可见光响应TiO_2基复合纳米管阵列的制备及其在降解水中有机污染物的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪全球环境污染和能源危机成为人类必须要面对的两大现实问题。光催化作为一种绿色化学技术,用该方法去除环境中难降解的持久性有机污染物的研究已经成为人们研究的热点。TiO2作为最具代表性,同时也是最具应用前景的典型光催化剂,尤其是具有一维有序结构的TiO2纳米管阵列更由于其具有独特的有序阵列结构、高的比表面积以及更好的电荷传递性能而引起了人们的广泛关注。然而由于其禁带宽度是3.2eV,意味着它只能被波长小于387nm的紫外光激发,对占太阳光谱大部分的可见光利用率较低。此外,TiO2在光照下产生的光生电荷与空穴容易在晶体内部发生复合,导致其量子效率偏低。这两个问题限制了TiO2在实际中的应用。针对以上问题,本文以TiO2纳米管阵列为基础,分别采用导电聚合物PANI、贵金属Ag纳米颗粒、Ag/Ag3PO4纳米颗粒对其进行改性,并对复合材料的形貌、结构以及光电化学特性进行系统的表征和讨论。
     本论文围绕以上内容,主要研究内容与研究结果体现在以下几个方面:
     (1)采用阳极氧化法结合电化学循环伏安法制备出负载PANI的TiO2纳米管阵列电极。经过PANI负载的TiO2纳米管阵列电极对光的吸收范围发生了明显的红移。经过PANI的负载,复合电极在可见光照下的光生电子与空穴的分离效率有了明显的提高。该负载PANI的TiO2纳米管电极在可见光下对罗丹明B的光电催化降解效率要比原TiO2纳米管阵列电极提高5倍以上。高效的可见光催化活性主要归因于PANI的可见光敏感性,以及与TiO2的能带相匹配。
     (2)采用阳极氧化法结合超声辅助的紫外光还原法制备了负载Ag纳米颗粒的TiO2纳米管阵列电极。负载Ag纳米颗粒的TiO2纳米管阵列在可见光下具有明显的光电流响应,且电荷的传递速率比未负载的TiO2纳米管阵列有明显的提高。在模拟太阳光照下,负载Ag纳米颗粒的TiO2纳米管阵列电极对2,4,6-三氯苯酚的光电催化降解效率要比纯的TiO2纳米管阵列电极的降解效率有显著提高。采用化学荧光技术结合电子顺磁共振技术检测光催化反应过程中产生的活性氧物种是·OH。通过检测溶液中Cl-浓度的变化分析2,4,6-三氯苯酚的脱氯情况。同时采用液质联用技术结合DFT理论计算的方法分析2,4,6-三氯苯酚降解过程中生成的中间产物,确定2,4,6-三氯苯酚在负载Ag纳米颗粒的TiO2纳米管阵列电极上的降解路径。
     (3)采用化学沉淀法结合原位溶剂还原法制备了可见光催化剂Ag/Ag3PO4纳米颗粒。该催化剂在可见光下对染料废水具有较高的降解效率。同时对氯酚类的废水同样具有较强的氧化能力。通过对光催化降解过程中的活性氧物种进行检测,发现Ag/Ag3PO4纳米颗粒在可见光照下降解污染物主要是通过空穴的直接氧化。结合DFT理论计算的方法,确定Ag3PO4催化剂作为一种窄带的间接半导体,其禁带宽度在2.57eV左右。可见光照下,电子从O的2p轨道跃迁到Ag的5s轨道。由于O的2p轨道与P的3s轨道发生了杂化作用,这种杂化作用导致电子更容易从价带跃迁到导带上。
     (4)采用阳极氧化法结合化学浸渍法制备了负载Ag/Ag3PO4纳米颗粒的TiO2纳米管阵列电极。负载Ag/Ag3PO4纳米颗粒的Ti02纳米管阵列电极仍保留其高度有序的阵列结构,且管口并没有发生堵塞的现象。Ag/Ag3PO4纳米颗粒的负载使TiO2纳米管阵列电极对光的吸收波长向可见光区域移动。可见光照下的光电流响应远远高于未负载的TiO2纳米管阵列电极。可见光照下对2-氯苯酚的降解效率能够达到95%以上,而未经负载的TiO2纳米管阵列电极在相同条件下对2-氯苯酚的降解效率仅能达到20%。采用化学荧光技术结合电子顺磁共振技术检测该催化剂光催化反应过程中产生的活性氧物种是-OH。
     本研究所制备的负载PANI的TiO2纳米管阵列电极、Ag纳米颗粒修饰的TiO2纳米管阵列电极、负载Ag/Ag3PO4纳米颗粒的TiO2纳米管阵列电极均有效地提高了其对可见光的利用效率。对于光催化技术向实际应用的发展具有重要的意义。
Human beings have to face the problems of global environmental pollution and energy crisis in twenty-first century. The photocatalytic method as a green chemistry technology has become a research hotspot on the removal of of persistent organic pollutants in the environment. TiO2as a representative and promising photocatalyst, especially TiO2nanotube arrays with a one-dimensional ordered structure caused widespread concern because of its unique and orderly array structure, high specific surface area and better charge transfer performance. However, the bandgap of TiO2is3.2eV, which means it can only be excited by UV light of wavelengths less than387nm. The utilization of visible light accounting for most of the solar spectrum is low. Furthermore, the photo-generated charge and holes of TiO2easily recombine within the crystal composite, leading to the low quantum efficiency. These two problems limit the application of TiO2in practice. In this dissertation, the TiO2nanotube arrays was modified by using a conductive polymer PANI, precious metals Ag nanoparticles and Ag/Ag3PO4nanoparticles, respectively. And the morphology, structure, and photoelectrochemical properties of the composite material were characterized and discussed in detail. The main contents and results are as follows:
     (1) The PANI-loaded TiO2nanotube arrays were prepared by anodic oxidation method combined with cyclic voltammetry. The obvious red shift absorption was observed after the modification of PANI. Meanwhile, the separation efficiency of photo-generated electrons and holes has been significantly improved after the PANI was loaded. The efficiency of photocatalytic degradation of Rhodamine B (RhB) of the PANI-loaded TiO2nanotubes electrode was more than5times when compared with pure TiO2nanotube array electrode under visible light irradiation. The efficient photocatalytic activity was mainly due to the visible light sensitivity of PANI, and the energy band matched well with TiO2.
