factor governing strain-specific hydrocarbon availability to contaminant degrading bacteria in soils. Environ. Sci. Technol. 37:5168-5174.
    Boopathy, R. (2003). Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions. Bioresource Technol. 86: 171-175.
    Bordas, F., Lafrance, P., Villemur, R. (2005). Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids. Environ. Pollut. 138: 69-76.
    Bossert, I. D., Bartha, R. (1986). Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Toxicol. 37:490- 500.
    Bowen, G. D., Rovira, A. D. (1991). The rhizosphere, Plant Roots - The Hidden Half, Marcel-Dekker, Inc., New York.
    Box, J. D. (1983). Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17: 511-525.
    Boyle, J. J., Shann, J. R. (1995). Biodegradation of phenol, 2, 4-DCP,2, 4-D, and 2,4, 5-T in field-collected rhizosphere and non-rhizosphere soils. J. Environ. Q. 24: 782-785.
    Brady, N. C., Weil, R. R. (1996). The Nature and Properties of Soils. Prentice Hall: Upper Saddle River, New Jersey.
    Bragg, J. R., Prince, R. C., Harner, E. J., Atlas, R. M. (1994). Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature. 368: 413-418.
    Breedveld, G. D., Sparrevik, M. (2000). Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 11: 391-399.
    Briggs, G. G., Bromilow, R. H. Evans, A. A. (1982). Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 13: 495-504.
    Briggs, G. G., Bromilow, R. H., Evans, A. A., Williams, M. (1983). Relationship between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots. Pestic. Sci. 14: 492-500.
    Cairney, T. (1993). Contaminated Land, p. 4, Blackie, London.
    Carter, M. R., Carter. (1993). Soil Sampling and Methods of Analysis, Canadian Society of Soil Science, Lewis Publishers.
    Cerniglia, C. (1993). Biodegradation of polyciclic aromatic hydrocarbons.Biodegradation. 3:351-368.
    Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J. Ind. Microb. Biotechnol. 19: 324-333.
    Cha(?)neau, C. H., Morel, J. L., Oudot, J. (1997). Phytotoxicity and plant uptake of fuel oil hydrocarbons, J. Environ. Qual. 26: 1478-1483.
    Chang, B. V., Shiung, L. C., Yuan, S. Y. (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48: 717-724.
    Chaudhry, Q., Blom-Zandstra, M., Gupta, S., Joner, E. J. (2005). Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. 12: 34-48.
    Cheema, S. A., Khan, M. I., Tang, X., Zhang, C., Shen, C., Malik, Z., Ali, S., Yang, J., Shen, K., Chen,X., Chen, Y. (2008). Enhancement of Phenanthrene and Pyrene Degradation in Rhizosphere of Tall Fescue (Festuca arundinacea). Journal of Hazardous Materials doi:10.1016/j.jhazmat.2008.12.027
    Chen, Y., Banks, M. K., Schwab, A. P. (2003). Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass {Panicum virgatum L.). Environ. Sci. Technol. 37: 5778-5782.
    Cheng, K. Y., Lai, K. M., Wong J. W. C. (2008). Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73: 791-797.
    Chiou, C. T., Sheng, G. Y., Manes, M. (2001). A partition-limited model for plant uptake of organic comtaminants from soil and water. Environmental Science & Technology 35: 1437- 1444.
    Chung, N., Alexander., M. (1999). Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbon. Environ. Sci. Technol. 33: 3605-3608.
    Cookson, J. T. (1995). Bioremediation Engineering: Design and Application. McGraw- Hill Inc, New York, USA.
    Corgie, S. C., Beguiristain, T., Leyval, C. (2004). Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L, Appl. Environ. Microbiol. 70: 3552-3557.
    Coulon, F., Pelletier, E., Gourhant, L., Delille, D. (2005). Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58: 1439-1448.
    Cunningham, C. J., Ivshina, I. B., Lozinsky, V. I., Kuyukina, M, S., Philp, J. C. (2004). Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Biodeter Biodegradation 54: 167-174.
    Cunningham, S. D., Anderson, T. A., Schwab, A. P., Hau F. C. (1996). Phytoremediation of soils contaminated with organic pollutants, Adv. Agron. 56: 55-114.
    Cunningham, S. D., Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiol. 110:715-719.
    Curl, E. A., Truelove B. (1986). The Rhizosphere, Springer-Verlag, Berlin, Germany.
    Damaj, M, Ahmad, D. (1996). Biodegradation of polychlorinated biphenyls by rhizobia: a novel finding. Biochem. Biophys. Res. Commun.218: 908-915.
    Darrah, P. R. (1993). The rhizosphere and nutrition, a quantitative approach. Plant Soil 156: 1-20.
    De Maagd, P., Vethaak, D. (1998). Biotransformation of PAHs and their carcinogenic effect in fish. The handbook of environmental chemistry. Berlin: Springer-Verlag.
