直驱式电液伺服主动质量驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土木工程结构振动控制的研究与应用经过半个世纪的发展已日臻成熟,并已有多种振动控制装置逐步在实际工程中得到推广应用。但缺少结构简单、性能良好的被动控制装置;传统的主动质量驱动装置体积大、造价高、系统复杂、能源利用率低等问题也日益突出。
     直驱式容积控制电液伺服技术是机电液一体化新技术,它具有交流伺服电动机控制灵活和液压系统出力大的双重优点,结构简单、节能高效,控制灵活,利于环保。该系统被公认为液压控制领域极具前途且非常重要的发展方向之一,具有重要的理论意义和实用价值。
     本文针对传统阀控主动质量驱动系统存在的固有缺点,将具有显著技术优势的直驱式电液伺服系统应用于土木工程结构振动控制上,用于高层建筑的抗风防振减灾。本文的主要内容如下:
     1.在查阅大量相关文献的基础上,本文综述了国内外直驱式电液伺服系统的研究情况,对比分析了该系统的原理和特点。
     2.进行了整套系统的设计,包括直驱式油源部分(即液压包)、双出杆液压缸、位置反馈装置、质量负载及导轨部分,其中针对油源部分的无动力补油方案的吸排阀集成块和密闭压力油罐在结构上做了优化。
     3.建立了变频器及交流异步伺服电机系统、泵控缸系统的以及整个直驱式系统的模型,设计了PID控制器,并进行了系统仿真分析。
     4.最后,搭建了实验台,采用C++ Builder可视化程序语言编写了实验控制程序,进行了系统的开、闭环以及有无载荷实验,检验系统的动态性能,并对实验结果进行了分析。
     通过对直驱式电液伺服主动质量驱动系统进行实验研究,验证了所建数学模型的正确性以及直驱式系统频率响应较低的固有局限,为进一步改善系统的动态特性提供了理论基础和实验依据。结果表明,将直驱式电液伺服系统应用于土木工程结构振动主动控制上是可行的。
After half a century of development, the research and application of structural vibration control of civil engineering has matured, and a wide range of vibration control devices have gradually been used in practical engineering application. However, the lack of passive control devices of simple structure, good performance and the problems of traditional active mass driver devices of bulky volume, high cost, system complexity, and low energy efficiency have become increasingly prominent.
     Direct Drive Volume Control (DDVC) electro-hydraulic servo system is a new type of electro-hydraulic system combined with mechanism, electron-hydraulics. It takes advantages of both AC servo motor's flexibility of control and hydraulic system's great output force. It has lots of advantages, such as simple structure, energy saving, efficient, and control flexible, beneficial to the environment. The system is recognized as one of the very promising and important development directions of hydraulic control field, which has important theoretical value and practical application value.
     In this paper, in view of the inherent shortcomings of traditional valve controlled active mass driver system, DDVC electro-hydraulic servo system is tried to be applied to vibration control of civil engineering structures, which will be set on top of the high buildings to prevent from the disaster caused of the strong wind and earthquake. The main studies of this dissertation are as follows:
     1. Through consulting lots of relevant references, the research status in domestic and international of DDVC system is summarized in this paper, and the principle of the system and its characteristics are comparatively analyzed.
     2. The structural design of the system is carried out, including the oil source (that is, the hydraulic package) of DDVC system, asymmetric hydraulic cylinder, position feedback devices, the mass load and guide parts. Especially, the structure of oil supplement valve block and closed pressure oil tank in oil supplement program without power of oil source is improved.
     3. The mathematical model of inverter and the AC asynchronous servo motor system, pump controlled cylinder system, and the whole DDVC system are built up, a PID controller is designed, and the simulation analysis of the system is made.
     4. Finally, the experimental test-bed is built up, the experimental control procedure is programmed using the C++ Builder visual programming language, then experiments are carried out under open-loop and closed-loop with or without load, the dynamic performances of the system is tested, and the experimental results are analyzed.