     (2) The Ag-loaded TiO2nanotube arrays were prepared by anodic oxidation method combined with ultrasonic-assisted UV phococatalytic reduction technique. The Ag-loaded TiO2nanotube array has obvious photocurrent response under visible light irradiation. And the charge transfer rate was improved significantly. Compare with pure TiO2nanotube arrays, the2,4,6-trichlorophenol degradation efficiency of Ag-loaded TiO2nanotube array electrode was improved significantly under simulated sunlight irradiation. The reactive oxygen species were·OH during the photocatalytic reaction, which were detected by chemical fluorescence and electron paramagnetic resonance technology. The dechlorination of2,4,6-trichlorophenol was anlysed by the detection of C1-concentration in the solution. The intermediate products of2,4,6-trichlorophenol degradation were identified by DFT calculations and LC-MS technique. And the degradation pathways of2,4,6-trichlorophenol on the surface of Ag-loaded TiO2nanotube arrays electrode were confirmed.
     (3) A new visible light photocatalyst of Ag/Ag3PO4nanoparticles was fabricated by chemical precipitation combined with in situ solvent reduction method. The photocatalysts showed strong photocatalytic activity for decomposition of dyes under visible light irradiation. And they also had strong oxidation of chlorophenol wastewater. The generation of active species in the photocatalytic system was detected, and the results indicated that the degradation process of the pollutants was mainly due to the direct oxidation by the holes. Combined with DFT theoretical calculation method, Ag3PO4catalyst is a narrowband and indirect semiconductor. And the bandgap is about2.57eV. The electron can be excited from the O2p orbitals to the5s orbital of Ag under visible light. Because of the hybridization of O2p orbital and P3s orbital, the electron can be excited from the valence band to the conduction band more easily.
     (4) The Ag/Ag3PO4-loaded TiO2nanotube arrays were prepared by anodic oxidation combined with chemical impregnation method. The clusters of Ag/Ag3PO4nanoparticles formed on the surface of the TiO2nanotubes and caused no damage to their ordered structure, and the phenomenon of blocking did not happen. The UV-Vis absorption of Ag/Ag3PCO4-loaded light TiO2nanotube arrays electrode expanded to the visible light region. Photocurrent response of Ag/Ag3PO4-loaded TiO2nanotube arrays in the visible light was much higher than the pure TiO2. The degradation efficiency of2-chlorophenol (CP) can reach more than95%under visible light irradiation with the Ag/Ag3PO4-loaded TiO2nanotube arrays. However, the degradation efficiency of2-CP only reached20%with the pure TiO2nanotube arrays electrode under the same conditions. The reactive oxygen species were OH during the photocatalytic reaction, which were detected by chemical fluorescence and electron paramagnetic resonance technology.
     The TiO2nanotube arrays electrode loaded with PANI, Ag nanoparticles and Ag/Ag3PO4nanoparticles effectively improve the utilization of visible light. They have great significance for the development of the practical application of photocatalytic technology.
引文
[1]Fujishima A., Honda K., Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature,1972,238:37-38.
    [2]Bendavid A., Martin P. J., Jamting A., et al. Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition [J]. Thin Solid Films,1999,355-356:6-11.
    [3]Horikoshi S., Hidaka H., Serpone N. Environmental remediation by an integrated microwave/ UV-illumination method.1. Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions [J]. Environmental Science & Technology,2002,36:1357-1366.
    [4]Sunada K., Watanabe T., Hashimoto K. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination [J]. Environmental Science & Technology,2003, 37:4785-4789.
    [5]Sun B., Reddy E. P., Smirniotis P. G. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis [J]. Environmental Science & Technology,2005,39:6251-6259.
    [6]Hwang Y. J., Hahn, C., Liu, B., et al., Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating [J]. Acs Nano,2012, 6:5060-5069
    [7]Tada H., Jin Q., Nishijima, H., et al. Titanium(IV) Dioxide Surface-Modified with Iron Oxide as a Visible Light Photocatalyst [J]. Angewandte Chemie International Edition,2011,50:3501-3505.
    [8]Choi W., Yeo J., Ryu J., et al. Photocatalytic Oxidation Mechanism of As(Ⅲ) on TiO2: Unique Role of As(Ⅲ) as a Charge Recombinant Species [J]. Environmental Science & Technology, 2010,44:9099-9104.
    [9]Hashimoto K., Irie H. Fujishima A. TiO2 Photocatalysis:A Historical Overview and Future Prospects [J]. Japanese Journal of Applied Physics,2005,44:8269-8285.
    [10]Frank S. N., Bard A. J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders [J]. The Journal of Physical Chemistry,1977, 81:1484-1488.
    [11]Carey J. H., Lawrence J. Tosine H. M. Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions [J]. Bulletin of Environmental Contamination and Toxicology, 1976,16:697-701.
    [12]Friedmann D., Mendive C. Bahnemann D. TiO2 for water treatment:Parameters affecting the kinetics and mechanisms of photocatalysis [J]. Applied Catalysis B:Environmental,99:398-406.