    Delille, D., Coulon , F., Pelletier, E. (2004). Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic. Microb. Ecol. 47: 407-415.
    Delille, D., Delille, B. (2000). Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-antarctic intertidal sediments. Mar. Environ. Res. 49: 403-417.
    Dietz, A. C, Schnoor, J. L. (2001). Advances in phytoremediation, Environ. Health Perspect. 1099: 163-168.
    Doick, K. J., Semple, K. T. (2003). The effect of soil:water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil. FEMS Microbiol. Lett. 220: 29-33.
    Dominiguez-Rosado, E., Pichtel, J. (2004). Phytoremediation of soil contaminated with used motor oil: Ⅱ. Greenhouse studies. Environ. Eng. Sci. 21: 169-180.
    Donnelly, P. K., Hegde, R. S., Fletcher, J. S. (1994). Growth of PCB degrading bacteria on compounds from photosynthetic plants. Chemosphere 28: 981-988.
    Douben, P. E. T. (2003). PAHs: An ecotoxicological perspective: John Wiley & Sons Ltd.
    Eisler, R. (1987). Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. : U.S. Fish and Wildlife Service. Report nr 85(1.11).
    Escalante-Espionsa, E., Gallegos-Mart(?)nez, M. E. E., Favela-Torres., Guti(?)rrez-Rjoas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus Laxus Lam. Inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413.
    Eweis, B. J., Ergas, J. S., Chang, P. Y. D., Schroeder, D. E. (1998). Bioremediation principles. WCB McGraw-Hill, Malaysia.
    Fan, S., Fan, P., Li, Z., Gong, W., Ren., He, N. (2008). Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71: 1593-1598.
    Fava, F., Berselli, S., Conte, P., Piccolo, A., Marchetti, L. (2004). Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnol. Bioeng 88: 214-223.
    Feris, K. P., Hristova, K., Gebreyesus, B., Mackay, D., Scow, K. M. (2004). A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb Ecol 48: 589-600.
    Ferro, A. M, Sims, R. C, Bugbee, B. (1994). Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ. Qual. 23: 272-279.
    Finalayson-Pitts, B. J., Pitts, J. N., Tropospheric Jr. (1997). air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons and particles. Science 276: 1045-1052.
    Fletcher, J. S., Hegde, R. S. (1995). Release of phenols by perennial plants roots and their potential importance in bioremediation. Chemosphere 31: 3009-3016.
    Frederick, K. A., Babish J. G. (1982). Evaluation of mutagenicity and other adverse effects of occupational exposure to sodium azide. Regul. Toxicol. Pharmacol. 2: 308-322.
    FRTR. 2005. HUhttp://www.frtr.gov/matrix2/section4/4-2.htmlU
    Fujikawa, K., Fujikawa, F. L., Fort, K., Samejima., Sakamoto, Y. (1993). Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycylic aromatic hydrocarbons as assayed in the DNA repair test. Mutat Res 290: 175-182.
    Gao, Y. Z., Ling, W. T., Wong, M. H. (2006). Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere 63: 1560-1567.
    Gao, Y. Z., Xiong, W., Ling, W. T., Xu, J. M. (2006b). Sorption of phenanthrene by contaminated soils with heavy metals. Chemosphere 1 355-1 361.
    Gao, Y. Z., Zhu, L. Z. (2004). Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere. 55: 1 169-1 178.
    Gao, Y. Z., Zhu, L. Z., Hu, C. J., Chen, B. L. (2004). Effects of Tween 80 on plant uptake of phenanthrene and pyrenefrom water. Acta Scientiae Circumstantiae (in Chinese). 24:713-718.
    Gao, Y., Zhu, L., (2003). Phytoremediation and its models for organic contaminated soils. J. Environ. Sci. 15:302-310.
    Garon, D., Sage, L., Wouessidjewe, D., Seigle-Murandi, F. (2004). Enhanced degradation of fluorine in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56: 159-166.
    Gijs, D. B., Sparrevik, M. (2000). Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 11: 391-399.
    Gill, R. A., Jackson, R. B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147: 13-31.
    Gogoi, B. K., Dutta, N. N., Goswami, P., Krishna Mohan, T. R. (2003). A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv. Environ. Res. 7: 767-782.
    Goldman, R., Enewold, L., Pellizzari, E., Beach, J. B., Bowman, E. D., Krishnan, S. S., Shields, P. G. (2001) Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res. 61: 6367-6371.
    Gong, Z., Alef, K., Wilke, B., Mai, M., Li, P. (2005). Assessment of microbial respiratory activity of a manufactured gas plant soil after remediation using sunflower oil. J Hazard Mater B 124:217-223.
    Goodin, J. D., Webber, M. D., (1995). Persistence and fate of anthracene and benzo(a)pyrene in municipal sludge treated soil. J. Environ. Quality 24: 271-278.
    Gramms, G., Gramms, Voigt K. D., Kirshe, B. (1999). Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38: 1481-1494.
