尖晶石型复合金属氧化物功能材料的制备、表征及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型复合金属氧化物作为一类重要的无机功能材料具有一系列重要特性,广泛应用于高温材料、半导体光电材料、磁性材料、生物和医学、传感器以及催化剂和催化剂载体等诸多领域。目前,制备该类尖晶石型复合金属氧化物材料的方法主要是传统的高温固相反应法,但由于该方法通常需要长时间的高温焙烧,产物特别容易团聚和烧结,整体均一性也较差,比表面积很小,严重地影响了该类材料的应用。
     水滑石(Layered Double Hydroxide,简写为LDHs)是一类具有特殊结构的层状材料,在高温焙烧条件下可以转化生成尖晶石型复合金属氧化物。由于LDHs存在着晶格能最低效应及晶格定位效应,层板中的金属离子和层间的阴离子以一定方式均匀分布,即在LDHs的每个结构单元中,其化学组成不变。因此,以LDHs作为前驱体可以在相对较低的焙烧温度和较短的焙烧时间下得到一系列组分可调、成分均匀、结构均匀的尖晶石型复合金属氧化物功能材料,从而大幅提高其物理化学性能。
     本论文利用水滑石层板离子的可调控性制备了一系列组成的LDHs材料,并提出了以LDHs为前驱体的自生成牺牲模板路线来设计合成一系列具有特殊结构的复合金属氧化物功能材料。如以ZnAl-LDHs和ZnCr-LDHs为前驱体在500℃下就得到了高比表面积介孔尖晶石型锌基复合金属氧化物(Znal_2O_4和ZnCr_2O_4)。将层板二价金属离子调变为镁,层板中引入钛后分别得到MgFe-LDHs和MgFeTi-LDHs,并以之为前驱体在700℃下得到了高比表面积介孔尖晶石型镁基复合金属氧化物(MgFe_2O_4和钛掺杂的MgFe_2O_4)。在上述水滑石前驱体焙烧过程中,生成的二价金属氧化物作为自生成牺牲模板对尖晶石纳米粒子具有分散和阻隔作用,从而抑制了尖晶石纳米粒子的生长,使其粒径较小,而在选择性溶蚀后留下了介孔结构;并且考察了水滑石前驱体中二价与三价金属离子摩尔比和焙烧温度的影响。
     当焙烧温度提高到900℃,以锌镓水滑石为前驱体得到了粒径为150nm的单晶态ZnGa_2O_4尖晶石发光材料。与传统高温固相反应法相比,该制备路线具有焙烧温度低,时间短,尖晶石生成程度高,粒径小且均匀等特点。在深入研究两种方法制得ZnGa_2O_4尖晶石的晶体结构、组成、表面结构、Ga~(3+)配位环境、Ga-O键长等精细结构后,揭示出ZnGa_2O_4尖晶石光学能带宽度的差异来源于Ga-O键长的不同,Ga~(3+)配位环境对其光致发光性能有较大影响,并运用晶体场理论成功解释了水滑石前驱体法制得ZnGa_2O_4尖晶石发紫外光的原因。
     以含镁水滑石为前驱体,通过改进工艺路线引入预焙烧和烧结成型等工艺步骤后制备了一系列大孔复合金属氧化物(MgAl_2O_4、MgFe_2O_4和In_(2-x)Mg_xO_3)单块,详细研究了水滑石前驱体中二价与三价金属离子摩尔比和烧结温度对产物微结构以及组成的调控。对大孔MgAl_2O_4尖晶石单块表面硬脂酸修饰后,其表面实现了超疏水性能;而对大孔MgFe_2O_4尖晶石和In_(2-x)Mg_xO_3单块,分别详细研究了其微结构以及组成的调变对磁学和光学性能的影响。
     水热法与溶剂热法作为一种软溶液工艺(SSP)和环境友好的制备技术常用于各种无机功能材料的合成。本论文以尿素水解均匀沉淀为基础,应用水热无模板绿色合成路线制备出高比表面积介孔ZnAl_2O_4和NiAl_2O_4尖晶石材料。该工艺路线包括水热条件下生成前驱体以及前驱体在焙烧过程中发生结构转变生成介孔尖晶石材料两个步骤,并提出了反应机理,详细研究了水热温度、尿素浓度以及焙烧温度等参数对前驱体和最终产物的组成和织构性能的影响。当水热体系中引入适量的不同类型的醇后,可在醇/水体系中实现溶剂热选择性一步合成具有晶态骨架的微/介孔ZnAl_2O_4尖晶石,详细研究了醇的类型以及加入量对最终产物的织构、组成和形貌等的影响。
Spinel-type complex metal oxides are an important class of inorganic functional materials.They have found wide applications in areas such as high-temperature material,semiconductor,optoelectronic,magnetic material, biology,medicine,sensor,catalyst and catalyst support,because of their important structural and physicochemical properties.At present,the most commonly used route is the conventional solid-state reaction method which requires calcination of physical mixtures of precursors at considerably elevated temperatures for a long time.Therefore,the particles agglomerate and sinter during the calcination process,resulting in the nonuniform of the product and low surface area,which seriously affected their applications.
     Hydrotalcite-like compounds or layered double hydroxides(LDHs) belong to a large class of nature and synthetic anionic clays,in which the metal ions are bonded to hydroxyl groups to form two-dimensional brucite-like layers that are stacked together through electrostatic interactions between interlayer anions and positively charged layers.Within the layers,the cations are uniformly distributed on an atomic level without segregation of 'lakes' of separate cations.Therefore,calcination of LDHs precursors at a lower temperature and shorter time can give spinel-type complex metal oxides with uniform composition and structure.However,these spinel-type complex metal oxides are always mixed with the oxide of the divalent metal.This reflects the fact that in LDHs,the ratio M~Ⅱ/M~Ⅲis typically in the range 2~4 whereas in a spinel the required ratio is M~Ⅱ/M~Ⅲ=0.5.
     This thesis describes the synthesis of serious LDHs materials and uses them as precursors to obtain spinel-type complex metal oxides with special structures.Based on this thought,we prepared ZnAl_2O_4 and ZnCr_2O_4 spinels with mesopore networks and unusually high specific surface areas using ZnAl-LDHs and ZnCr-LDHs as precursors.Similarly,after changing M~Ⅱto Mg and introducing Ti into the layer of LDHs precursor,we have prepared MgFe-LDHs and MgFeTi-LDHs,which are also used as precursors to obtain high specific surface area mesoporous MgFe_2O_4 and Ti-doped MgFe_2O_4 spinels.In above pathways,the large amount of highly dispersed M~ⅡO formed during the calcination of LDHs precursors,as self-generated sacrificial templates,have an obvious segregation and inhibition effect on the growth of spinel particles,and leaves porous structures after selective leaching.Besides, we investigated the influence of M~Ⅱ/M~Ⅲmolar ratio and calcination temperature on the structure and textural properties of products.
     Increasing the calcination temperature to 900℃,single-crystalline ZnGa_2O_4 spinel phosphor with average particle size of around 150 nm has been prepared from ZnGa-LDHs precursor.Compared with the traditional high-temperature solid-state reaction method,this synthetic approach involves a much lower calcination temperature and shorter calcination time,and the obtained ZnGa_2O_4 spinel particles are smaller and uniform.The X-ray crystal structure,composition,surface/near-surface chemical states,Ga~(3+)coordination environment and Ga-O distance of ZnGa_2O_4 spinel products by two methods have been detailed investigated.It has been confirmed that that Ga~(3+)ions locate not only on the octahedral sites but also on the tetrahedral sites in ZnGa_2O_4 spinel structure,and the Ga-O coordination environment has a great influence on the photoluminence of ZnGa_2O_4 phosphors.The increased band gap energy comes from the shortening of Ga-O bond length in the ZnGa_2O_4 spinel obtained by the precursor route.
     After further improvement of the LDHs precursor route with the introduction of pre-calcination and sintering process steps,complex metal oxide monoliths(MgAl_2O_4,MgFe_2O_4 and In_(2-x)Mg_xO_3)with macropore frameworks have been obtained.The microstructures(morphologies,particle sizes,spacing among particles and compositions)of above macroporous monoliths have been finely tuned by changing precursor composition and sintering temperature of precursors.Further investigation shows that these as-prepared monoliths display promising surface super hydrophobicity for n-octadecanoic acid modified MgAl_2O_4 spinels,ferromagnetism for MgFe_2O_4 ferrites and semiconductor optical behaviors for Mg-doped In_2O_3,respectively.
     Hydrothermal and solvethermal syntheses are soft solution processes (SSP)and environment-friendly technology.They are commonly used for the preparation of various inorganic functional materials.Based on the urea hydrolysis homogeneous precipitation,high surface area mesoporous ZnAl_2O_4 and NiAl_2O_4 spinels with high thermal stability have been prepared via a facile template-free hydrothermal approach.After detailed characterization,it has been found that this strategy involves two-step reaction process,including the formation and structural transformation of precursor.By controlling the synthesis parameters such as reaction temperature,urea concentration,and calcination temperature,the structural and textural properties of mesoporous spinels can be regulated.However,after adding appropriate amount of different alcohols,crystallized micro/mesoporous Zn-Al complex oxides have been successfully prepared in a single step synthetic route without organic templates.In addition,the influence of alcohol types and adding amounts on the structure and textural properties of micro/mesoporous Zn-Al complex oxides have also been detailedly investigated.
引文
[1]Sickafus K E,Wills J M,Structure of spinel[J].J.Am.Ceram.Soc.,1999,82:3279-3292.
    [2]向勇,谢道华.尖晶石结构功能材料的新进展[J].磁性材料及器件,2001,3:21-25.
    [3]Evans R C,A introduction to crystal chemistry[M].Cambridge University Press,1976.
    [4]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981.
    [5]韩冰,纳米尖品石型复合氧化物的合成及应用[J].化学工业与工程,2002,6:448-452.
    [6]朱骥良,吴审年.颜料工艺学[M].北京:化学工业出版社,1991.
    [7]周铭,袁思余.无毒防绣颜料铁酸锌与Ca/SiO_2[J].上海涂料,1996,1:14-15.
    [8]Laureoce B,Philippe T,Abel R,Relations between magneto-optical properties and reactivity in cobalt-manganese ferrite thin films and powder[J].J.Magn.Magn.Mater.,1996,153(3):389-396.
    [9]Leej G,Park J Y,OH Y J,Magnetic properties of CoFe_2O_4 thin films prepared by a sol-gel method [J].J.Appl.Phys.,1998,84(5):2801-2804.
    [10]曹克广.国外微波隐身材料的发展及现状[J].抚顺石油学院学报,1997,17(2):29-32.
    [11]赵东林,周万城.涂敷型吸波材料及涂层结构殴计[J].兵器材料科学与工程,1998,21(4):58-62.
    [12]Ferreira V M.Preparation and microwave dielectric properties of pure and doped magnesium titanate ceramic[J].Materials research bulletin,1994,29:1017-1023.
    [13]周东祥,张绪礼,李标荣.半导体陶瓷及应用[M].武汉:华中理工大学出版社,1991.
    [14]李标荣,张绪礼.电子传感器[M].北京:国防工业出版社,1993.
    [15]董文生,王心葵,彭少逸.尖晶石的性质、制备及在催化中的应用[J].石油化工高等学校学报,1996,9(4):10-14.
    [16]Mcginnis R N,Drehamn L E,Pitzer E W.European Patent Appl.,83104.904.4.1983.
    [17]姜瑞霞,谢在库,张成芳,陈庆龄.镁铝尖晶石的制备及在催化反应中的应用[J].催化剂与载体制备,2003,11(1):47-51.
    [18]Zhang C L,Liu Z Q,Wu T H,Yang H M,Jiang Y Z,Peng S Y,Complete reduction of carbon dioxide to carbon and indirect conversion to O_2 using cation-excess magnetite[J].Mater.Chem.Phys.,1996,44:194-198.
    [19]赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1990
    [20]Cavani F,Trifiro F,Vaccari A,Hydrotalcite-type anionic clays:preparation,properties and applications [J]. Catal. Today, 1991,11: 173-301.
    [21] Brindley G W, Kikkawa S, Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite [J]. Clays Clay Miner., 1980,28: 87-91.
    [22] Rives V, Layered Double Hydroxides: Present and Future [M]. Nova Science Publishers, New York,2001
    [23] Valente J S, Figueras F, Gravelle M, Kumbhar P, Lopez J, Bessey J P, Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions [J]. J. Catal., 2000, 189: 370-381.
    