    [13]Konstantinou I. K., Albanis T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations [J]. Applied Catalysis B:Environmental, 2004,49:1-14.
    [14]Dai K., Peng T., Chen, H., et al. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension [J]. Environmental Science & Technology,2009, 43:1540-1545.
    [15]Cao Y., Yi L., Huang L., et al. Mechanism and Pathways of Chlorfenapyr Photocatalytic Degradation in Aqueous Suspension of TiO2 [J]. Environmental Science & Technology,2006, 40:3373-3377.
    [16]Augustynski J., The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2 [J]. Electrochimica Acta,1993,38:43-46.
    [17]Burdett J. K., Electronic control of the geometry of rutile and related structures [J]. Inorganic Chemistry,1985,24:2244-2253.
    [18]Burdett J. K., Hughbanks T., Miller G. J., et al. Structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K [J]. Journal of the American Chemical Society,1987,109:3639-3646.
    [19]Linsebigler A. L., Lu G., Yates J. T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J]. Chemical Reviews,1995,95:735-758.
    [20]Pelaez M., Nolan N. T., Pillai S. C., et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Applied Catalysis B:Environmental, 125:331-349.
    [21]Koelsch M., Cassaignon S., TaThanh Minh, C., et al., Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium [J]. Thin Solid Films,2004,451-452:86-92.
    [22]Paramasivam I., Jha H., Liu N., et al. A Review of Photocatalysis using Self-organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures [J]. Small,8:3073-3103.
    [23]Tachikawa T., Fujitsuka M. Majima T. Mechanistic Insight into the TiO2 Photocatalytic Reactions:Design of New Photocatalysts [J]. The Journal of Physical Chemistry C,2007, 111:5259-5275.
    [24]Hoffman A. J., Carraway E. R., Hoffmann M. R. Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids [J]. Environmental Science & Technology,1994,28:776-785.
    [25]Cozzoli P. D., Comparelli R., Fanizza E., et al. Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions [J]. Materials Science and Engineering:C, 2003,23:707-713.
    [26]Emilio C. A., Litter M. I., Kunst M., et al. Phenol Photodegradation on Platinized-TiO2 Photocatalysts Related to Charge-Carrier Dynamics [J]. Langmuir,2006,22:3606-3613.
    [27]Gong D., Grimes C. A.,Varghese O. K. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. Journal of Materials Research,2001,16:3331-3334.
    [28]Wei W., Jha H., Yang G., et al. Formation of Self-Organized Superlattice Nanotube Arrays-Embedding Heterojunctions into Nanotube Walls [J]. Advanced Materials,2010,22:4770-4774.
    [29]Su Z. Zhou W. Formation, morphology control and applications of anodic TiO2 nanotube arrays [J]. Journal of Materials Chemistry,2011,21:8955-8970.
    [30]Likodimos V., Stergiopoulos T., Falaras P., et al. Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays:A Polarized Micro-Raman Investigation [J]. Journal of Physical Chemistry C,2008,112:12687-12696.
    [31]Liao J., Lin S., Zhang L., et al. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays [J]. ACS Applied Materials & Interfaces,2012, 4:171-177.
    [32]Wei W., Jha H., Yang G., et al. Formation of self-organized superlattice nanotube arrays embedding heterojunctions into nanotube walls [J]. Advanced Materials,2010,22:4770-4774.
    [33]Macak J. M., Tsuchiya H., Ghicov A., et al. TiO2 nanotubes:Self-organized electrochemical formation, properties and applications [J]. Current Opinion in Solid State and Materials Science, 2007,11:3-18.
    [34]Bauer S., Kleber S.Schmuki P. TiO2 nanotubes:Tailoring the geometry in H3PO4/HF electrolytes [J]. Electrochemistry Communications,2006,8:1321-1325.
    [35]Macak J. M., Sirotna K., Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes [J]. Electrochimica Acta,2005,50:3679-3684.
    [36]Macak J. M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium [J]. Angewandte Chemie International Edition,2005,44:2100-2102.
    [37]Ghicov A., Tsuchiya H., Macak J. M., et al. Titanium oxide nanotubes prepared in phosphate electrolytes [J]. Electrochemistry Communications,2005,7:505-509.
    [38]Macak J. M., Tsuchiya H., Taveira L., et al. Smooth anodic TiO2 nanotubes [J]. Angewandte Chemie International Edition,2005,44:7463-7465.
    [39]Ghicov A., Schmuki P. Self-ordering electrochemistry:a review on growth and functionality of TiO2 nanotubes and other self-aligned MOX structures [J]. Chemical Communications, 2009:2791-2808.
    [40]Parkhutik V. P., Shershulsky V. I. Theoretical modelling of porous oxide growth on aluminium [J]. Journal of Physics D:Applied Physics,1992,25:1258-1263.
    [41]Mor G. K., Varghese O. K. Paulose M., et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications [J]. Solar Energy Materials and Solar Cells,2006,90:2011-2075.
    [42]Hara M., Kondo T., Komoda M., et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation [J]. Chemical Communications,1998,357-358.
    [43]Zhang Y., Deng B., Zhang T., et al. Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity [J]. The Journal of Physical Chemistry C,114:5073-5079.
    [44]Sayama K., Hayashi H., Arai T., et al. Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds [J]. Applied Catalysis B:Environmental,2010,94:150-157.
    [45]Hou Y., Zuo F., Dagg A., et al. Visible Light-Driven α-Fe2O3 Nanorod/Graphene/BiV1-xMoxO4 Core/Shell Heterojunction Array for Efficient Photoelectrochemical Water Splitting [J]. Nano Letters,2012,12:6464-6473
    [46]Pan J., Yao H., Li X., et al. Synthesis of chitosan/y-Fe2O3/fly-ash-cenospheres composites for fast removal of bisphenol A and 2,4,6-trichlorophenol from aqueous solutions [J]. Journal of Hazardous Materials,2011,190:276-284.