    Grayston, S. J., Vaughan, D., Jones, D. (1996). Rhizosphere carbon flow in tree, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5: 29-56.
    Guckert, A. (1992). Significance of roots and their exudates as sources of organic soil substances. [German]. Berichte uber Landwirtschaft, Sonderheft pp 97-113
    Guerin, T. F. (2000). Long-term performance of a land treatment facility for the bioremediation of non-volatile oily wastes. Resour. Conserv. Recycl. 28: 105-120.
    G(?)nther, T., Gunther, U., Dornberger., Fritsche, W. (1996). Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33: 203-215.
    Haderlein, A., Legros, R., Ramsay, B. A. (2005). Pyrene mineralization capacity increases with compost maturity. Biodegradation (in press)
    Hansen, L. D., Nestier, C, Ringelberg, D., Bajpai, R. (2004). Extended bioremediation of PAH/PCP contaminated soils from the POPILE wood treatment facility. Chemosphere 54: 1481-1493.
    Harms, H., Bosma, T. N. P. (1997). Mass transfer limitation of microbial growth and pollutant degradation. J. Ind. Microbiol.18: 97-105.
    Hauggaard, N., Hauggaard, H., Jensen, (2001). E. S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Res. 72 185-196.
    Heinaru, E., Merimaa, M, Viggor, S., Lehiste, M, Leito, I., Truu, J., Heinaru, A. (2005). Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microb. Ecol. 51: 363-373.
    Helmut, M. P., Franco, W. A. (2001). strategy for optimizing quality and quality of DNA extracted from soil. J. Microbiol. Methods 45: 7- 20.
    Hoagland, R. E., Williams, R. D. (1985). The influence of secondary plant compounds on the associations of soil microorganisms and plant roots. The chemistry of allelopathy. Biochemical interactions among plants. American Chemical Society, Washington DC, USA, 1985, pp 301-325.
    Holoubek, I., Korinek, P., Seda, Z., Schneiderova, E., Holoubkova, I., Pacl, A., Triska, J., Cudlin, P., Caslavsky, J., (2000). The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environmental Pollution 109(2): 283-292.
    Howsam, M., Jones, K. C., Ineson, P. (2001). PAHs associated with the leaves of three dediduous tree species. Ⅱ: uptake during a growing season. Chemosphere 44: 155-164.
    Huang, X. D., Alawi, Y. E., Penrose, D. M., Glick, B. R., Greenberg B. M. (2004). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut. 130 465-476.
    Huang, X. D., Dixon, D. G., Greenberg, B. M. (1993). Impacts of Uv-Radiation and Photomodification on the Toxicity of Pahs to the Higher-Plant Lemna-Gibba (Duckweed). Environmental Toxicology and Chemistry 12(6): 1067-1077.
    Huang, X. D., Glick, B.R., Greenberg, M. B. (2001). Combining remediation technologies increases kinetics for removal of persistent organic contaminants from soil. In: Greenberg BM (eds) Environmental toxicology and risk assessment. ASTM.
    Jian, Y., Wang, L., Peter, P. F., Yu, H. T. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list, Mutat. Res. 557: 99-108.
    Johnsen, A. R., Wickb, L. Y., Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environ. Pollut. 133: 71-84.
    Johnsen, A. R., Winding, A., Karlson, U., Rosier, P. (2002). Linking of micro-organisms to phenanthrene metabolism in soil by analysis of 13C-labelled cell-lipids. Appl.Environ. Microbiol. 68:6106-6113.
    Johnson, D. L., Anderson, D. R., McGrath, S. P. (2005). Soil microbial response during the phytoremediation of a PAH contaminated soil Soil Biology. Biochemistry 37:2334-2336.
    Johnson, D. L., Jones, K. C., Langdon C. J., Piearce, T. G., Semple, K. T. (2002).Temporal changes in earthworm availability and extractability of polycyclic aromatic hydrocarbons in soil. Soil Biol. Biochem. 34: 1363-1370.
    Johnson, D. L., Maguire, K. L., Anderson D. R., McGrath, S. P. (2004). Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol.Biochem. 3: 33-38.
    Joner, E. J., Leyval, C. (2003). Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular Mycorrhiza. Environ. Sci. Technol. 37 2371-2375.
    Joner, E. J., Corgi(?), S. C., Amellai, N., Leyval, C. (2002). Nutritional contributions to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biol. Biochem. 34, 859-864.
    Joner, E. J., Johansen, A., Loibner, A. P., Cruz, M. A., Szolar, O. H. J., Portal, J. M.,Leyval, C. (2001). Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil.Environ. Sci. Technol. 35: 2773-2777.
    Joner, E. J., Leyval, C., Colpaert, J. V. (2006). Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ. Pollut. 142: 34-38.
    Kaimi, E., Mukaidani, T., Miyoshi, S., Tamaki, M. (2006). Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Exp. Botany 55: 110-119.