    [24] Prihod'ko R, Sychev M, Kolomitsyn I, Stobbelaar P J, Hensen E J M and Santen van R A, Layered double hydroxides as catalysts for aromatic nitrile hydrolysis [J]. Micropor. Mesopor. Mat., 2002,56 (3): 241-255.
    [25] Genin J M R, Thermodynamic equilibrium in aqueous suspensions of synthesis and natural Fe( II )-Fe(III) green rusts: Occurrences of the mineral in hydromorphic soils [J]. Environ. Sci.Tech., 1998, 32: 1058-1068.
    [26] Baltpurvins K A, Burns R C, Lawrance G A, Stuart A D, Effect of Ca~(2+), Mg~(2+), and anion type on the aging of iron(III) hydroxide precipitates [J]. Environ. Sci. Technol., 1997,31: 1024-1032.
    [27] Ogawa T, Fire-resistant vinyl chloride resin compositions [P]. JP 04/65,448,02 Mar 1992.
    [28] Flame-retardant compositions [P]. JP 62/22, 839, 31 Jan 1987.
    
    [29] Hydrotalcite-containing PVC films for agricultural uses [P]. JP 63/118, 374, 23 May 1988.
    [30] Nakai T, Murakami K, Transparent vinyl chloride resin films for agrochemical uses [P]. JP 04/126,747,27 Apr 1992.
    [31] Fomasari G, Gazzano M, Matteuzzi D, Trifro F, Vaccari A, Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides [J]. Appl. Clay Sci., 1995, 10: 69-82.
    [32] Constantino V R L, Pinnavaia T J, Basic properties of Mg~(2+)_(1-X)Al~(3+)_x layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions [J]. Inorg. Chem., 1995, 34:883-892.
    [33] Millange F, Walton R I, O'Hare D, Time-resolved in site X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J]. J. Mater. Chem., 2002, 10:1713-1720.
    