    [47]Kawahara T., Yamada K.-i.,Tada H. Visible light photocatalytic decomposition of 2-naphthol by anodic-biased a-Fe2O3 film [J]. Journal of Colloid and Interface Science,2006,294:504-507.
    [48]Ai Z., Huang Y., Lee S., et al. Monoclinic a-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation [J]. Journal of Alloys and Compounds, 509:2044-2049.
    [49]Ji P., Zhang J., Chen F., et al. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation [J]. Applied Catalysis B:Environmental,2009, 85:148-154.
    [50]Li X., Zhang P., Jin L., et al. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism [J]. Environmental Science & Technology,46:5528-5534.
    [51]Hu J.-S., Ren L.-L., Guo Y.-G., et al. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles [J]. Angewandte Chemie International Edition,2005,44:1269-1273.
    [52]Li K. Q., Huang F. Q., Lin X. P. Pristine narrow-bandgap Sb2S3 as a high-efficiency visible-light responsive photocatalyst [J]. Scripta Materialia,2008,58:834-837.
    [53]Muller-Rosing H.-C., Schulz A., Hargittai M. Structure and Bonding in Silver Halides. A Quantum Chemical Study of the Monomers:Ag2X, AgX, AgX2, and AgX, (X=F, Cl, Br, I) [J]. Journal of the American Chemical Society,2005,127:8133-8145.
    [54]Rodil E.et al., Preparation of AgX (X= Cl,1) nanoparticles using ionic liquids [J]. Nanotechnology,2008,19:105603.
    [55]Hull S., Keen D. A. Pressure-induced phase transitions in AgCl, AgBr, and Agl [J]. Physical Review B,1999,59:750-761.
    [56]Kohtani S., Koshiko M., Kudo A., et al. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator [J]. Applied Catalysis B: Environmental,2003,46:573-586.
    [57]Kohtani S., Hiro J., Yamamoto N., et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation [J]. Catalysis Communications,2005,6:185-189.
    [58]Zhang X., Ai Z., Jia F., et al. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases [J]. Materials Chemistry and Physics,2007,103:162-167.
    [59]Hu X., Hu C. Preparation and visible-light photocatalytic activity of Ag3VO4 powders [J]. Journal of Solid State Chemistry,2007,180:725-732.
    [60]Ai Z., Zhang L., Lee S. Efficient Visible Light Photocatalytic Oxidation of NO on Aerosol Flow-Synthesized Nanocrystalline InVO4 Hollow Microspheres [J]. The Journal of Physical Chemistry C,114:18594-18600.
    [61]Amano F., Yamakata A., Nogami K., et al. Visible Light Responsive Pristine Metal Oxide Photocatalyst: Enhancement of Activity by Crystallization under Hydrothermal Treatment [J]. Journal of the American Chemical Society,2008,130:17650-17651.
    [62]Zhang Z., Wang W., Shang M., et al. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst [J]. Journal of Hazardous Materials,2010, 177:1013-1018.
    [63]Tang J., Zou Z., Katagiri M., et al. Photocatalytic degradation of MB on MIn2O4 (M=alkali earth metal) under visible light:effects of crystal and electronic structure on the photocatalytic activity [J]. Catalysis Today,2004,93-95:885-889.
    [64]Hu X., Yu J. C., Gong J., et al. Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process [J]. Crystal Growth & Design,2007, 7:2444-2448.
    [65]Yan T., Li L., Li G., et al. Porous Snln4S8 microspheres in a new polymorph that promotes dyes degradation under visible light irradiation [J]. Journal of Hazardous Materials,2011, 186:272-279.
    [66]Maruyama Y., Irie H., Hashimoto K. Visible Light Sensitive Photocatalyst, Delafossite Structured a-AgGaO2 [J]. The Journal of Physical Chemistry B,2006,110:23274-23278.
    [67]Chang X., Huang J., Cheng C., et al. BiOX (X=C1, Br,1) photocatalysts prepared using NaBiO3 as the Bi source:Characterization and catalytic performance [J]. Catalysis Communications,2010, 11:460-464.
    [68]Kelly K. L., Coronado E., Zhao L. L., et al. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J]. The Journal of Physical Chemistry B, 2002,107:668-677.
    [69]Elahifard M. R., Rahimnejad S., Haghighi S., et al. Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria [J]. Journal of the American Chemical Society,2007, 129:9552-9553.
    [70]Linic S., Christopher P., Ingram D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. nature material,2011,10:911-921.
    [71]Nakajima T., Lee C.-Y., Yang Y., et al. N-Doped lepidocrocite nanotubular arrays:hydrothermal formation from anodic TiO2 nanotubes and enhanced visible light photoresponse [J]. Journal of Materials Chemistry A,2013,1:1860-1866.
    [72]Li R., Li Q., Zong L., et al. BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity [J]. Electrochimica Acta,2013,91:30-35.
    [73]Li G., Wu L., Li F., et al. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation [J]. Nanoscale,2013,5:2118-2125.
    [74]Krengvirat W., Sreekantan S., Noor A.-F. M., et al. Single-step growth of carbon and potassium-embedded TiO2 nanotube arrays for efficient photoelectrochemical hydrogen generation [J]. Electrochimica Acta,2013,89:585-593.
    [75]Tang Y., Luo S., Teng Y., et al. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays [J]. Journal of Hazardous materials,2012,241-242:323-330.