    Kastner, M., Streibich, S., Beyrer, M., Richnow H. H., Fritsche, W. (1999). Formation of bound residues during microbial degradation of [~(14)C] anthracene in soil. Appl. Environ. Microbiol. 65: 1834-1842.
    Kaye, J. P., Hart, S. C. (1997). Co.mpetition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 12: 139-143.
    Ke, L., Wang, W. Q., Wong, T. W. Y., Wong, Y. S.,. Tarn, N. F. Y (2003). Removal of pyrene from contaminated sediments by mangrove microorganisms, Chemosphere 51 25-34.
    Keith, L. H., Telliard, W. A. (1979). Priority pollutants. Ⅰ. A perspective view. Environ. Sci. Technol. 13:416-423.
    Kim, I. S., Park, J., Kim, K. (2001a). Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem. 16: 1419-1428.
    Kim, J. H., Bae, W. K., Shim, H. J., Shin, H. J. (2001b). PAH degradation characteristics under mixed conditions. Korean Groundwater and Soil Environment Society Meeting, Hanyang University, April 13-14.
    Kipopoulou, A.M., Manoli, E., Samara, C. (1999). Bioconcentration of PAHs in vegetables grown in an industrial area. Environ. Pollut. 106, 369-380.
    Kraus, J. J., Munir, I. Z., McEldoon, J. P., Clark, D. S., and Dordick, J. S. (1999). Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase, Appl. Biochem. Biotechnol. 80: 221-230.
    Krylov, S. N., Huang, X. D., Zeiler, L. F., Dixon D. G., Greenberg, B. M. (1997). Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons.1. Physical model based on chemical kinetics in a two-compartment system. Environmental Toxicology and Chemistry 16(11): 2283-2295.
    Kuiper., Bloemberg, G. V., Lugtenberg, B. J. J. (2001). Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon degrading bacteria. Mol. Plant Microbe In 14 1197-1205.
    Kumada, Y., Kisa, T., Kuwano, Y., Koshikawa, H., Tashiro., Yasukagawa, E., Shimizu, Y. (2005). Microbial community analysis of PAHs degradation in soil. Proc 5th Korea-Japan joint seminar on geo-environmental engineering, 4th July, Seoul National University, Seoul.
    Laha, S., Luthy, R. G. (1991). Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25: 1 920-1 930.
    Laha, S., Luthy, R. G. (1992). Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems, Biotechnol. Bioeng. 40: 1367-1380.
    Lampi, M. A., Gurska, J., McDonald, K. I. C., Xie, F. L., Huang, X. D., Dixon, D. G., Greenberg, B. M. (2006). Photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna: Ultraviolet-mediated effects and the toxicity of polycyclic aromatic hydrocarbon photoproducts. Environmental Toxicology and Chemistry 25(4): 1079-1087.
    Lau, K. L., Tsang, Y. Y., Chiu, S. W. (2003). Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52: 1539-1546.
    Lee, S. H., Lee, W. S., Lee, C. H., Kim, J. G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J. Hazard. Mater. 153: 892-898.
    Leigh M.B., Fletcher J.S., Fu X. and Schmitz F.J., Root turnover: an important substrate of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36 (2002), 1579-1583.
    Li, F. D., (1996). analysis of soil enzyme activity ( M ). in : Experiemtnal techniques in agricultural microbiology ( Li F. D., Yu Z. N., He S. J., ed.).Beijing: Chinese agricultural press. 137-139.
    Li, Y., Yediler, A., Ou, Z. Q., Conrad, I. and Kettrup, A. 2001. Effects of a nonionic surfactant (Tween 80) on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm. Chemosphere. 45: 67-75.
    Liste, H. H., Alexander, M., (1999). Rapid screening of plants promoting phenanthrene degradation. J. Environ. Qual. 28: 1376-1377.
    Liste, H. H., Prutz, I. (2006). Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62: 1411-1420.
    Liste, H., Alexander, M. (2000). Plant-promoted pyrene degradation in soil. Chemosphere 40: 7-10.
    Lowe, L. E. (1993). soil sampling and methods of soil analysis, M.R. Carter, Ed., Canadian society of soil science. Lewis Publishers.
    Lundstedt, S., Persson, Y., Vberg, L. (2006). Transformation of PAHs during ethanol- Fenton treatment of an aged gasworks' soil,. Chemosphere 65: 1288-1294.
    Macleod, C. J. A., Semple, K. T. (2005). The influence of single and multiple applications of pyrene on the evolution of pyrene catabolism in soil. Environ. Pollut. 139:455-460.
    Mallakin, A., Dixon, D. G., Greenberg, B. M. (2000). Pathway of anthracene modification under simulated solar radiation. Chemosphere 40: 1435-1441.
    Mallakin, A., McConkey, B. J., Miao, G. B., McKibben, B., Snieckus, V., Dixon, D. G., Greenberg, B. M. (1999). Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products. Ecotoxicology and Environmental Safety 43(2): 204-212.