     Through the experimental research of DDVC electro-hydraulic servo active mass driver system, the correctness of the mathematical model of the system, as well as DDVC system's inherent low frequency response limitation are verified. It provides a theoretical basis and experimental evidence for further improve of the system's dynamic characteristics. The results show that the DDVC electro-hydraulic servo system applied to civil engineering structure vibration active control is feasible.
引文
1 T. T. Soong and G. F. Dargush. Passive Energy Dissipation Systems in Structural Engineering [M]. John Wiey & Sons Ltd. 1997
    2 J. P. Ou, Bo Wu and T.T. Soong. Recent Advances in Research on Application of Passive Energy Dissipation Systems. Earthquake Engineering and Engineering Vibration. 1996, 16(3): 72~96
    3欧进萍.结构振动控制:主动、半主动和智能控制[M].科学出版社, 2003
    4 T. T. Soong. Active Structural Control: Theory and Practice. Longman Scientific and Technical, 1990: 116~155
    5刘庆和.直接驱动容积控制液压传动原理(DDVC系统).哈尔滨工业大学. 2007, (10): 12~18
    6苏文海.电液混合动力机构及其位置控制系统研究.哈尔滨工业大学硕士论文. 2003: 6~30
    7桂文浩.直驱式电液伺服装置.哈尔滨工业大学硕士论文. 2005: 1~20
    8刘庆和.电液伺服直接驱动装置.液压技术资料简编. 1999: 1~3
    9李志民,张遇杰.同步电动机调速系统.机械工业出版社, 1996: 6~30
    10姜继海,苏文海,刘庆和.直驱式容积控制电液伺服系统.军民两用技术与产品. 2003, (9): 43~45
    11 Wheeler, P. W.; Clare, J. C.; Apap, M.; Empringham, L.; De Lilo, L.; Bradley, K.; Whitley, C.; Towers, G.; An electro-hydrostatic aircraft actuator using a matrix converter permanent magnet motor drive. Power Electronics, Machines and Drives, 2004.(PEMD 2004).Second International Conference on(Conf. Publ. No. 498), 31 March-2 April 2004, Vol. 2: 464~468
    12 Hong Sun, T. George, C. Chiu. Nonlinear Observer Based Force Control of Electro-Hydraulic Actuators. Proceedings of the American Control Conference. San diego, California. 1999: 764~768
    13 Wheeler, P. W.; Clare, J. C.; Apap, M.; Empringham, L.; Whitley, C.; Towers, G.; Power supply loss ride-through and device voltage drop compensation in a matrix converter permanent magnet motor drive for an aircraft actuator. Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 20-25 June 2004 Vol. 1: 149~154
    14 Wheeler, P. W.; Clare, J. C.; Apap, M.; Empringham, L.; Bradley, K.J.; Whitley, C.; Towers, G.; A matrix converter based permanent magnet motor drive for an electro-hydrostatic aircraft actuator. Industrial Electronics Society, 2003.IECON'03. The 29th Annual Conference of the IEEE, Volume 3, 2-6 Nov. 2003 Vol. 3: 2072~2077
    15 Jahns, T. M.; Van Nocker, R. C.Electric controls for a high-performance EHA using an interior permanent magnet motor drive. Aerospace and Electronics Conference, 1989. NAECON 1989, Proceedings of the IEEE 1989 National, 22-26 May 1989, vol. 1:346~354
    16 Alden, R. C-141 and C-130 power-by-wire flight control systems. Aerospace and Electronics Conference, 1991.NAECON 1991, Proceedings of the IEEE 1991 National, 20-24 May 1991, vol. 2: 535~539
    17 Anderson, J. A. Variable displacement electro-hydrostatic actuator. Aerospace and Electronics Conference, 1991.NAECON 1991., Proceedings of the IEEE 1991 National, 20-24 May 1991, vol. 2: 529~534