    [76]Muramatsu Y., Jin Q., Fujishima M., et al. Visible-light-activation of TiO2 nanotube array by the molecular iron oxide surface modification [J]. Applied Catalysis B:Environmental,2012, 119-120:74-80.
    [77]Jeon T. H., Choi W., Park H. Photoelectrochemical and Photocatalytic Behaviors of Hematite-Decorated Titania Nanotube Arrays:Energy Level Mismatch versus Surface Specific Reactivity [J]. Journal of Physical Chemistry C,2011,115:7134-7142.
    [78]Xiao F. X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application [J]. ACS Applied Materials & Interfaces,2012, 4:7055-7063.
    [79]Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [80]Vereb C., Manczinger L., Oszko A., et al. Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2 [J]. Applied Catalysis B:Environmental, 129:194-201.
    [81]Lee H. U., Lee S. C., Choi S. H., et al. Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications [J]. Applied Catalysis B:Environmental,2013, 129:106-113.
    [82]Tu W., Zhou Y., Liu Q., et al. An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheets:Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2 into Methane and Ethane [J]. Advanced Functional Materials,2013,23:1743-1749.
    [83]Beranek R., Macak J. M., Gartner M., et al. Enhanced visible light photocurrent generation at surface-modi fled TiO2 nanotubes [J]. Electrochimica Acta,2009,54:2640-2646.
    [84]Hahn R., Ghicov A., Salonen J., et al. Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment [J]. Nanotechnology,2007,18:105604.
    [85]Tang X., Li D. Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response [J]. Journal of Physical Chemistry C,2008,112:5405-5409.
    [86]Santiago-Morales J., Aguera A. Gomez, M. d. M., et al., Transformation products and reaction kinetics in simulated solar light photocatalytic degradation of propranolol using Ce-doped TiO2 [J]. Applied Catalysis B:Environmental,2013,129:13-29.
    [87]Cottineau T., Bealu N., Gross P.-A., et al. One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-doped TiO2 with high visible light photoelectrochemical activity [J]. Journal of Materials Chemistry A,2013,1:2151-2160.
    [88]Larsen G. K., Fitzmorris R., Zhang J. Z., et al. Structural, Optical, and Photocatalytic Properties of Cr:TiO2 Nanorod Array Fabricated by Oblique Angle Codeposition [J]. Journal of Physical Chemistry C,2011,115:16892-16903.
    [89]Wang J., Liu Z., Cai R. A New Role for Fe3+in TiO2 Hydrosol:Accelerated Photodegradation of Dyes under Visible Light [J]. Environmental Science & Technology,2008,42:5759-5764.
    [90]Cottineau T., Bealu N., Gross P.-A., et al. One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-doped TiO2 with high visible light photoelectrochemical activity [J]. Journal of Materials Chemistry A,2013,1:2151-2160.
    [91]Nie L., Yu J., Li X., et al. Enhanced Performance of NaOH-modified Pt/TiO2 towards Room Temperature Selective Oxidation of Formaldehyde [J]. Environmental Science & Technology, 2013,47:2777-2783.
    [92]Ni M., Leung M. K. H., Leung D. Y. C., et al. A review and recent developments in photocatalytic water-splitting using for hydrogen production [J]. Renewable and Sustainable Energy Reviews,2007,11:401-425.
    [93]Tu Y.-F., Huang S.-Y., Sang, J.-P., et al. Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays [J]. Journal of Alloys and Compounds,2009,482:382-387.
    [94]Tu Y.-F., Huang S.-Y., Sang J.-P., et al. Preparation of Fe-doped TiO2 nanotube arrays and their photocatalytic activities under visible light [J]. Materials Research Bulletin,2010,45:224-229.
    [95]Hutchings G. S., Lu Q., Jiao F. Synthesis and Electrochemistry of Nanocrystalline M-TiO2 (M= Mn, Fe, Co, Ni, Cu) Anatase [J]. Journal of the Electrochemical Society,2013,160:A511-A515.
    [96]Doong R.-a., Chang S., Tsai C. Enhanced photoactivity of Cu-deposited titanate nanotubes for removal of bisphenol A [J]. Applied Catalysis B:Environmental,2013,129:48-55.
    [97]Li Y., Xiang Y., Peng S., et al. Modification of Zr-doped titania nanotube arrays by urea pyrolysis for enhanced visible-light photoelectrochemical H2 generation [J]. Electrochimica Acta, 2013,87:794-800.
    [98]Xu Z., Yu J., Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays [J]. Nanoscale,2011,3:3138-3144.
    [99]Takai A., Kamat P. V. Capture, Store, and Discharge. Shuttling Photogenerated Electrons across TiO2-Silver Interface [J]. Acs Nano,2011,5:7369-7376.
    [100]Es-Souni M., Es-Souni M., Habouti S., et al. Brookite Formation in TiO2-Ag Nanocomposites and Visible-Light-Induced Templated Growth of Ag Nanostructures in TiO2 [J]. Advanced Functional Materials,2010,20:377-385.
    [101]Paramasivam I., Macak J. M., Schmuki P. Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles [J]. Electrochemistry Communications,2008,10:71-75.
    [102]Zheng Z., Huang B., Qin X., et al. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M= Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol [J]. Journal of Materials Chemistry,2011,21:9079-9087.
    [103]Zhang Z., Zhang, L., Hedhili M. N., et al. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting [J]. Nano Letters,2013,13:14-20.
    [104]Sun L., Li J., Wang C., et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity [J]. Journal of Hazardous Materials,2009, 171:1045-1050.
    [105]Mukherjee B., Smith Y. R., Subramanian, V. CdSe Nanocrystal Assemblies on Anodized TiO2 Nanotubes:Optical, Surface, and Photoelectrochemical Properties [J]. The Journal of Physical Chemistry C,2012,116:15175-15184.