    Margesin, R., Zimmerbauer, A., Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere 40: 339-346.
    Mastrangela, G. et al. (1997) Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect. 104: 1166-1170.
    Mata-Sandoval, J., Karns, J. and Torrent, A. 2002. Influence of rhamnolipids and Triton X-100 on the desorption of pesticides from soils. Environ. Sci. Technol. 36: 4 669-4 675.
    Mattina, M. J. I., Lannucci-Berger, W., Musante, C. and White, J. C. (2003). Concurrent plant uptake of heavy metals and persistant organic pollutants from soils. Environ. Pollut. 124:375-378.
    McConkey, B. J., Duxbury, C. L., Dixon, D. G., Greenberg, B. M. (1997). Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environmental Toxicology and Chemistry 16(5): 892-899.
    McCutcheon, S. C, Schnoor, J. L. (2003). Phytoremediation Transformation and Control of Contaminants, Wiley-Interscience, Inc., Hoboken, NJ.
    McIntire, T., Lewis, G. M. (1997). The advancement of phytoremediation as innovative environmental technology for stabilization, remediation and restoration of contaminated Sites. J. Soil Contam. 6: 227-235.
    McNicoll, D. M., Baweja, A .S. (1995). Bioremediation of Petroleumcontaminated Soils:An Innovative, Environmental Friendly Technology. Environment Canada, Canada.
    Miya, R. K., Firestone, M. K. (2001). Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J. Environ. Qual. 30:1911-1918.
    Mohamed, T., Juan, A. O., Inmaculada, G. R. (2002). Production of xyloglucanolytic enzymes by Trichoderma viride, Paecilomyces farinosus, Wardomyces inflatus, and Pleurotus ostreatus. Mycologia 94: 404-410.
    Morehead, N. R., Morehead, B. J., Eadie, B., Lake, P. D., Landrum., Berner, D. (1986).The sorption of PAH onto dissolved organic matter in Lake Michigan waters.Chemosphere 15:403-412.
    Moretto, L. M., Silvestri, S., Ugo, P., Zorzi, G., Abbondanzi, F., Baiocchi, C., Iacondini,B. (2005). Polycyclic aromatic hydrocarbons degradation by composting in a sootcontaminated alkaline soil. J. Hazard. Mater. 126:141-148.
    Morimoto, K., Tatsumi, K. (1997). Effect of humic substances on the enzymatic formation of OCDD from PCP. Chemosphere 34: 1277-1283.
    Mueller, K. E., J. R. Shann. (2006). PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere 64; 1006-1014.
    Muratova, A. Y., Turkovskaya, O. V., H(u丨¨)ubner, T., Kuschk, P. (2003). Studies of alfalfa and reed in the phytoremediation of hydrocarbon-polluted soil. Appl. Biochem.Microbiol. 39: 599-605.
    Muyzer, G., Andr, G. U. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695- 700.
    Napola, M. D. R., Pizzigallo, P. Di. Leo., Spagnuolo, M., Ruggiero, P. (2006). Mechanochemical approach to remove phenanthrene from a contaminated soil, Chemosphere65: 1583-1590.
    Newsted, J. L., Giesy, J. P. (1987). Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna, Strauss (Cladocera, Crustacea). Environ. Tox. Chem. 6:445-461.
    Nylund, L., Heikkila, P., Hameila, M. P. L., Linnainmaa K., Sorsa, M. (1992). Genotoxic effects and chemical composition of four creosotes, Mutat. Res. 265: 223-236.
    O'Connor, T. P. (2002). National distribution of chemical concentrations in mussels and oysters in the USA. Marine Environmental Research 53(2): 117-143.
    Oleszczuk, P., Baran, S. (2003). Degradation of individual polycyclic aromatic hydrocarbons (PAHs) in soil polluted with aircraft fuel Polish. J. Environ. Stud. 12: 431-437.
    Ortega-Calvo, J., Saiz-Jimenez, C. (1998). Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas jluorescens strain isolated from soil. Appl. Environ. Microbiol. 64: 3123-3126.
    Palmroth, M. R. T., Langwaldt, J. H., Aunola, T. A., Goi, A., Munster, U., Puhakka, J. A., Tuhkanen, T. A. (20060. Effect of modified Fenton's reaction on microbial activity and removal of PAHs in creosote oil contaminated soil. Biodegradation. DOI. 10. 1007/s 10532-005-6060-3.
    Pandey, G. R., Jain, K. (2002). bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl. Environ. Microbiol. 68: 5789-5795.
    Park, J. Y., Cho, H. J., Yang, J. W. (2000). Effects of surfactant on electrokinetic remediation of soil contaminated by phenanthrene. Taejon/Chungnam-Kyushu, Serial 13, Fukuoka, Japan, pp 267-268.