    [34] Aramendia M A, Aviles Y, Borau V, Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides:a spectroscopic study[J].J.Mater,Chem.,1999,9:1603-1607.
    [35]Shen J,Guang B,Tu M,Chen Y,Preparation and characterization if Fe-MgO catalysts obtained from hydrotalcite-like compounds[J].Catal.Today,1996,30:77-82.
    [36]Rebours B,d'Espinosa de la Caillerie J B,Clause O,Decoration of nickel and magnesium oxide crystallites with spinel-type phases[J].J.Am.Chem.Soc.,1994,116:1707-1717.
    [37]Kloprogge J T,Frost R L,Fourier Transform Infrared and Raman spectroscopic study of the local structure of Mg-,Ni-,and Co-hydrotalcites[J].J.Solid State Chem.,1999,146:506-515.
    [38]Clause O,Coelho M G,Gazzano M,Synthesis and thermal reactivity of nickel-containing anionic clays[J].Appl.Clay Sci.,1993,8:169-186.
    [39]Malherbe F,Forano C,Besse J P,Use of organic media to modify the surface and porosity properties of hydrotalcite-like compounds[J].Microporous Mater.,1997,10:67-84.
    [40]Bellotto M,Rebours B,Claurs O,Lynch J,Bazin D,Elkaim E,A reexamination of hydrotalcite crystal chemistry[J].J.Phys.Chem.,1996,100:8527-8534.
    [41]段雪,矫庆泽.全返混液膜反应器制备均分散超细(纳米)层状材料[P].CN Patent,00132145.5,2000.
    [42]Pausch I,Lohse H H,Schurmann K,Allmann R.Synthesis of disordered and Al-rich hydrotalcite-like compounds[J].Clays Clay Miner.,1986,34(5):507-510.
    [43]Drezdzon M A.Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors[J].Inorg.Chem.,1988,27(25):4628-4632.
    [44]Rocha J,del Arco M,Rives V,Ulibarri M A.Reconstruction of layered double hydroxides from calcined precursors:a power XRD and ~(27)Al MAS NMR study[J].J.Mater.Chem.,1999,9(10):2499-2503.
    [45]Miyata S.Physico-chemical properties of synthetic hydrotalcites in relation to composition[J].Clays Clay Minerals,1980,28(1):50-56.
    [46]安霞,谢鲜梅,王志中.水滑石类化合物性质及其催化作用[J].太原理工大学学报,2002,33(5):31-33.
    [47]Kohjiyo S,Sato T,Nakayama T.Polymerization of propylene oxide by calcined synthetic hydrotalcite[J].Macromol.Rapid Commun.,1981,2:231-233.
    [48]Velu S,Swamy C S.Selective C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds[J].Appl.Catal.A:General,1996,145:141-153.
    [49]Zapata B,Bosch P,Fetter G,Valenzuela M A,Navarrete J,Lara V H.Co(Ⅱ)-(Ⅲ)hydrotalcite-like compounds[J].Inter.J.Inorganic Mater.,2001,3:23-29.
    [50]Gusi S,Trifiro F,Vaccari A,Del piero G.Catalysts for low-temperature methanol synthesis[J].J.Catal.,1985,94:120-127.
    [51]Kovanda F,Jiratova V,Rymes J,Kolongek D.Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combusition[J].Appl.Clay Science,2001,18:71-80.
    [52]Murcia-Mascaros S,Navarro R M,Gomez-Sainero L,Costanitino U,Nocchelt M,Fierro J L G.Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursor[J].J.Catal.2001,198:338-347.
    [53]杨良准,杜立芬,单伟伟,曹锋雷,张棒兴.环己醇脱氢铜镁铝类水滑石催化剂制备方法与活性[J].中南民族学院学报,2000,19(1):51-55.
    [54]Narayanan S,Krishna K.Hydrotalcite-supported palladium catalysts:part Ⅱ:preparation,characterization of hydrotalcites and palladium hydrotalcite for CO chemisorption and phenol hydrogenation[J].Appl.Catal.A:General,2000,198:13-21.
    [55]Zhu K,Liu C,Ye X,Wu Y.Catalysis of hydrotalcite-like componds in liquid phase oxidation:(Ⅰ)phenol hydroxylation[J].Appl.Catal.A:General,1998,168:365-372.
    [56]李连生,马淑杰,惠建斌,刘新生,徐如人,包玉敏.稀土水滑石催化合成邻苯二甲酸二戊酯的研究[J].高等学校化学学报,1995,8(16):1164-1167.
    [57]徐征,贺鹤呜,蒋大振,吴越.低碳烃类在杂多酸柱撑水滑石上的烷基化[J].科学通报,1994,15(39):50-53.
    [58]Parker L M,Milestone N B,Newman R H,The use of hydrotalcite as an anion absorbent,Industrial and Engineering Chemistry Research[J].1995,34:1196-1202.
    [59]A.Sood,Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite[P].US Patent 4,752,397,1988-06-21.
    [60]Valcheva-Travkova M L,Davidova N,Thermal decomposition of the Pb-Al-hydrotalcite materials [J].J.Mater.Sci.,1995,30:737-743.
    [61]Ulibarri M A,Pavlovic I,Cornijo J,Hermosin M C,Hydrotalcite-like compounds as potential sorbents of phenols from water[J].Appl.Clay Sci.,1995,10:131-145.
    [62]Fuda K,Kudo N,Kawai S,Matsunaga T,Preparation of zinc/gallium layered double hydroxides and its thermal decomposition[J].Chem.Lett.,1993,777-780.
    [63]Miyata S,Iijima N,Manabe T,Purifying agent and method for cooling water used in nuclear reactors[P].Eur.Patent 152010,1985-08-21.
    [64]Ogawa M,Kuroda K.Photofunctions of intercalation compounds[J].Chem.Rev.,1995,95:399-438.
    [65]Itaya K,Chang H C,Uchida I.Anion-exchanged clay(hydrotalcite-like compounds)modified electrodes[J].Inorg.Chem.,1987,26(4):624-625.
    [66]Mousty C,Therias S,Forano C,Besse J.Anion-exchanging clay-modified electrodes:synthetic layered double hydroxides intercalated with electroactive organic anions[J].J.Electroanal.Chem.,1994,374:63-69.
    [67]Li F,Liu J J,Evans D G,Duan X.Stoichiometric synthesis of pure MFe_2O_4(M=Mg,Co and Ni)spinel ferrites from tailored layered double hydroxide(hydrotalcite-like)precursors[J].Chem.Mater.,2004,16:1597-1602.
    [68]Liu J,Li F,Evans D G,Duan X.Stoichiometry synthesis of a pure ferrite from a tailored layered double hydroxides(hydrotalcite-like)precursor[J].Chem.Commun.,2003,542-543.
    [69]刘俊杰,李峰,Evans D G,段雪.由Mg-Fe(Ⅱ)-Fe(Ⅲ)LDH层状前体制备MgFe_2O_4尖晶石的研究[J].化学学报,61(1):51-57.
    [70]Miyata S.Gastric antacid and method for controlling Ph of gastric juice[P].US.Patent,4,514,389,1985-04-30.
    [71]黄宝晟,李峰,张慧,矫庆泽,段雪,郝建薇.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19:71-75.
    [72]IUPAC.Manual of symbols and terminology for physicochemical quantities and units[J].Pure.Appl.Chem.,1972,31:577-638.
    [73]Wilson S T,Lok B M,Flanigen E M[P].U.S.1982,patent 4:310,440.
    [74]Bekkum H V,Flanigen E M,Jacobs P A,Jansen J C(Eds.).Introduction to zeolite science and technology[M].Elsevier,2001
    [75]Kresge C,Leonowicz M,Roth W,Vartuli J,Beck J,Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template[J].Nature 1992,359:710-712.
    [76]Beck J,Vartuli J,Roth W,Leonwicz M,Kresge C,Schmitt K,Chu C,Olson D,Sheppard E,Mccullen S,Higgins J,Schlenker J,A new family of mesoporous molecular-sieves prepared with liquid-crystal templates[J].J.Am.Chem.Soc.,1992,114:10834-10843.
    [77]Ying J,Mehnert C,Wong M,Synthesis and Applications of Supramolecular-Templated Mesoporous Materials[J].Angew.Chem.Int.Ed.,1999,38:56-77.
    [78]Yiu H,Bolting C,Bolting NP,Size selective protein adsorption on thiol-functionalised SBA-15mesoporous molecular sieve[J].Phys.Chem.Chem.Phys.,2001,3:2983-2985.
    [79]David M E.Ordered porous materials for emerging applications[J].Nature,2002,417:813-821.
    [80]Hartmann M.Ordered mesoporous materials for bioadsorption and biocatalysis[J].Chem.Mater.,2005,17:4577-4593.
    [81]He X,Antonelli D,Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves[J].Angew.Chem.Int.Ed.,2002,41(2):215-229.
    [82]Velev O D,Jede T A,Lobo R T,Lenhoff A M,Microstructured porous silica obtained via colloidal crystal templates[J].Chem.Mater.1998,10:3597-3602.
    [83]Wijnhoven J,Vos W J,Preparation of photonic crystals made of air spheres in titania[J].Science,1998,281:802-804.
    [84]Hall S R,Bolger H,Mann S,Morphosynthesis of complex inorganic forms using pollen grain templates[J].Chem.Commun.,2003,2784-2785.
    [85]Choi K,Gardner D,Bein T,Combinatorial methods for the synthesis of aluminophosphate molecular sieves.Angew.Chem.Int.Ed.,1999,38:2891-2894.
    [86]Gao H,Mu C,Wang F,Xu S,Wu K,Xie Y C,Liu S,Wang E G,Xu J,Yu D P,Synthesis and magnetic behavior of an srray of nickel filled carbon nanotubes[J].Appl.Phys.Lett.2002,81:4592-4594.
    [87]王秀丽,曾永飞,卜显和.模板法合成纳米结构材料[J].化学通报,2005,10:723-730.
    [88]Ryoo R,Joo S H,Jun S,Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation[J].J.Phys.Chem.B,1999,103(37):7743-7746.
    [89]Kang M,Yi S H,Lee H L,Yie J E,Kim J M,Reversible replication between ordered mesoporous silica and mesoporous carbon[J].Chem.Commun.,2002,1944-1945.
    [90]Taguchi A,Smatt J H,Linden M,Carbon monoliths possessing a hierarchical,fully interconnected porosity[J].Adv Mater.,2003,15:1209-1211.
    [91]Wang X,Han G R,Fabrication and characterization of anodic aluminum oxide template[J].Microelectronic Engineering,2003,66:166-170.
    [92]Sarkar J,Khan G G,Nanowires:properties,applications and synthesis via porous anodic aluminium oxide template[J].Bulletin of Materials Science,2007,30:271-290.
    [93]张吉林,洪广言.利用AAO模板合成纳米材料[J].应用化学,2004,21:6-11.
    [94]Moller K,Bein T,Inclusion chemistry in periodic mesoporous hosts[J].Chem.Mater.,1998,10:2950-2963.
    [95]Thomas A,Goettmann F,Antonietti M,Hard templates for soft materials:creating nanostructured organic materials[J].Chem.Mater.,2008,20:738-755.
    [96]Sun L,Searson P C,Chien L,Electrochemical deposition of nickel nanowire arrays in single-crystal mica films[J].Appl.Phys.Lett.1999,74:2803-2805.
    [97]Li,H P;Cheng Y R,Mou C Y,Hierarchical Order in Hollow Spheres of Mesoporous Silicates[J].Chem.Mater.,1998,10(12):3772-3776.
    [98]Yoon S B,Sohn K,Kim J Y,Shin C H,Yu J S,Hyeon T,Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures[J].Adv.Mater.,2002,14:19-21.
    [99]Marlow F,Spliethoff B,Tesche B,Zhao D,The internal srchitecture of mesoporous dilica fibers[J].Adv.Mater.,2000,12:961-964.
    [100]Yang P D,Zhao D Y,Chmelka B F,Stucky G D,Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers[J].Chem.Mater.,1998,10(8):2033-2036.
    [101]Lin H P,Mou C Y,"Tubules-within-a-tubule" hierarchical order of mesoporous molecular sieves in MCM-41[J].Science,1996,273:765-768.
    [102]Lin H P,Mou C Y,Structural and morphological control of cationic surfactant-templated mesoporous silica[J].Acc.Chem.Res.,2002,35(11):927-935.
    [103]徐如人.无机合成与制备化学[M].高等教育出版社,2001,128-163.
    [105]徐如人,庞文琴.分子筛与多孔材料化学[M].科学出版社,2004,198-206.
    [105]Feng S,Tsai M,Greenblatt M,Preparation,ionic conductivity,and humidity-sensing property of crystalline microporous sodium germanates,Na_3HGe_7O_(16).xH_2O,x=0-6[J].Chem.Mater.,1992,4(2):388-393.
    [106]Feng S,Greenblatt M,Galvanic cell type humidity sensor with NASICON-based material operative at high temperature[J].Chem.Mater.,1992,4(6):1257-1262.
    [107]Feng S,Xu X,Yang G,Xu R and Glasser F P,Hydrothermal synthesis and crystal structure of the microporous gallophosphate[NH_4]_4[Ga_8P_8O_(32)(OH)_4(H_2O)_4]·4H_2O·0.64 PrOH with an octahedral-tetrahedral framework[J].J.Chem.Soc.,Dalton Trans.,1995,2147-2149.
    [108] Zhao C, Feng S, Chao Z, Shi C, Xu R and Ni J, Hydrothermal synthesis of the complex fluorides LiBaF_3 and KMgF_3 with perovskite structures under mild conditions [J]. Chem. Commun., 1996,1641-1642.
    