    18 Jahns, T. M.; Van Nocker, R. C. High-performance EHA controls using an interior permanent magnet motor. Aerospace and Electronic Systems, IEEE Transactions on, Issue 3, May 1990, Volume 26: 534~542
    19 Masanori ITO, Noriki, HIROSE, Etsuro SHIMIZU. Main Engine Revolution Control for Ship with Direct Drive Volume Control System[J]. ISMETOKYO, 2000, (2): 629~632
    20 ITO, H SATO, Y Maeda.Direct Drive Volume Control of Hydraulic System and its Application to the Steering System of Ship[C]. Hayama: FLUCOME'97, (1): 445~450
    21 P Vas. Electrical Machines and Drives, A Space-Vecter Theory Approach. Clarendon Press, 1992, (7): 132~156
    22 Nakashima S, Inagaki Y, Miki I. Sensorless Initial Rotor Position Estimation of Surface Permanent-magnet Synchronous Motor. IEEE Transactions on, 2000, 36(6): 1598~1603
    23 Johns, T.M.; Van Nocker, R.C. High-performance EHA controls using an interior permanent magnet motor. Aerospace and Electronic Systems, IEEE Transactions on, Issue 3, May 1990, (26): 534~542
    24 Anderson, J. A. Variable displacement electro-hydrostatic actuator. Aerospace and Electronics Conference, 1991. NAECON 1991., Proceedings of the IEEE 1991 National, 20-24 May 1991, (2): 529~534
    25 Han-Woong Park, Sang-Hoon Lee, Tae-Hyun Won, Moon-Soo Kim, Kim, C.-U. Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives. IEEE International Symposium on, 2001, (1): 632~636
    26张旭辉,刘永光,付永领.一种新颖超磁伸缩作动器的隔振模型.北京航空航天大学学报. 2007, 33(11): 1317~1320
    27徐步力,付永领.一种新型电液作动系统.机床与液压. 2002, (5): 52~53
    28王占林.非对称缸伺服系统的理论研究.机床与液压. 1987, (2): 36~41
    29彭天好,杨华勇,徐兵. VVVF技术在液压调速系统中的应用研究.机床与液压. 2001, (4): 6~7
    30权龙.基于可调速电动机的高动态节能型电液动力源.中国机械工程. 2003, (7): 504~509
    31 Chang sheng LI, Malik Elbuluk. A Solid Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motors. IEEE, 2001, (C): 1273~1278
    32吕杰.直驱式电液伺服系统的设计与特性研究.哈尔滨工业大学硕士论文. 2008: 12~22
    33吕新.直驱式转动和直线电液伺服装置的理论与试验研究.哈尔滨工业大学硕士论文. 2006: 15~17
    34姜继海,宋锦春,高常识.液压与气压传动.第2版.高等教育出版社, 2009: 113~117
    35韩安荣.通用变频器及其应用.机械工业出版社, 2000
    36李洪人.液压控制系统.修订版.国防工业出版社, 1990: 84~87
    37王春行.液压控制系统.机械工业出版社, 2006: 57~60
    38王丹力,赵剡,邱治平. MATLAB控制系统设计仿真应用.中国电力出版社, 2007
    39刘坤.刘翠响.李妍. MATLAB自动控制原理习题精解.国防工业出版社, 2004
    40 K. Tan, S. Huang, R. Ferdous. Robust self-tuning PID controller for nonlinear systems. Journal of Process Control. 2002, (12): 753~761
    41 Cominos, P.; Munro. N. PID controllers: recent tuning methods and design to specification. Control Theory and Applications. IEE Proceedings Volume 149, Issue 1, Jan. 2002, (5): 46~53
    42 Moradi, M.H. New techniques for PID controller design. Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on Volume1, 23-25 June 2003, (2): 903~908
    43薛定宇.控制系统仿真与计算机辅助设计.电子工业出版社, 2005
    44赵文峰等.控制系统设计与仿真.西安电子科技大学出版社, 2003
    45 Cui.Bowen, Zhou.Jihua, Ren.Zhang. Modeling and simulation of permanent magnet synchronous motor drives. Electrical Machines and Systems. ICEMS 2001. Proceedings of the Fifth International Conference, 2001, (3): 905~908
    46程鹏.自动控制原理.高等教育出版社, 2004
    47陆卫忠,刘文亮. C++ Builder 6程序设计教程.科学出版社, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700