    [106]Yu J., Dai G., Huang B. Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays [J]. The Journal of Physical Chemistry C,2009, 113:16394-16401.
    [107]Lin C. J., Yu Y. H., Liou Y. H. Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts [J]. Applied Catalysis B:Environmental,2009, 93:119-125.
    [108]Yang H., Fan W., Vaneski A., et al. Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays:Intricate Effects of Size-Dependency and Interfacial Contact on Photoconversion Efficiencies [J]. Advanced Functional Materials,22:2821-2829.
    [109]Hou Y., Li X., Zou X., et al. Photoelectrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation [J]. Environmental Science & Technology,2009,43:858-863.
    [110]Wang M., Sun L., Lin Z., et al. p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities [J]. Energy & Environmental Science,2012,6:1211-1220.
    [111]Xiao F. Construction of Highly Ordered ZnO-TiO2 Nanotube Arrays (ZnO/TNTs) Heterostructure for Photocatalytic Application [J]. ACS Applied Materials & Interfaces,2012, 4,7055-7063.
    [112]Kontos A. I., Likodimos V., Stergiopoulos T., et al. Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles [J]. Chemistry of Materials,2009, 21:662-672.
    [113]Yu L., Wang Z., Zhang L., et al. TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries [J]. Journal of Materials Chemistry A,2013, 1:122-127.
    [114]Dai C., Yu J., Liu G. Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p-n Junction BiOl/TiO2Nanotube Arrays [J]. The Journal of Physical Chemistry C,2011, 115:7339-7346.
    [115]Zhang M., Wang Y.-N., Moulin E., et al. Core-shell CdTe-TiO2 nanostructured solar cell [J]. Journal of Materials Chemistry,2012,22:10441-10443.
    [116]Kang Q., Cai Q., Yao S. Z., et al. Fabrication of ZnxCd,-xSe Nanocrystal-Sensitized TiO2 Nanotube Arrays and Their Photoelectrochemical Properties [J]. The Journal of Physical Chemistry C,2012,116:16885-16892.
    [117]Liang Y.-C., Wang C.-C, Kei C.-C., et al. Photocatalysis of Ag-Loaded TiO2 Nanotube Arrays Formed by Atomic Layer Deposition [J]. Journal of Physical Chemistry C,2011, 115:9498-9502.
    [118]Yu J., Dai G.Cheng B. Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films [J]. Journal of Physical Chemistry C,2010, 114:19378-19385.
    [119]Zhang Z., Yuan Y., Shi G., et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation [J]. Environmental Science & Technology,2007, 41:6259-6263.
    [120]Yang H. Y., Yu S. F., Lau S. P., et al. Direct Growth of ZnO Nanocrystals onto the Surface of Porous TiO2 Nanotube Arrays for Highly Efficient and Recyclable Photocatalysts [J]. Small, 2009,5:2260-2264.
    [121]Nie J., Mo Y., Zheng B., et al. Electrochemical fabrication of lanthanum-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability [J]. Electrochimica Acta, 2013,90:589-596.
    [122]Cardoso J. C., Lizier T. M., Zanoni M. V. B. Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine [J]. Applied Catalysis B:Environmental, 2010,99:96-102.
    [123]Yang L., Xiao Y., Liu, S., et al. Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid [J]. Applied Catalysis B:Environmental,2010,94 142-149.
    [124]Mohapatra S. K., Kondamudi N., Banerjee S., et al. Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination [J]. Langmuir,2008,24:11276-11281.
    [125]Pan D., Xi C, Li Z., et al. Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays [J]. Journal of Materials Chemistry A,2013,1:3551-3555.
    [126]Mor G. K., Varghese O. K., Wilke R. H. T., et al. p-Type Cu-Ti-O Nanotube Arrays and Their Use in Self-Biased Heteroj unction Photoelectrochemical Diodes for Hydrogen Generation [J]. Nano Letters,2008,8:1906-1911.
    [127]Ailam N., K.El-Sayed M. A. Photoelectrochemical Water Oxidation Characteristics of Anodically Fabricated TiO2 Nanotube Arrays:Structural and Optical Properties [J]. Journal of Physical Chemistry C,2010,114:12024-12029.
    [128]Allam N. K., Yen C.-W., Near R. D., et al. Bacteriorhodopsin/TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting [J]. Energy & Environmental Science, 2011,4:2909-2914.
    [129]Mor G. K., Shankar K., Paulose M., et al. Enhanced Photocleavage of Water Using Titania Nanotube Arrays [J]. Nano Letters,2004,5:191-195.
    [130]Gong J., Lai Y., Lin C. Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting [J]. Electrochimica Acta,2010, 55:4776-4782.
    [131]Varghese O. K., Paulose M., LaTempa T. J., et al. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels [J]. Nano Letters,2009,9:731-737.
    [132]Sekizawa K., Maeda K., Domen K., et al. Artificial Z-Scheme Constructed with a Supramolecular Metal Complex and Semiconductor for the Photocatalytic Reduction of CO2 [J]. Journal of the American Chemical Society,2013,135:4596-4599.
    [133]Richardson P. L., Perdigoto M. L. N., Wang W., et al. Heterogeneous photo-enhanced conversion of carbon dioxide to formic acid with copper- and gallium-doped titania nanocomposites [J]. Applied Catalysis B:Environmental,2013,132-133:408-415.
    [134]Wang W.-N., An W.-J., Ramalingam B., et al. Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals [J]. Journal of the American Chemical Society,2012,134:11276-11281..
    [135]Feng X., Sloppy J. D., LaTempa T. J., et al. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays:application to the photocatalytic reduction of carbon dioxide [J]. Journal of Materials Chemistry,2011,21:13429-13433.