    Parrish, Z. D., Banks, M. K., Schwab, A. P. (2005). Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. J. Environ. Qual. 34 : 207-216.
    Parrish, Z. D., Banks, M. K., Schwab, A. P. (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ. Pollut. 137: 187-197.
    Paterson, S., Mackay, D. (1994). A model of organic chemical uptake by plants from soil and the atmosphere. Environ. Sci. Technol. 28: 2259-2265.
    Patnaik, P. (1992). Hydrocarbon, aromatic. In: A Comprehensive Guide to the Hazardous Properties of Chemical Substances, Van Nostrand Reinhold, New York, pp425-445.
    Perugini, M., Visciano, P., Giammarino, A., Manera, M., Di Nardo, W., Amorena, M.. (2007). Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea, Italy. Chemosphere 66(10): 1904-1910.
    Phillips, D. A., Streit, W. R. (1996). Legume signals to rhizobial symbionts: a new approach for defining rhizosphere colonization. In: Stacey G, Keen NT (eds) Plant-microbe interactions. Chapman Hall, New York, pp 236-271.
    Pilon-Smits, E., (2005). Phytoremediation. Annu. Rev. Plant Biol. 56, 15e39.
    Polder, M. D., Hulzebos, E. M., Jager, D. T. (1995). Validation of models on uptake of organic chemicals by plant roots. Environ. Toxicol. Chem. 14: 1615-1623.
    Qiu, X., Leland, T.W., Shah, S. I., Sorensen, D. L., Kendall, E. W.,(1997). Field study: grass remediation for clay soil contaminated with polycyclic aromatic hydrocarbons. In: E.L. Kruger, T.A. Anderson and J.R. Coats, Editors, Phytoremediation of Soil and Water Contaminants, American Chemical Society, Washington, DC (1997), 186-199.
    Raskin, I., Smith, R.D., Salt, D.E., (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8: 221-226.
    Reilley, K. A., Banks, M. K., Schwab, A. .P. (1996). Organic chemicals in the environment: dissipation of polycyclic aromatic hydrocarbon in the rhizosphere. J. Environ. Qual. 25:212-219.
    Reilley, M. R., Muzzio, F. J., Buettner. H. M., Reyes, S. C. (1996). A simple correlation for predicting effective diffusivities in immobilized cell systems. Biotechnol. Bioeng. 49: 223-227.
    Robson, D. B., Knight, J. D., Farrell, R. E., Germida, J. J. (2003). Ability of coldtolerant plants to grow in hydrocarbon-contaminated soil. Intern. J. Phytorem. 5: 105-113.
    Rock, S. (1997). Phytoremediation. In: Freeman, H. (Ed.), Standard Handbook of Hazardous Waste Treatment and Disposal, second ed. McGraw Hill Inc, New York, USA, 93-112.
    Rovira, A. D. (1959): Root excretions in relation to the rhizosphere effect. Plant Soil 11: 53-64.
    Rovira, A. D., Harris, J. R. (1961). Plant root excretions in relation to the rhizosphere effect- V: the exudation of B-group vitamins. Plant Soil 14: 199-214.
    Ryan, J. A., Bell, R. M., Davidson, J. M., O'connor, G. A. (1988). Plant uptake of no-ionic organic chemicals from soils. Chemosphere 17: 2299-2323.
    S"anchez-Camazano, M., Rodri"aguez-Cruz, S, and S"anchez-marti"an, M. J. 2003. Evaluation of component characteristics of soil-surfactant-herbicide system that affect enhanced desorption of linuron and atrazine preadsorbed by soils. Environ.Sci. Technol. 37: 2 758-2 766.
    Sabate, J., Vinas, M., Solanas, A. M. (2006). Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Chemosphere 63: 1648-1659.
    Salanitro JP, Dorn PB, Huesemann MH, Moore KO, Rhodes IA, Jackson LM, Vipond TE, Western MM, Wisniewski HL (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31:1769-1776
    Sarand, S., Timonen, E. L., Nurmiaho-Lassila., Koivula T., Haahtela, K., Romantschuk, M., Sen, M. (1998). Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol. Ecol. 27: 115-126.
    Schippers, C, Geer, K., Muller, T., Scheper, T. (2000). Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J. Biotechnol. 83: 189-198.
    Schnoor, J. I. phytoremediation Technology evaluation report, prepares for grount water remeduation technologies analysis center, HUhttp://gwrtac.org.l997U
    Schnoor, J. L., Licht, L. A., McCutcheon, S C, Wolfe, N. L, Carreira, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29 318-323.
    Schroll, R., Bierling, B., Cao, G., Dorfler, U., Lahaniati, M., Langenbach, T., Scheunert, I. and Winkler, R., (1994) . Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere 28: 297-303.
    Schwarzenbach, R. P., Gschwend, P. M. (1993). Imboden, Environmental Organic Chemistry (first ed.), John Wiley & Sons, New York.