    [109] An Y, Feng S, Xu Y, XuR, Yue Y, Hydrothermal synthesis and characterization of a new potassium phosphatoantimonate K_8Sb_8P_2O_(29)·8H_2O [J]. Chem. Mater., 1996,8(2): 356-359.
    [1] Schwickardi M, Johann T, Schmidt W, Schiith F, High-Surface-Area Oxides Obtained by an Activated Carbon Route [J]. Chem. Mater., 2002, 14(9): 3913-3919.
    
    [2] Kemnitz E, GroP U, Rudiger S, Shekar C S, Amorphous Metal Fluorides with Extraordinary High Surface Areas [J]. Angew. Chem. Int. Ed., 2003,42: 4251-4254.
    [3] Schiith F, Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem.Int. Ed. 2003,42: 3604-3622.
    
    [4] Brinker C J, Scherer G W, Sol-Gel Science [M], Academic Press, Boston, 1990.
    [5] Bumajdad A, Zaki M I, Eastoe J, Pasupulety L, Microemulsion-based synthesis of CeO_2 powders with high surface area and high-temperature stabilities [J]. Langmuir, 2004, 20(25): 11223-11233.
    [6] Caruso R A, Nanocasting and nanocoating [J]. Top. Curr. Chem., 2003, 226: 91.
    [7] Li W, Lu A, Schmidt W, Schuth F, High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels [J]. Chem. Eur. J., 2005,11(5): 1658-1664.
    [8] Li W, Lu A, Weidenthaler C, Schuth F, Hard-templating pathway to create mesoporous magnesium oxide [J]. Chem. Mater., 2004, 16(26): 5676-5681.
    [9] Valdes-Solis T, Marban G, Fuertes A B, Preparation of nanosized perovskites and spinels through a silica xerogel template route [J]. Chem. Mater., 2005, 17(8): 1919-1922.
    
    [10] Vandevivere P C, Bianchi R, Verstracte W, Review: Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies [J]. J. Chem. Technol. Biotechnol.,1998, 72(4): 289-302.
    
    [11] Shen S, Hidajat K, Yu L E, Kawi S, Simple hydrothermal synthesis of nanostructured and nanorod Zn-Al complex oxides as novel nanocatalysts [J]. Adv. Mater., 2004, 16(6): 541-545.
    
    [12] Roesky R, Weiguny J, Bestgen H, Dingerdissen U, An improved synthesis method for indenes and styrenes by use of a ZnO/Al_2O_3 spinel catalyst [J]. Appl. Catal. A: Gen., 1999, 176: 213-220.
    [13] Le Pelter F, Chaumette P, Saussey J, Bettahar M M, Lavalley J C, In-situ FT-IR spectroscopy and kinetic study of methanol synthesis from CO/H_2 over ZnAl_2O_4 and Cu—ZnAl_2O_4 catalysts [J]. J.Mol. Catal. A: Chem. 1997, 122: 131-139.
    [14] Valenzuela M A, Aguilar A, Bosch P, Armendariz H, Salas P, Montoya A, Effect of calcium addition on zinc aluminate spinel [J]. Catal. Lett., 1992, 15: 179-188.
    [15] Chen L, Sun X, LiuY, Zhou K, Li Y, Porous ZnAl_2O_4 synthesized by a modified citrate technique [J].J. Alloys Compd. 2004, 376: 257-261.
    [16] Aguilar-Rios G, Valenzuela M A, Salas P, Armendariz H, Bosch P, Del Toro G, Silva R, Bertin V,Castillo S, Ramirez-Solis A, Schifter I, Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate [J]. Appl. Catal. A: Gen., 1995,127: 65-75.
    [17] Grabowska H, Mista W, Trawczynski J, Wrzyszcz J, Zawadzki M, A method for obtaining thymol by gas phase catalytic alkylation of m-cresol over zinc aluminate spinel [J]. Appl. Catal. A: Gen.,2001,220:207-213.
    [18] Sampath S K, Cordaro J F, Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels [J]. J. Am. Ceram. Soc, 1998, 81: 649-654.
    [19] Garcia-Hipolito M, Guzman-Mendoza J, Martinez E, Alvarez-Fregoso O, Falcony C, Growth and cathodoluminescent characteristics of blue emitting cerium-doped zinc aluminate layers synthesized by spray pyrolysis technique [J]. Phys. Status Solidi A, 2004,201(7): 1510-1517.
    [20] Van der Laag N J, Snel M D, Magusin P C M M, de With G, Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl_2O_4) [J]. J. Eur. Ceram. Soc, 2004,24(8): 2417-2424.
    [21] Mathur S, Veith M, Haas M, Shen A, Lecerf N, Huch V, Hufner S, Haberkorn R, Beck H P, Jilavi M,Single-source sol-gel synthesis of nanocrystalline ZnAl_2O_4 structural and optical properties [J]. J.Am. Ceram. Soc, 2001, 84: 1921-1928.
    [22] Matsui, H.; Xu, C; Tateyama, H. Stress-stimulated luminescence from ZnAl_2O_4:Mn [J].Appl. Phys.Lett., 2001, 78: 1068-1070.
    [23] Hong W, De Jonghe L C, Yang X, Rahaman M N, Reaction sintering of ZnO-Al_2O_3 [J]. J. Am.Ceram. Soc. 1995, 78: 3217-3224.
    [24] Valenzuela M A, Jacobs J P, Bosch P, Reijine S, Zapata B, Brongersma H H, The influence of the preparation method on the surface structure of ZnAl_2O_4 [J]. Appl. Catal. A: Gen., 1997, 148:315-324.
    [25] Zou G, Yu D, Lu J, Wang D, Jiang C, Qian Y, A self-generated template route to hollow carbon nanospheres in a short time [J]. Solid State Comm., 2005, 131(12): 749-752.
    [26] Cavani F, Trifiro F, Vaccari A, Hydrotalcite-type anionic clays: Preparation, properties and applications [J]. Catal. Today, 1991, 11(2): 173-301.
    
    [27] Layered Double Hydroxides: Present and Future; Rives, V, Ed.; Nova Sci. Pub., New York, 2001.
    [28] Vucelic M, Jones W, Moggridge G D, Cation ordering in synthetic layered double hydroxides [J].Clays Clay Miner., 1997,45: 803-813.
    