    [136]Lv Z., Yu J., Wu H., et al. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array [J]. Nanoscale,2012,4:1248-1253.
    [137]Lin J., Liu X., Guo M., et al. A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells [J]. Nanoscale,2012,4:5148-5153.
    [138]Varghese O. K., Gong D., Paulose M., et al. Hydrogen sensing using titania nanotubes [J]. Sensors and Actuators B:Chemical,2003,93:338-344.
    [139]Zheng Q., Zhou B., Bai J., et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand [J]. Advanced Materials,2008,20:1044-1049.
    [140]An Z., Wang Y., He J. Distribution-enhanced direct electron communication of hemoglobin immobilized in pristine TiO2 nanotube arrays [J]. Journal of Materials Chemistry,2011, 21:15780-15787.
    [141]Liu D., Xiao P., Zhang Y., et al. TiO2 Nanotube Arrays Annealed in N2 for Efficient Lithium-Ion Intercalation [J]. Journal of Physical Chemistry C,2008,112:11175-11180.
    [142]Liu S., Pan G. L., Yan N. F., et al. Aqueous TiO2/Ni(OH)2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions [J]. Energy & Environmental Science,2010,3:1732-1735.
    [143]Choi M. G., Lee Y.-G., Song S.-W., et al. Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles [J]. Electrochimica Acta,55:5975-5983.
    [144]Lu X., Wang G., Zhai T., et al. Hydrogenated TiO2 nanotube arrays for supercapacitors [J]. Nano Letters,2012,12:1690-1696.
    [145]Li J., Zhu L., Wu Y., et al. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization [J]. Polymer,2006, 47:7361-7367.
    [146]Zhang H., Zong R., Zhao J., et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI [J]. Environmental Science & Technology,2008, 42:3803-3807.
    [147]Li X., Wang D., Cheng G., et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination [J]. Applied Catalysis B: Environmental,2008,81:267-273.
    [148]Salem M. A., Al-Ghonemiy A. F., Zaki A. B. Photocatalytic degradation of Allura red and Quinoline yellow with Polyaniline/TiO2 nanocomposite [J]. Applied Catalysis B:Environmental, 2009,91:59-66.
    [149]Yu L., Wang Z., Shi L., et al. Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays [J]. Applied Catalysis B:Environmental,2012, 113-114:318-325.
    [150]Hameed B. H., Tan I. A. W., Ahmad A. L. Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol:Optimization using response surface methodology [J]. Journal of Hazardous Materials,2009,164:1316-1324.
    [151]Chen G.-C., Shan X.-Q., Wang Y.-S., et al. Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II) [J]. Water Research,2009,43:2409-2418.
    [152]Kishi T., Suzuki S., Takagi M., et al. Influence of experimental conditions on the formation of PCDD/Fs during the thermal reactions of 2,4,6-trichlorophenol [J]. Chemosphere,2009, 76:205-211.
    [153]Jesus A. G.-D., Romano-Baez F. J., Leyva-Amezcua L., et al. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation [J]. Journal of Hazardous Materials,2009, 161:1140-1149.
    [154]Chen G., Wang Z.Xia, D. Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium [J]. Electrochimica Acta,2004,50:933-937.
    [155]Christoforidis K. C., Serestatidou E., Louloudi M., et al. Mechanism of catalytic degradation of 2,4,6-trichlorophenol by a Fe-porphyrin catalyst [J]. Applied Catalysis B:Environmental,2011, 101:417-424.
    [156]Xiong Z., Xu Y., Zhu L., et al. Enhanced Photodegradation of 2,4,6-Trichlorophenol over Palladium Phthalocyaninesulfonate Modified Organobentonite [J]. Langmuir,2005, 21:10602-10607.
    [157]Diaz-Diaz G., Celis-Garcia M., Blanco-Lopez M. C., et al. Heterogeneous catalytic 2,4,6-trichlorophenol degradation at hemin-acrylic copolymer [J]. Applied Catalysis B: Environmental,2010,96:51-56.
    [158]Xiong Z., Ma J., Ng W. J., et al. Silver-modified mesoporous TiO2 photocatalyst for water purification [J]. Water Research,2011,45:2095-2103.
    [159]Nino-Martinez N., Martinez-Castanon G. A., Aragon-Pina A., et al. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles [J]. Nanotechnology,2008, 19:065711/1-065711/8.
    [160]Logar M., Jancar B., Sturm S., et al. Weak polyion multilayer-assisted in situ synthesis as a route toward a plasmonic Ag/TiO2 photocatalyst [J]. Langmuir,2010,26:12215-12224.
    [161]US EPA, http://www.epa.gov/safewater (2004).
    [162]Fukui K. The path of chemical reactions-the IRC approach [J]. Accounts of Chemical Research, 1981,14:363-368.
    [163]Li H., Duan X., Liu G., et al. Photochemical synthesis and characterization of Ag/TiO2 nanotube composites [J]. Journal of Materials Science,2008,43:1669-1676.
    [164]Blackstock J. J., Donley C. L., Stickle W. F., et al. Oxide and Carbide Formation at Titanium/Organic Monolayer Interfaces [J]. Journal of the American Chemical Society,2008, 130:4041-4047.
    [165]Xin B., Jing L., Ren Z., et al. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2 [J]. Journal of Physical Chemistry B,2005, 109:2805-2809.
    [166]Khan S. U. M., Al-Shahry M., Ingler W. B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 [J]. Science,2002,297:2243-2245.
    [167]Gaya U.I., Abdullah A. H., Hussein M. Z., et al. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder [J]. Desalination,2011, 263:176-182.