    Sehili, A. M., Lammel, G. (2007). Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia. Atmospheric Environment 41(37): 8301-8315.
    Sela, R., Goldrat, T., Avnimelech, Y. (1998). Determining optimal maturity of compost used for land application. Compost. Sci. Util. 6: 83-88.
    Shan, X. Q., Chen, B., Zhang, T. H., Li, F. L., Wen, B., Qian, J. (1997). Relationship between sulfur speciation in soils and plant availability. Sci. Total Environ. 199: 237-46.
    Shaw, L. J. Burns, R. G. 0. (2003).Biodegradation of obganic podlutants in the rhizgsphdre, Adv. Appl. Micro iol. 53: 1-60.
    Shim, H., Chauhan, S., Ryoo, D., Bowers, K., Thomas, S. M, Canada, K. A., Burken, J. G., Wood, T. K. (2000). Rhirmsphere competitiveness of trichloroethylene-degrading poplar-colonizing recombinant bacteria, Appl. Environ. Microbiol. 66:4673-4678.
    Shimp, J. F., Tracy, J. K., Davis, L. C, Lee, E., Huang, W., Erikson, L. E., Schnoor, J. L. (1993). Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit. Rev. Environ. Sci. and Technol. 23: 41-77.
    Siciliano, S. D, Germida, J. J. (1998). Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ. Rev. 6: 65-79
    Siciliano, S. D., ?ermhda, J. J., Banks, K., Gpeer, C. W., (2003). Changes in microbial communaty composip)on and function during a polyaromatic hydrocarbon phytoremediation field trial, Appl. Envirnn. Microbiol. 69: 483-489.
    Simonich, S. L., Hites, R. A. (1994). Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 28: 939-943.
    Simonich, S. L., Hites, R. A. (1995). Organic pollutant accumulation in vegetation. Environ. Sci. Technol. 29: 2095-2103.
    Sims, R. C, Overcash, M. R. (1983). Fate of polynuclear aromatic compounds in soilplant systems, Residue Rev. 88: 1-68.
    Singer, A. C., Crowley, D. E., Thompson, L. P. (2003). Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 21: 123-130.
    Siquira, J. O., Nair, M. G., Hammerschimidt, R., safir, G. R. (1991). significance of phenolic compounds in plant soil microbial systems. Rev. plant Sci. 10- 63.
    Smalla, K., Wieland, G., Buchner, A., Zock A., Parzy, J., Kaiser, J. Roskot, N., Heuer, H., Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis; plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742-4751.
    Sung, K., Corapcioglu, M. Y., Draw, M. C, Munster, C. L. (2001). Plant contamination by organic pollutants in phytoremediation. J. Environ. Qual. 30: 2081-2090.
    Susarla, S., Medina, V. F., McCutcheon, S. C. (2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng. 18: 647-658.
    Suthersan, S. S. (2002). Natural and enhanced remediation systems. CRC Press LLC .
    Tabak, H. H., J.M. Lazorchak, J. M., Lei, L., Khodadoust, A. P., Antia, J. E., Bagchi, R., Suidan, M. T. (2003). Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues, Environ. Toxicol. Chem. 22: 473-482.
    Tang, Y., Qi, J. L., Krieger-Brockett, B. (2005). Evaluating factors that influence microbial henanthrene biodegradation rates by regression with categorical variables. Chemosphere 59: 729-741.
    Taylor, L. T., Jones, D. M. (2001). Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44: 1131-1136.
    Trapp, S. and Matthies, M. (1997). Modeling volatilization of PCDD/F from soil and uptake into vegetation. Environ. Sci. Technol. 31:71-74.
    Trapp, S., Matthies, M., Scheunert, I., Topp, E. M. (1990). Modeling the bioconcentration of organic chemicals in plants. Environ. Sci.Technol. 24 1246-1252.
    Trindade, P. V.O., Snbral, L. G., Rizzo, A. L. L., Leite, S. G. F., Soriano, A. U. (2005).Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere 58:515-522.
    USEPA. (1995). Cost and performance report: slurry phase bioremediation application at the Southeastern Wood Preserving Superfend Site Canton, Mississippi. Report contract Number: 68-W3-0001.
    USEP@. (2000). Introduction to Phytoremediation. EPA/600/R-99/107. Washington DC,February.
    Van Limbergen, H., Top, E& M., Verstraete, W. (1998). Bioaugme.tation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50: 16-23.
    Vander, T. A. J., Krift, P. J., Kuikman, F., Berendse. (2002). The effect of living plants on root decomposition of four grass species. OIKOS 96: 36-45.
    Venkata Mohan, S., Krishna Prasad, K., Sirma, P. N. (200<b). Oxidative enzyme catalyzed transformation of PAH in soil to enhance biodegradation. Proc international conference on soil and ground water contamination, risk assessment and remedial measures. NGRI, Hyderabad, December: 8-11.