    [29] Zhao Y, Li F, Zhang R, Evans D G, Duan X, Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging Steps[J]. Chem. Mater., 2002, 14(10): 4286-4291.
    [30] Busetto C, Del Piero G, Mamara G, TrifiroF, Vaccari A, Catalysts for low-temperature methanol synthesis, preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors [J]. J. Catal., 1984,85(1): 260-266.
    [31] Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E, Hydrotalcite decomposition mechanism: a clue to the structure and reactivity of spinel-like mixed oxides [J]. J. Phys. Chem.,1996, 100(20): 8535-8542.
    [32] Dumeignil F, Rigole M, Guelton M, Grimblot J, Characterization of boria-alumina mixed oxides prepared by a sol-gel method. 1. NMR characterization of the xerogels [J]. Chem. Mater., 2005,17(9): 2361-2368.
    [33] Meyer F, Hempelmann R, Mathur S, Veith M, Microemulsion mediated sol-gel synthesis of nano-scaled MAl_2O_4 (M = Co, Ni, Cu) spinels from single-source heterobimetallic alkoxide precursors [J]. J. Mater. Chem., 1999, 9(8): 1755-1763.
    [34] Morey O, Goeuriot P, "MgAlON" spinel structure: A new crystallographic model of solid solution as suggested by ~(27)Al solid state NMR [J]. J. Eur. Ceram. Soc, 2005, 25(4): 501-507.
    [35] Schmidt W, Weidenthaler C, Nanosized Transition Metal Spinels with High Surface Areas from Zeolite Precursors [J]. Chem. Mater., 2001, 13(2): 607-612.
    [36] Valenzulela M A, Boshch P, Aguilar-Rios G, Montoya A, Schifter I, Comparison between sol-gel, coprecipitation and wet mixing synthesis of ZnAl_2O_4 [J]. J. Sol-Gel Sci. Technol., 1997, 8: 107-110.
    [37] Wei X, Chen D, Synthesis and characterization of nanosized zinc aluminate spinel by sol—geltechnique [J]. Mater. Lett., 2006, 60: 823-827.
    [38] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotyi R A, Rouquerol J, Siemieniewska T,Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem., 1985, 57: 603-619.
    [39] Reichle W T, Kang S Y, Everhardt D S, The nature of the thermal decomposition of a catalytically active anionic clay mineral [J]. J. Catal., 1986, 101(2): 352-359.
    [40]Leofanti G,Padovan M,Tozzola G,Ventureli B,Surface area and pore texture of catalysts[J].Catal.Today,1998,41:207-219.
    [41]Kang M,Kim D,Yi S H,Han J U,Yie J E,Kim J M,Preparation of stable mesoporous inorganic oxides via nano-replication technique[J].Catal.Today,2004,93:695-699.
    [42]Stoczynski J,Ziolkowski J,Grzybowska B,Grabowski R,Jachewicz D,Wcislo K,Gengembre L.Oxidative dehydrogenation of propane on Ni_xMg_(1-x)Al_2O_4 and NiCr_2O_4 Spinels[J].J.Catal.,1999,187(2):410-418.
    [43]Miura N,Nakatou M,Zhuiykov S,Impedance-based total-NO_x sensor using stabilized zirconia and ZnCr_2O_4 sensing electrode operating at high temperature[J].Electrochem.Commun.,2002,4:284-287.
    [1] Buschow K H J, Handbook of Magnetic Materials [M], North-Holland, Amsterdam, 1995.
    
    [2] Zhang H, Qi R, Evans D G, Duan X, Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core [J]. J. Solid State Chem., 2004,177: 772-780.
    [3] Molchanov V V, Buyanov R A, Pavlyukhin Y T, Effect of mechanochemical activation on the catalytic properties of ferrites with the spinel structure [J]. Kinet. Catal., 2003,44: 788-792.
    [4] Coquay P, Grave E D, Peigney A, Vandenberghe R E, Laurent C, Carbon nanotubes by a CVD method, part I: synthesis and characterization of the (Mg,Fe)O Catalysts [J]. J. Phys. Chem. B, 2002,106:13186-13198.
    [5] Busca G, Finocchio E, Lorenzelli V, Trombetta M, Rossini S A, IR study of alkene allylic activation on magnesium ferrite and alumina catalysts [J]. J. Chem. Soc., Faraday Trans. 1996,92: 4687-4693.
    [6] Chen N S, Yang X J, Liu E S, Huang J L, Reducing gas-sensing properties of ferrite compounds MFe_2O_4 (M=Cu, Zn, Cd and Mg) [J]. Sens. Actuators B, 2000, 66: 178-180.
    [7] Liu Y L, Liu Z M, Yang Y, Yang H F, Shen G L, Yu R Q, Simple synthesis of MgFe_2O_4 nanoparticles as gas sensing materials [J]. Sens. Actuators B, 2005,107: 600-604.
    [8] Busetto C, Del Piero G, Mamara G, TrifiroF, Vaccari A, Catalysts for low-temperature methanol synthesis, preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors [J]. J. Catal., 1984,85(1): 260-266.
    
    [9] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotyi R A, Rouquerol J, Siemieniewska T,Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem., 1985, 57: 603-619.
    [10] Reichle W T, Kang S Y, Everhardt D S, The nature of the thermal decomposition of a catalytically active anionic clay mineral [J]. J. Catal., 1986, 101(2): 352-359.
    
    [11] Leofanti G, Padovan M, Tozzola G, Ventureli B, Surface area and pore texture of catalysts [J]. Catal.Today, 1998,41:207-219.
    
    [12] Leite E R, Weber I T, Longo E, Varela, J A, A new method to control particle size and particle size distribution of SnO_2 nanoparticles for gas sensor applications [J]. Adv. Mater., 2000, 12: 965-968.
    [13] Leite E R, Maciel, A P Weber I T, Lisboa-Filho P N, Longo E, Paiva-Santos C O, Andrade A V C,
    Pakoscimas C A, Maniette Y, Schreiner W H, Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution [J]. Adv. Mater., 2002, 14:905-908.
    [1] Tran T K, Park W, Tomm J. W, Wagner B K, Jacobsen S M, Summers C J, Yocom P N, McClelland S K, Photoluminescence properties of ZnGa_2O_4:Mn powder phosphors [J]. J. Appl. Phys., 1995, 78:5691-5695.
    
    [2] Minami T, Kuroi Y, Takata S, Preparation of ZnGa_2O_4:Mn phosphor thin films as emitting layers for electroluminescent devices [J]. J. Vac. Sci. Technol. A, 1996, 14: 1736-1740.
    [3] Flynn M, Kitai A H, ZnGa_2O~4:Mn phosphors for thin-film electroluminescent displays exhibiting improved brightness [J]. J. Electrochem. Soc, 2001, 148: 149-153.
    [4] Minami T, Kuroi Y, Miyata T, Yamada H, Tanaka S, ZnGa_2O_4 as host material for multicolor-emitting phosphor layer of electroluminescent devices [J]. J. Lumin., 1997, 72: 997-998.
    [5] Itoh S, Toki H, Sato Y, Morimoto K, Kishino T, The ZnGa_2O_4 phosphor for low-voltage blue cathodoluminescence [J]. J. Electrochem. Soc, 1991, 138: 1509-1512.
    [6] Shea L E, Datta R K, Brown Jr J J, Low voltage cathodoluminescence of Mn~(2+)-Activated ZnGa_2O_4 [J]. J. Electrochem. Soc, 1994,141: 2198-2200.
    [7] Vecht A, Smith D W, Chadha S S, Gibbons C S, New electron excited light emitting materials [J]. J.Vac. Sci. Technol. B 1994, 12: 781-784.
    [8] Hsieh I J, Chu K T, Yu C F, Feng M S, Cathodoluminescent characteristics of ZnGa_2O_4 phosphor grown by radio frequency magnetron sputtering [J]. J. Appl. Phys., 1994, 76: 3735-3739.
    [9] Omata T, Ueda N, Ueda K, Kawazoe H, New ultraviolet-transport electroconductive oxide, ZnGa_2O_4 spinel [J]. Appl. Phys. Lett., 1994, 64: 1077-1081.
    
    [10] Shea L E, Datta R K, Brown Jr. J J, Photoluminescence of Mn~(2+)-Activated ZnGa_2O_4 [J]. J.Electrochem. Soc, 1994, 141: 1950-1954.
    
    [11] Jeong I K, Park H L, Mho S I, Two self-activated optical centers of blue emission in zinc gallate [J].Solid State Commun., 1998, 105: 179-183.
    
