柴油机尾气中碳黑颗粒低温催化氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机由于其循环热效率高、燃油经济性好,所以日益受到重视。然而柴油机尾气排放造成的环境污染问题也日益严重,尤其是其中的碳黑颗粒,不仅对人类的视觉和嗅觉产生不良影响,而且碳黑上往往吸附着SO_2和其它致癌物质,其造成的影响更不容忽视。碳黑颗粒的热氧化温度高达550-600℃,但是柴油机的排气温度却在175-400℃之间。如何制备高活性催化剂降低碳黑颗粒的燃烧温度是应用催化和环保研究领域中一个极为重要方向。本论文主要研究了以10%O_2为反应气,在松散接触条件下,铈-钾、铈-锰基氧化物和钙钛矿催化剂在碳黑低温燃烧反应中的催化性能。采用不同的合成方法制备了CeO_2催化剂载体和不同K负载量的KNO_3/CeO_2和K_2CO_3/CeO_2催化剂,考察其催化碳黑氧化的催化活性。研究结果表明:负载K可以明显改善CeO_2催化剂活性,其中19wt%K/(KNO_3+CeO_2)催化剂的活性最好。其原因在于KNO_3的熔融温度和分解温度较低,在反应温度下处于KNO_3熔融状态,有利于改善碳黑与催化剂的接触程度,从而促进反应的进行。另外,反应温度下可能有一部分的KNO_3分解成KNO_2甚至进一步分解成K_2O,放出O_2和NO_x,对反应的进行也有促进作用。
     改变制备方法及过程制备固定Mn/Ce比例的Mn-Ce复合氧化物催化剂,研究结果表明:Mn/Ce比例和催化剂制备过程中pH值对催化剂的活性均有不同程度的影响。另外,在催化剂制备过程中用于调节pH值的物质对催化剂活性同样有一定影响,利用尿素调节pH值制备得到的催化剂催化活性最好。
     采用络合燃烧法制备了不同的钙钛矿催化剂,并考察其催化碳黑氧化的催化活性。研究结果表明:当Co元素作为B位离子的催化剂拥有较好的催化活性;同时在A位采用不同比例的K元素取代时,催化剂的催化活性随K元素的取代量上升而呈现先减后增的趋势。而另一方面,如果将贵金属Pt分别以负载或掺杂B位的形式引入LaCoO_3催化剂当中时,催化剂的催化活性都有不同程度的提高。尤其是负载Pt时,催化剂活性得到明显提高。
Diesel engines are more popular due to the relatively high thermal efficiency and fuel economy than gasoline engines. Diesel engine emissions have led to serious environmental problems especially their carbon particles content. The small size of diesel soot particles may be linked to a number of health problems by its ability to penetrate the body through the respiratory system.
     The non-catalytic ignition temperature of soot generally exceeds 550℃, while the temperature of typical exhausts is 400℃or below in light duty applications. The combination of traps and oxidation catalysts appear to be the most plausible after-treatment technique to eliminate soot particles. However, the temperature of diesel exhaust is in the range of 175-400℃. To lower the soot ignition temperature, one solution is using catalyst. Under loose contact, Ceria based, potassium based, manganese based oxides and perovskite were investigated as catalysts for the soot combustion with 10%O_2 as reactant gas in this work, considering the excellent redox properties of these oxides.
     First, ceria and ceria-based oxide catalysts have been investigated for catalytic soot oxidation reaction, which were got by different synthesis methods. It was found that the catalytic activities of ceria-based oxide catalysts can be improved by loading potassium. The 19wt%K/(KNO_3+CeO_2) catalyst showed the excellent catalytic activity for soot oxidation. The main reason was that the melting temperature and decomposing temperature of KNO_3 were lower than K2CO_3, in other words, KNO_3 was melting at reaction temperature, which was useful to improve the contact state between soot and catalyst.
     Second, different Mn-Ce oxide catalysts for soot oxidation were fabricated through different preparation method or process. It was indicated that the molar ratio of Mn to Ce and the pH value of the preparation process can influence the catalytic activity for the soot oxidation to some extent. Otherwise, the reagent for adjusting the pH value of the preparation solution can also influence the catalytic activity of the Mn-Ce oxide catalysts. Last, different perovskite oxide catalysts have been investigated for the catalytic soot oxidation process, which were prepared through the complex-combustion method. The results indicated that the Co as B-site cationic show much high activity for the soot oxidation, and the substitutional incorporation of K into A-sites of perovskite oxides was found to be quite effective in enhancing the activity. In addition, two important measures were adopted in order to modify the activity of perovskite-type oxide catalysts. One is to perform substitutions of platinum on the cationic sites; the other is to support noble platinum on the surface of perovskite-type oxides by impregment method. It was indicated that noble platinum as supported particles could promote effectively the catalytic performance of the perovskite-type oxide catalysts.
引文
[1].焦天民.内燃机进排气系统气体流动模拟计算的现状与趋势.拖拉机与农用运输车. 2001,(5): 11-14.
    [2]. Yan S.H., Jiang Y. J., Marsh N. D. et al. Study of the evolution of soot from various fuels. Energy & Fuels. 2005, 19(5): 1804-1811.
    [3]. Diaby M., Sablier M., Le Negrate A. et al. Understanding carbonaceous deposit formation resulting from engine oil degradation. Carbon. 2009, 47(2): 355-366.
    [4]. Ronkko T., Virtanen A., Kannosto J. et al. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. Environmental Science & Technology, 2007. 41(18): 6384-6389.