    Venkata Mohan, S., Nancharaiah, Y, V., Fiankentof, F. C., Wattiau, P., Wuertz, S.,Wilderer, P. A., (2002). Monitoring the conjugal transfer of plasmid PWWO from Pseudomonas putida in sequencing batch biofilm reactor. In: Proceedings of VAAM conference, Gottingen.
    Venkata Mohan, S., Shailaja, S., Ramakrishna, M., Reddy, K. B., Sarma, P. N. (2006).Bioslurry phase degradation of DEP contaminated soil in periodic discontinuous mode oparation: inflten#e of augmentation a.d substrate partition. Procers Biochem.41:644-612.
    Venkata Mohan, S., Sirisha, R., Sarma, P. N., Reddy, S. J. (2004a). Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode-bioprocess monitoring. J. Hazard. Mater. 116: 39-48.
    Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F. M., Lust, N. (2003).Phytoremediation prospects of willow stands on contaminated sediment: a field trial.Environ. Pollut. 126: 275-282.
    Waarde, J. J. V., van der Waarde, E. J., Dijkhuis, M. J. C., Hessen., Keuning, S. (2002).Enzyme assay as indicators for biodegradation. In: W.j. van der Brick, R. Bosman and F. Arendt, Editors, Contaminant Soil 1377-1378.
    Walton, B. A., Guthrie, E.A., Christman, R. F. (1994). Rhizosphere microbial communities as a plant defence against toxic substances in soils. In: T.A. Anderson and J.R. Coats, Editors, Bioremdiation Through Rhizosphere Technology, American Chemical Society, Washington, DC 82-92.
    Walton, B. T., Anderson, T. A. (1988). Structural properties of organic chemicals as predictors of biodegradation and microbial toxicity in soils. Chemosphere 17: 1501-7.
    Wang, M., Jones, K. C. (1994). Uptake of chlorobenzencs by carrots from spiked and sewage sludge-amended soil. Environmental Science & Technology 28: 1260-1267.
    Watkins, J. W., Sorensen, D. L., Sims, R. C. (1994). Volatilization and mineralization of naphaltene in soil-grass microorganism, in: T.A. Anderson, J.R. Coats (Eds.),Bioremediationthrough Rhizosphere Technology, ACS Symposium Series 563,American Chemical Society, Washnigton, DC. 123-131.
    Westergaard, K., Mu," Her A. K., Christensen, S., Bloem, J., Sorensen, S. J. (2001). Effects of tylosin as a disturbance on the soil microbial community. Soil Biol. Biochem. 33(15): 2061-2071.
    White, J. C, Alexander, M., Pignatello, J. J. (1999). Enhancing the bioavailability of compounds sequestered in soil and aquifer solids. Environ. Toxicol. Chem. 182: 182-187.
    Wild, S. R., Jones, K. C. (1992). Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Sci. Total Environ. 119:85-119.
    Wild, S. R., Jones, K. C. (1992). Polynuclear aromatic hydrocarbons uptake by carrots grown in sludge amended soil. J. Environ. Qual. 21: 217-225.
    Wilson, S. C, Jones, K. C. (1993). Bioremediation of soil contaminated with poynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollution 81: 229-249.
    Wiltse, C. C, Rooney, W. L., Chen, Z., Schwab, A. P., Banks, M. K. (1998). Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J. Environ. Qual. 27: 169-173.
    Xu ,S. Y., Chen, Y. X., Wu, W. X., Wang, K. X., Lin, Q., Liang, X. Q. (2006). Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci. Total Environ. 363: 206-215.
    Xu, R., Obbard, J. P. (2003). Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments. J. Environ. Qual. 32: 1234-1243.
    Xu, S. Y., Chen Y. X., Lin, Q., Wang, W. X., Xie S. G., Shen C. F. (2005). Uptake and accumulation of phenanthrene and pyrene in spiked soils by ryegrass (Lolium perenne L), J. Environ. Sci. 17: 817-822.
    Yang, C. H., Crowley, D. E. (2000). Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 1:345-351.
    Yoshitomi, K. J., Shann, J. R. (2001). Corn (Zea mays L) root exudates and their impact on ~(14)C-Pyrene mineralization. Soil Biol. Biochem. 33:1769-1776.
    Zhao, B. W., Zhu, L. Z., Gao, Y. Z. (2005). A novel solubilization ofphenanthrene using Winsor Ⅰ microemulsion-based sodium castor oil sulfonate. J. Hazard. Mater. 119:205-211.
    Zhao, B., Zhu, L., Li, W., Chen, B. (2005). Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. Chemosphere 58: 33-40.
    Zheng, Z., Obbard, J. P. (2002). polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. J. Environ.Qual. 31:1842-1847.
    Zhou, H. W., Luan, T. G., Zou, F., Tam, N. F. Y. (2008). Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment. J. Hazard Mater. 152:1179-1185.
    Zhou, J., Mary, B., James, M. T. (1996). DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700