    [12] Yu C F, Lin P, Manganese-activated luminescence in ZnGa_2O_4 [J]. J. Appl. Phys., 1996, 79:7191-7197.
    [13] Kim J S, Kim J S, Kim T W, Park H L, Kim Y G, Chang S K, Han S D, Energy transfer among three luminescent centers in full-color emitting ZnGa_2O_4:Mn~(2+), Cr~(3+) phosphors [J]. Solid State Commun.,2004, 131(8): 493-497.
    [14] Yu M, Lin J, Zhou Y H, Wang S B, Citrate-gel synthesis and luminescent properties of ZnGa_2O_4 doped with Mn~(2+) and Eu~(3+) [J]. Mater. Lett., 2002, 56: 1007-1013.
    [15] Xu Z, Li Y, Liu Z, Wang D, UV and X-ray excited luminescence of Tb~(3+)-doped ZnGa_2O_4 phosphors [J]. J. Alloys Compd., 2005, 391: 202-205
    [16] Ikarashi K, Sato J, Kobayashi H, Saito N, Nishiyama H, Inoue Y, Photocatalysis for water decomposition by RuO_2-dispersed ZnGa_2O_4 with d~(10) configuration [J]. J. Phys. Chem. B, 2002,106(35): 9048-9053.
    [17] Phani A R, Santucci S, Di Nardo S, Lozzi L, Passacantando M, Picozzi P, Cantalni P, Preparation and characterization of bulk ZnGa2O4 [J]. J. Mater. Sci., 1998, 33: 3969-3973.
    [18] Ohtake T, Sonoyama N, Sakata T, Electrochemical luminescence of ZnGa_2O_4 and ZnGa_2O_4:Mn electrodes [J]. Chem. Phys. Lett., 1998, 298: 395-399.
    [19] Jung H K, Park D S, Park Y C, Preparation and characterization of ZnGa_2O_4:Mn phosphors by multistage precipitation method [J]. Mater. Res. Bull., 1999, 34: 43-51.
    [20] Hirano M, Hydrothermal synthesis and characterization of ZnGa_2O_4 spinel fine particles [J]. J.Mater. Chem., 2000, 10: 469-472.
    [21] Hirano, M.; Imai, M.; Inagaki, M. Preparation of ZnGa_2O_4 spinel fine particles by the hydrothermal method [J]. J. Am. Ceram. Soc, 2000, 83: 977-979.
    [22] Li Y, Duan X, LiaoH, Qian Y, Self-regulation synthesis of nanocrystalline ZnGa_2O_4 by hydrothermal reaction [J]. Chem. Mater., 1998, 10(1): 17-18.
    [23] Chen L, Liu Y, Lu Z, Huang K, Hydrothermal synthesis and characterization of ZnGa_2O_4 phosphors [J]. Mater. Chem. Phys., 2006, 97: 247-251.
    [24] Wu S H, Cheng H C, Preparation and characterization of nanosized ZnGa_2O_4 Phosphors [J]. J.Electrochem. Soc, 2004, 151: 159-163.
    [25] Sei T, Nomura Y, Tsuchiya T, Preparation of ZnGa_2O_4 thin film by sol-gel process and effect of reduction on its electric conductivity [J]. J. Non-Cryst. Solids, 1997, 218: 135-138.
    [26] Daniele S, Tcheboukov D, Hubert Pfalzgraf L G, Functional homo- and heterometallic alkoxides as precursors for sol-gel routes to transparent ZnGa_2O_4 coatings [J]. J. Mater. Chem., 2002, 12:2519-2524.
    [27] Cavani F, TrifiroF, Vaccari A, Hydrotalcite-type anionic clays: Preparation, properties and applications [J]. Catal. Today, 1991, 11(2): 173-301.
    [28] Rives, V., Ed. Layered Double Hydroxides: Present and Future [M]. Nova Sci. Pub., New York,2001.
    [29] Busetto C, Del Piero G, Mamara G, TrifiroF, Vaccari A, Catalysts for low-temperature methanol synthesis, preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors [J]. J. Catal., 1984,85: 260-266.
    [30] Zhao Y, Li F, Zhang R, Evans D G, Duan X, Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and sging dteps[J]. Chem. Mater., 2002, 14:4286-4291.
    [31] Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E, Hydrotalcite decomposition mechanism: a Clue to the structure and reactivity of spinel-like mixed oxides [J]. J. Phys. Chem.,1996, 100(20): 8535-8542.
    [32] Liu J, Li F, Evans D G, Duan X, Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor [J]. Chem. Commun., 2003,542-543.
    [33] Li F, Liu J, Evans D G, Duan X, Stoichiometric synthesis of pure MFe_2O_4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors [J]. Chem.Mater., 2004, 16(8): 1597-1602.
    [34] Chiang Y M, Birnie III D P, Kingery W D, Physical Ceramic-Principles for Ceramic Science and Engineering [M], John Wiely and Sons, New York, 1997.
    [35] Gleiter H, Nanostructured materials: basic concepts and microstructure [J]. Acta Mater. 2000, 48:1-29.
    [36] Aramendia M A, Borau V, Jimenez C, Marinas J M, Romero F J, Ruiz J R, Synthesis, characterization, and ~1H and ~(71)Ga MAS NMR spectroscopy of a novel Mg/Ga double layered hydroxide [J]. J. Solid State Chem., 1997,131: 78-83.
    [37] Aramendia M A, Aviles Y, Borau V, Luque J M, Marinas J M, Ruiz J R, Urbano F J, Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: a spectroscopic study [J]. J. Mater.Chem., 1999, 9: 1603-1607.
    [38] Aramendia M A, Aviles Y, Benitez J A, Borau V, Jimenez C, Marinas J M, Ruiz J R, Urbano F J,Comparative study of Mg/Al and Mg/Ga layered double hydroxides [J]. Microporous Mesoporous Mater., 1999, 29(3): 319-328.
    
    [39] Lavalley J C, Daturi M, Montouillout V, Clet G, Arean C O, Delgado M R, Sahibed-dine A, Unexpected similarities between the surface chemistry of cubic and hexagonal gallia polymorphs [J].Phys.Chem.Chem.Phys.,2003,5:1301-1305.
    [40]Well,A.F.Structural Inorganic Chemistry,5th ed.;Oxford University Press:Oxford,1984,P 595.
    [41]Kapoor P N,Heroux D,Mulukutla R S,Zaikovskii V,Klabunde K J,High surface area homogeneous nanocrystalline bimetallic oxides obtained by hydrolysis of bimetallic μ-oxo alkoxides[J].J.Mater.Chem.,2003,13:410-414.
    [42]Mathur S,Veith M,Haas M,Shen A,Lecerf N,Huch V,Hufner S,Haberkorn R,Beck H P,Jilavi M,Single-source sol-gel synthesis of nanocrystalline ZnAl_2O_4:structural and optical properties[J].J.Am.Ceram.Soc.,2001,84:1921-1928.
    [43]Patil P S,Kadam L D,Lokhande C D,Preparation and characterization of spray pyrolysed cobalt oxide thin films[J].Thin Solid Films,1996,272:29-32.
    [44]Kim J S,Kang H I,Kim W N,Kim J I,Choi J C,Park H L,Kim G C,Kim T W,Hwang Y H,Mho S I,Jung M C,Han M,Color variation of ZnGa_2O_4 phosphor by reduction-oxidation processes[J].Appl.Phys.Lett.,2003,82:2029-2031.
    [45]Kim J S,Kang H I,Chon C M,Moon H S,Kim T W,The origin of emission color of reduced and oxidized ZnGa_2O_4 phosphors[J].Solid State Commun.,2004,129(3):163-167.
    [46]Cao H,Qiu X,Liang Y,Zhu Q,Zhao M,Room-temperature ultraviolet-emitting In_2O_3 nanowires[J].Appl.Phys.Lett.,2003,83:761-763.
    [1] Blanford C F, Yan H, Schroden R C, Al-Daous M, Stein A, Gems of chemistry and physics: macroporous metal oxides with 3D order [J]. Adv. Mater., 2001,13: 401-407.
    
    [2] Stein A, Schroden R C, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond [J]. Curr. Opin. Solid State Mater. Sci. 2001, 5: 553-564.
    [3] Carreon M A, Guliants V V, Ordered meso- and macroporous binary and mixed metal oxides [J]. Eur.J. Inorg. Chem. 2005, 27-43.
    [4] Holland B T, Blanford C F, Stein A, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science, 1998, 281: 538-540.
    [5] Soten I, Miguez H, Yang S M, Perrov S, Coombs N, Tetreault N, Matsuura N, Ruda H E, Ozin G A,Barium titanate inverted opals - synthesis, characterization, and pptical properties [J]. Adv. Funct.Mater., 2002, 18:71-77.
    [6] Fu M, Zhou J, Xiao Q, Li B, Zong R, Chen W, Zhang J, ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition [J]. Adv. Mater. 2006,18: 1001-1004.
    [7] Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S, Dextran templating for the synthesis of metallic and metal oxide sponges [J]. Nature Mater., 2003, 2: 386-390.
    [8] Zhang B, Davis M A, Mann S, Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films [J]. Chem. Mater. 2002, 14(3): 1369-1375.
    [9] Schattka J H, Shchukin D G, Jia J, Antonietti M, Caruso R A, Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique [J]. Chem.Mater., 2002, 14(12): 5103-5108.
    
    [10] Shchukin D G, Yaremchenko A A, Ferreira M G S, Kharton V V, Polymer Gel Templating Synthesis of Nanocrystalline Oxide Anodes [J]. Chem. Mater., 2005, 17(20): 5124-5129.
    
    [11] Caruso R A, Schattka J H, Cellulose Acetate Templates for Porous Inorganic Network Fabrication [J]. Adv. Mater., 2000, 12: 1921-1923.
    