    [168]Huang H., Li D., Lin Q., et al. Efficient Degradation of Benzene over LaVO4/TiO2 Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation [J]. Environmental Science & Technology,2009,43:4164-4168.
    [169]Gumy D., Giraldo S. A., Rengifo J., et al. Effect of suspended TiO2 physicochemical characteristics on benzene derivatives photocatalytic degradation [J]. Applied Catalysis B: Environmental,2008,78:19-29.
    [170]Zielinska-Jurek A., Kowalska E., Sobczak J. W., et al. Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light [J]. Applied Catalysis B:Environmental,2011,101:504-514.
    [171]Ouyang S., Kikugawa N., Chen D., et al. A Systematical Study on Photocatalytic Properties of AgMO2 (M=Al, Ga, In):Effects of Chemical Compositions, Crystal Structures, and Electronic Structures [J]. The Journal of Physical Chemistry C,2009,113:1560-1566.
    [172]Yi Z., Ye J., Kikugawa N., et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation [J]. nature materials,2010,9:559-564.
    [173]Bi Y., Ouyang S., Umezawa N., et al. Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties [J]. Journal of the American Chemical Society, 2011,133:6490-6492.
    [174]Liu Y., Fang L., Lu H., et al. One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4 [J]. Applied Catalysis B:Environmental,2012,115-116:245-252.
    [175]Arabatzis I. M., Stergiopoulos T., Bernard M. C., et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange [J]. Applied Catalysis B:Environmental, 2003,42:187-201.
    [176]Yu H., Yu J., Cheng B., et al. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons [J]. Journal of Solid State Chemistry,2006,179:349-354.
    [177]Hirakawa T., Nosaka Y. Properties of O2 and Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions [J]. Langmuir,2002, 18:3247-3254.
    [178]Zhou X., Hu C., Hu X., et al. Plasmon-Assisted Degradation of Toxic Pollutants with Ag-AgBr/Al2O3 under Visible-Light Irradiation [J]. The Journal of Physical Chemistry C,2010, 114:2746-2750.
    [179]Christopher P., Xin H., Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures [J]. nature chemistry,2011,3:467-472.
    [180]Chen C., Ma W., Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation [J]. Chemical Society Reviews,2010,39:4206-4219.
    [181]Cheng M., Song W., Ma W., et al. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation [J]. Applied Catalysis B: Environmental,2008,77:355-363.
    [182]Banerjee S., Mohapatra S. K., Das P. P., et al. Synthesis of Coupled Semiconductor by Filling ID TiO2 Nanotubes with CdS [J]. Chemistry of Materials,2008,20:6784-6791.
    [183]Wang C., Sun L., Yun H., et al. Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles [J]. Nanotechnology,2009, 20:295601.
    [184]Seabold J. A., Shankar K., Wilke R. H. T., et al. Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays [J]. Chemistry of Materials,2008,20:5266-5273.
    [185]Gao X.-F., Li H.-B., Sun W.-T., et al. CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes [J]. Journal of Physical Chemistry C,2009,113:7531-7535.
    [186]Yang H., Fan W., Vaneski A., et al. Heteroj unction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays:Intricate Effects of Size-Dependency and Interfacial Contact on Photoconversion Efficiencies [J]. Advanced Functional Materials,2012,22:2821-2829.
    [187]Hou Y., Li X. Y., Zou X. J., et al. Photoeletrocatalytic Activity of a Cu20-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation [J]. Environmental Science & Technology,2009,43:858-863.
    [188]Dai G., Yu J., Liu G. Synthesis and Enhanced Visible-Light Photo-electrocatalytic Activity of p-n Junction BiOl/TiO2 Nanotube Arrays [J]. Journal of Physical Chemistry C,2011, 115:7339-7346.
    [189]Hou Y., Li X. Y., Zhao, Q. D., et al. Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity [J]. Advanced Functional Materials,2010,20:2165-2174.
    [190]Zhu M., Chen P., Liu M. Graphene Oxide Enwrapped Ag/AgX (X=Br, Cl) Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst [J]. Acs Nano,5:4529-4536.
    [191]Pu Z., Ito K., Schleyer P. v. R., et al. Planar Hepta-, Octa-, Nona-, and Decacoordinate First Row d-Block Metals Enclosed by Boron Rings [J]. Inorganic Chemistry,2009,48:10679-10686.
    [192]Zhang H., Wang G., Chen D., et al. Tuning Photoelectrochemical Performances of Ag-TiO2 Nanocomposites via Reduction/Oxidation of Ag [J]. Chemistry of Materials,2008, 20:6543-6549.
    [193]He J., Ichinose I., Kunitake T., et al. In Situ Synthesis of Noble Metal Nanoparticles in Ultrathin TiO2-Gel Films by a Combination of Ion-Exchange and Reduction Processes [J]. Langmuir, 2002,18:10005-10010.
    [194]Saraf L. V., Patil S. I., Ogale S. B., et al. Synthesis of Nanophase TiO2 by Ion Beam Sputtering and Cold Condensation Technique [J]. International Journal of Modern Physics B,1998, 12:2635-2647.
    [195]Lei Y., Zhang L. D., Meng G. W., et al. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays [J]. Applied Physics Letters,2001,78:1125-1127.
    [196]Tolosa N. C., Lu M.-C., Mendoza H. D., et al. The effect of the composition of tri-elemental doping (K, Al, S) on the photocatalytic performance of synthesized TiO2 nanoparticles in oxidizing 2-chlorophenol over visible light illumination [J]. Applied Catalysis A:General,2011, 401:233-238
    [197]Huang G., Zhang S., Xu T., et al. Fluorination of ZnWO4 Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol [J]. Environmental Science & Technology,2008, 42:8516-8521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700