    [12] Shchukin D G, Caruso R A, Inorganic macroporous films from preformed nanoparticles and membrane templates: synthesis and investigation of photocatalytic and photoelectrochemical properties [J]. Adv. Funct. Mater., 2003, 13: 789-794.
    [13] Wang Y, Tang Y, Dong A, Wang X, Ren N, Shan W, Gao Z, Self-supporting porous zeolite membranes with sponge-like architecture and zeolitic microtubes [J]. Adv. Mater., 2002, 14:994-997.
    [14] Imhot A, Pine D J, Ordered macroporous materials by emulsion templating [J]. Nature, 1997, 389:948-951.
    [15] Zhang H, Hardy G C, Khimyak Y Z, Rosseinsky M J, Cooper A I, Synthesis of hierarchically porous silica and metal oxide beads using emulsion-templated polymer scaffolds [J].Chem. Mater.,2004, 16(22): 4245-4256.
    [16] Soten I, Miguez H, Yang S M, Petrov S, Coombs N, Tetreault N, Matsuura N, Ruda H E, Ozin G A,Barium titanate inverted opals - synthesis, characterization, and optical properties [J]. Adv. Funct.Mater., 2002, 12:71-77.
    [17] Sadakane M, Asanuma T, Kubo J, Ueda W, Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method [J]. Chem. Mater, 2005,17(13): 3546-3551.
    [18] Toberer E S, Seshadri R, Spontaneous formation of macroporous monoliths of mesoporous manganese oxide crystals [J]. Adv. Mater., 2005, 17: 2244-2246.
    [19] Sokolov S, Stein A, Preparation and characterization of macroporous γ-LiAlO_2 [J]. Mater. Lett.,2003, 57: 3593-3597
    [20] Chi E O, Kim Y C, Hur N H, A macroporous perovskite manganite from colloidal templates with a curie temperaure of 320 K [J]. Chem. Mater., 2003, 15(10): 1929-1931.
    [21] M. Raney, U.S. Patent US1563787, 1925.
    [22] Erlebacher J, Aziz M J, Karma A, Dimitrov N, Sieradzki K, Evolution of nanoporosity in dealloying[J]. Nature, 2001,410: 450-453.
    [23] Okada K, Shimai A, Takei T, Hayashi S, Yasumori A, MackenzieK J D, Preparation of microporous silica from metakaolinite by selective leaching method [J]. Microporous Mesoporous Mater., 1998,21:289-296.
    [24] Gille W, Enke D, Janowski F, Hahn T, About the realistic porosity of porous glasses [J]. J. Porous Mater., 2003, 10: 179-187.
    [25] Hosono H, Zhang Z, Abe Y, Porous glass-ceramic in the CaO-TiO_2-P_2O_5 system [J]. J. Am. Ceram.Soc, 1989,72: 1587-1590.
    [26] Toberer E S, Joshi A, Seshadri R, Template-free routes to macroporous monoliths of nickel and iron oxides: toward porous metals and conformally coated pore walls [J]. Chem. Mater., 2005, 17(8):2142-2147.
    [27] Toberer E S, Schladt T D, Seshadri R, Macroporous manganese oxides with regenerative mesopores[J]. J. Am. Chem. Soc., 2006, 128(5): 1462-1463.
    [28] Toberer E S, Lofvander J P, Seshadri R, Topochemical Formation of Mesoporous MnO Crystals [J].Chem. Mater., 2006, 18(4): 1047-1052.
    [29] Toberer E S, Seshadri R, Template-free routes to porous inorganic materials [J]. Chem. Commun.,2006,3159-3165.
    [30] Wu X, Zhang L, Wu D, Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route [J]. Langmuir, 2005, 21(7): 2665-2667.
    [31] Busetto C, Del Piero G, Mamara G, TrifiroF, Vaccari A, Catalysts for low-temperature methanol synthesis, preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors [J]. J. Catal., 1984,85(1): 260-266.
    [32] Millange F, Walton R I, O'Hare D, Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J]. J. Mater. Chem., 2000, 10:1713-1720.
    [33] Hernandez-Moreno M J, Ulibarri M A, Rendon J L, IR characteristics of hydrotalcite-like compounds [J]. Phys. Chem. Min., 1985, 12: 34-38.
    [34] Tirulaer M K, Jansen J B H, Geus J W, The quantity of reduced nickel in synthetic takovite: effects of preparation conditions and calcination temperature [J]. Clays Clay Miner., 1994, 42: 249-258.
    [35] Dali, S. E.; Jayachamdran, M.; Chockalingam, M. J. New transparent electronic conductor,MgIn_2O_4 spinel [J]. J. Mater. Sci. Lett., 1999, 18: 915-917.
    [36] Chiang Y M, Birnie III D P, Kingery W D, Physical Ceramic-Principles for Ceramic Science and Engineering [M]. John Wiely and Sons, New York, 1997.
    [37] Wu X C, TaoY R, Han Z J, Zhang B D, Synthesis and characterization of MgAl_2O_4 spinel nanowires [J]. J. Mater. Chem., 2003, 13: 2649-2651.
    [38] Guo J, Lou H, Zhao H, Wang X, Zheng X, Novel synthesis of high surface area MgAl_2O_4 spinel as catalyst support [J]. Mater. Lett. 2004, 58: 1920-1923.
    
    [39] Fu Q, Rama Rao G V, Basame S B, Keller D J, Artyushkova K, Fulghum J E, Lopez G P, Reversible control of free energy and topography of nanostructured surfaces [J]. J. Am. Chem. Soc, 2004,126(29): 8904-8905.
    [40] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D, Super-Hydrophobic Surfaces: From Natural to Artificial [J]. Adv. Mater., 2002, 14: 1857-1860.
    [41] Shang H M, Wang Y, Limmer S J, Chou T P, Takahashi K, Cao G Z, Optically transparent superhydrophobic silica-based films [J]. Thin Solid Films, 2005,472: 37-43.
    [42] Jiao F, Jumas J C, Womes M, ChadwickA V, Harrison A, Bruce P G, Synthesis of ordered mesoporous Fe_3O_4 and γ-Fe_2O_3 with crystalline walls using post-template reduction/oxidation [J]. J.Am. Chem. Soc, 2006,128: 12905-12909.
    [43] Goya G F, Berquo T S, Fonseca F C, Morales M P, Static and dynamic magnetic properties of spherical magnetite nanoparticles [J]. J. Appl. Phys., 2003, 94: 3520-3528.
    [44] Sena S P, Lindley R A, BlytheH J, Sauer C, Al-Kafarji M, Gehring G A, Investigation of magnetite thin films produced by pulsed laser deposition [J]. J. Magn.Magn.Mater., 1997, 176: 111-126.
    [45] Chapline M G, Wang S X, Observation of the Verwey transition in thin magnetite films [J].J. Appl. Phys., 2005, 97: 123901.
    [46] Oliver S A, Handeh H H, Ho J C, Localized spin canting in partially inverted ZnFe_2O_4 fine powders[J]. Phys. Rev. B, 1999, 60: 3400-3405.
    [47] Bhowmik R N, Ranganathan R, Sarkar S, Bansal C, Nagarajan R, Magnetic enhancement of Co_(0.2)Zn_(0.8)Fe_2O_4 spinel oxide by mechanical milling [J]. Phys. Rev. B, 2003, 68: 134433.
    [48] Stewart S J, Mercader R C, Vandenberghe R E, Cernicchiaro G, Scorzelli R B, Magnetic anomalies and canting effects in nanocrystalline spinel copper ferrites Cu_xFe_(3-x)O_4 [J]. J. Appl. Phys., 2005, 97,054304.
    [49] Kodama R H, Berkowitz A E, McNiff E J, Foner S, Surface spin disorder in ferrite nanoparticles [J].J. Appl. Phys., 1997, 81: 5552-5557.
    [50] Cross W B, Affleck L, Kuznetsov M V, Parlin I P, Pankhurst Q A, Self-propagating high-temperature synthesis of ferrites MFe_2O_4 (M = Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field [J]. J. Mater. Chem., 1999, 9: 2545-2552.
    [51] Li F, Liu J, Evans D G, Duan X, Stoichiometric Synthesis of Pure MFe_2O_4 (M = Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors [J]. Chem.Mater., 2004, 16(8): 1597-1602.
    [52] Zysler R D, Fiorani D, Testa A M, Investigation of magnetic properties of interacting Fe_2O_3 nanoparticles [J]. J. Magn. Magn. Mater., 2001,224: 5-11.
    [53] Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C, Detection of NO_2 down to ppb levels using individual and multiple In_2O_3 nanowire devices [J]. Nano Lett. 2004,4(10): 1919-1924.
    [54] Gopchandran K G, Joseph B, Abraham J T, Koshy P, Vaidyan V K, The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation [J]. Vacuum, 1997, 48:547-550.
    [55] Zhang D, Li C, Liu X, Han S, Tang T, Zhou C, Doping dependent NH_3 sensing of indium oxide nanowires [J]. Appl. Phys. Lett., 2003, 83: 1845-1847.
    
    [56] Gordon, R. G MRS Bull. Criteria for choosing transparent conductors [J]. 2000,25: 52-57.
    [57] Shigesato Y, Takaki S, Haranoh T, Electrical and structural properties of low resistivity tin-doped indium oxide films [J]. J. Appl. Phys., 1992, 71: 3356-3364.
    [58] KawazoeH, Ueda K, Transparent Conducting Oxides Based on the Spinel Structure [J]. J. Am.Ceram. Soc., 1999, 82: 3330-3336.
    [59] Patil P S, Kadam L D, Lokhande C D, Preparation and characterization of spray pyrolysed cobalt oxide thin films [J]. Thin Solid Films, 1996, 272: 29-32.
    [60] Tang Q, Zhou W, Zhang W, Ou S, Jiang K, Yu W, Qian Y, Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes [J]. Cryst. Growth Design, 2005, 5(1): 147-150.
    [61] Peng X S, Meng G W, Wang X F, Wang Y W, Zhang J, Liu X, Zhang L D, Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers [J]. Chem. Mater., 2002, 14(11): 4490-4493.
    [62] Ohhata Y, Shinoki F, Yoshida S, Optical properties of reactive sputtered tin-doped In_2O_3 films [J].Thin Solid Films, 1979, 59: 255-261.
    [63] Liu Q, Lu W, Ma A, Tang J, Lin J, Fang J, Study of quasi-monodisperse In_2O_3 nanocrystals:synthesis and optical determination [J]. J. Am. Chem. Soc, 2005, 127(15): 5276-5277.
    [64] Lee C. H, Kim M, Kim T, Kim A, Paek J, Lee J W, Choi S-Y, Kim K, Park J.-B, Lee K, Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes [J]. J. Am. Chem. Soc, 2006,128(29): 9326-9327.
    [65]Zhao Y,Zhang Z,Wu Z,Dang H,Synthesis and characterization of single-crystalline In_2O_3nanocrystals via solution dispersion[J].Langmuir,2004,20(1):27-29.
    [66]Wu X C,Hong J M,Han Z J,Tao Y R,Fabrication and photoluminescence characteristics of single crystalline In_2O_3 nanowires[J].Chem.Phys.Lett.,2003,373:28-32.
    [67]Liang C,Meng G,Lei Y,Phillipp F,Zhang L,Catalytic growth of semiconducting In_2O_3 nanofibers [J].Adv.Mater.,2001,13:1330-1333.
    [68]Kim J S,Kang H I,Kim W N,Kim J I,Choi J C,Park H L,Kim G C,Kim T W,Hwang Y H,Mho S I,Jung M C,Han M,Color variation of ZnGa_2O_4 phosphor by reduction-oxidation processes [J].Appl.Phys.Lett.,2003,82:2029-031.
    [1] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    
    [2] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H,Sheppard E W, A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114(27): 10834-10843.
    [3] Carreon M A, Guliants V V, Ordered meso- and macroporous binary and mixed metal oxides [J]. Eur.J. Inorg. Chem. 2005: 27-43.
    [4] Schuth F, Non-siliceous mesostructured and mesoporous materials [J]. Chem. Mater., 2001, 13:3184-3195.
    [5] Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998,396: 152-155.
    [6] Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem.Mater., 1999,11:2813-2826.
    [7] He X, Antonelli D, Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves [J]. Angew. Chem. Int. Ed., 2002,41: 214-219.
    [8] Liu C, Fu L, Economy J, A simple, template-free route for the synthesis of mesoporous titanium dioxide materials [J]. J. Mater. Chem., 2004, 14: 1187-1189.
    [9] Kolen'ko Y V, Kovnir K A, Gavrilov A I, Garshev A V, Meskin P E, Churagulov B R, Bouchard M,Colbeau-Justin C, Lebedev O I, Tendeloo G V, Yoshimura M, Structural, textural, and electronic properties of a nanosized mesoporous Zn_xTi_(1-x)O_(2-x) solid solution prepared by a supercritical drying route[J]. J. Phys. Chem. B, 2005, 109: 20303-20309.
    [10] Shen S, Hidajat K, Yu L E, Kawi S, Simple hydrothermal synthesis of nanostructured and nanorod Zn-Al complex oxides as novel nanocatalysts [J]. Adv. Mater., 2004, 16(6): 541-545.
    
    [11] Roesky R, Weiguny J, Bestgen H, Dingerdissen U, An improved synthesis method for indenes and styrenes by use of a ZnO/Al_2O_3 spinel catalyst [J]. Appl. Catal., A: Gen., 1999, 176: 213-220.
    
    [12] Le Pelter F, Chaumette P, Saussey J, Bettahar M M, Lavalley J C, In-situ FT-IR spectroscopy and kinetic study of methanol synthesis from CO/H_2 over ZnAl_2O_4 and Cu-ZnAl_2O_4 catalysts [J]. J. Mol. Catal.A: Chem. 1997,122:131-139.
    [13] Valenzuela M A, Aguilar A, Bosch P, Armendariz H, Salas P, Montoya A, Effect of calcium addition on zinc aluminate spinel [J]. Catal. Lett., 1992, 15: 179-188.
    [14] Chen L, Sun X, LiuY, Zhou K, Li Y, Porous ZnAl_2O_4 synthesized by a modified citrate technique [J].J. Alloys Compd. 2004, 376: 257-261.
    [15] Aguilar-Rios G, Valenzuela M A, Salas P, Armendariz H, Bosch P, Del Toro G, Silva R, Bertin V,Castillo S, Ramirez-Solis A, Schifter I, Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate [J]. Appl. Catal. A: Gen., 1995, 127: 65-75.
    [16] Grabowska H, Mista W, Trawczynski J, Wrzyszcz J, Zawadzki M, A method for obtaining thymol by gas phase catalytic alkylation of m-cresol over zinc aluminate spinel [J]. Appl. Catal. A: Gen.,2001,220:207-213.
    [17] Si R, Zhang Y W, Xiao C X, Li S J, Lin B X, Kou Y, Yan C H, Non-template hydrothermal route derived mesoporous Ce_(0.2)Zr_(0.8)O_2 nanosized powders with blue-shifted UV absorption and high CO conversion activity [J]. Phys. Chem. Chem. Phys., 2004,6: 1056-1063.
    [18] Bagshaw S A, Prouzet E, Pinnavaia T J, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244.
    [19] Tanev P T, Pinnavaia T J, A neutral templating route to mesoporous molecular sieves. Science, 1995,267: 865-867.
    [20] Yu J C, Zhang L Z, Yu J G, Rapid synthesis of mesoporous TiO_2 with high photocatalytic activity by ultrasound-induced agglomeration [J]. New J. Chem., 2002, 26: 416-420.
    [21] Pacheco G, Zhao E, Garcia A, Sklyarov A, Fripiat J J, Syntheses of mesoporous zirconia with anionic surfactants [J]. J. Mater. Chem., 1998, 8: 219-226.
    [22] Zhang Z, Hicks R W, Pauly T R, Pinnavaia T J, Mesostructured forms of γ-Al_2O_3 [J]. J. Am. Chem.Soc. 2002, 124:1592-1593.
    [23] Zhang Z, Pinnavaia T J, Mesostructured γ-Al_2O_3 with a lathlike framework morphology [J]. J. Am.Chem. Soc. 2002, 124: 12294-12301.
    [24] Leofanti G, Padovan M, Tozzola G, Ventureli B, Surface area and pore texture of catalysts [J]. Catal.Today, 1998,41:207-219.
    [25] Kang M, Kim D, Yi S H, Han J U, Yie J E, Kim J M, Preparation of stable mesoporous inorganic oxides via nano-replication technique [J]. Catal. Today, 2004, 93: 695-699.
    [26] Rouquerol F, Rouquerol J, Sing K, Adsorption by Powders and Porous Solids: Principles,Methodology and Applications [M]. Academic Press, London, 1999.
    [27] Banfield J F, Welch S A, Zhang H Z, Ebert T T, Penn R L, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science,2000,289:751-754.
    [28] Costantino U, Marmottini F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds, characterisation and properties of the obtained materials [J]. Eur. J. Inorg. Chem., 1998,1439-1446
    [29] Oh J M, Hwang S H, Choy J H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles [J]. Solid State Ionics, 2002,151: 285-291
    [1]Zhang Z,Pinnavaia T J,Mesostructured γ-Al_2O_3 with a lathlike framework morphology[J].J.Am.Chem.Soc.2002,124:12294-12301.
    [2]Shibata H,Ogura T,Mukai T,Ohkubo T,Sakai H,Abe M,Direct synthesis of mesoporous titania particles having a crystalline wall[J].J.Am.Chem.Soc.,2005,127(47):16396-16397.
    [3]Shyue J J,M R De Guire,Single-step preparation of mesoporous,anatase-based titanium-vanadium oxide and its application[J].J.Am.Chem.Soc.,2005,127(36):12736-12742.
    [4]徐如人.无机合成与制备化学[M].高等教育出版社,2001,128-163.
    [5]徐如人,庞文琴.分子筛与多孔材料化学[M].科学出版社,2004,198-206.
    [6]Leofanti G,Padovan M,Tozzola G,Ventureli B,Surface area and pore texture of catalysts[J].Catal.Today,1998,41:207-219.
    [7]Kang M,Kim D,Yi S H,Han J U,Yie J E,Kim J M,Preparation of stable mesoporous inorganic oxides via nano-replication technique[J].Catal.Today,2004,93:695-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700