    [5]. Walsh M. P., Bradow R.. Experimental and theoretical study of diesel soot reactivity. SAE Paper. 910130.
    [6]. Walsh M. P. Global Trends in Diesel Particulate Control. 1993 Update, SAE Paper. 930126.
    [7].许心凤.汽车排放法规的综述.汽车与配件. 1991,(4): 42-44.
    [8].许心凤.关于我国汽车排放污染控制情况.汽车与配件. 1989, (6): 29-30.
    [9].陈惠卿.车用柴油机排放法规与机油的发展.柴油机. 2004, 15(2): 2-6.
    [10].汪卫东.国外三大汽车排放法规体系.柴油机设计与制造. 2003, 11(4): 21-24.
    [11].柴油车排放污染防治技术政策.国家环境保护总局文件.环发[2003]10号. 2003. 01.13.
    [12].陈岳.用于消除柴油车尾气中微粒的新型催化剂研究:(硕士学位论文).吉林:吉林大学, 2005.
    [13].刘志明,郝郑平,沈迪新等.柴油机排放碳颗粒物和NO_x催化净化技术的研究进展.环境污染治理技术与设备. 2000, 1(5): 78-86.
    [14]. Pisarello M. L., Milt V., Peralta M. A. et al. Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts. Catalysis Today. 2002 , 75(1-4): 465-470.
    [15]. Milt V. G., Pissarello M. L., Miro E. E. et al. Abatement of diesel-exhaust pollutants: NO_x storage and soot combustion on K/La_2O_3 catalysts. Applied Catalysis B:Environmental. 2003, 41(4): 397-414.
    [16]. Neeft J. P. A., Makkee M., Moulijn J. A.. Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Applied Catalysis B:Environmental. 1996 , 8(1): 57-78.
    [17]. Carrascull A., Lick I. D., Ponzi E. N. et al. Catalytic combustion of soot with a O_2/NO mixture. KNO_3/ZrO_2 catalysts. Catalysis Communications. 2003, 4(3): 124-128.
    [18]. Pisarello M. L., Milt V., Peralta M. A. et al. Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts. Catalysis Today. 2002, 75(1-4): 465-470.
    [19].张守臣,赵修仁,刘长厚等.二氧化氮消除柴油机排气中炭烟过程基础研究.燃烧科学与技术. 2002, 8 (2): 163.
    [20]. Oi-Uchisawa J., Obuchi A., Enomoto R. et al. Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black. Applied Catalysis B:Environmental. 2000, 26(1): 17-24.
    [21]. Oi-Uchisawa J., Obuchi A., Enomoto R. et al. Oxidation of carbon black over various Pt/MO_x/SiC catalysts. Applied Catalysis B:Environmental. 2001, 32(4): 257-268.
    [22]. Oi-Uchisawa J., Obuchi A., Wang Sh D. et al. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation. Applied Catalysis B:Environmental. 2003, 43(2): 117-129.
    [23]. Matsuoka K., Orikasa H., Itoh Y. et al. Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen. Applied Catalysis B:Environmental. 2000. 26(2): 89-99.
    [24]. Setiabudi A., van Setten B. A. A. L., Makkee M. et al. The influence of NOx on soot oxidation rate: molten salt versus platinum. Applied Catalysis B:Environmental. 2002, 35(3): 159-166.
    [25]. Setiabudi A., Makkee M., Moulijn J. A. An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design. Applied Catalysis B:Environmental. 2003, 42(1): 35-45.
    [26]. Van Craenenbroeck J., Andreeva D., Tabakova T. et al. Spectroscopic Analysis of Au–V-Based Catalysts and Their Activity in the Catalytic Removal of Diesel Soot Particulates. Journal of Catalysis. 2002, 209 (2): 515-527.
    [27].王海洪.车用柴油机尾气催化系统的发展.重型汽车. 1999, 50(1): 6-8.
    [28]. Neeft J. P. A. Catalytic oxidation of soot, Potential for the reduction of diesel particulate emissions:( PhD Dissertation ). Delft: Delft Univ. 1995.
    [29]. Stanmore B. R., Brilhac J. F., Gilot P. The oxidation of soot: a review of experiments, mechanisms and models. Carbon. 2001, 39(15): 2247-2268.
    [30]. Neeft J. P. A., Makkee M., Moulijn J. A.. Metal oxides as catalysts for the oxidation of soot. Chemical Engineering Journal and the Biochemical Engineering Journal. 1996, 64(2): 295-298.
    [31]. Teraoka Y., Nakano K., Shangguan W F. et al. Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides. Catalysis Today. 1996, 27(1-2): 107-113.
    [32]. Shangguan W. F., Teraoka Y., Kagawa S. Promotion effect of potassium on the catalytic property of CuFe_2O_4 for the simultaneous removal of NOx and diesel soot particulate. Applied Catalysis B:Environmental. 1998, 16(2): 149-154.
    [33]. Hong S-S., Lee G-D. Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts. Catalysis Today. 2000, 63(2-4): 397-404.
    [34]. Shangguan W. F., Teraoka Y., Kagawa S. Kinetics of soot-O2, soot-NO and soot-O2-NO reactions over spinel-type CuFe_2O_4 catalyst. Applied Catalysis B:Environmental. 1997, 12(2-3) : 237-247.
    [35].王虹,赵震,徐春明.同时消除柴油机尾气排放炭颗粒和NO_x.催化剂的研究进展. 2004, 23(7): 723-726.
    [36] Li Q., Meng M., Zhou Z. Q. et al. Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts. Journal of Hazardous Materials. 2009,161(1): 366-372.
    [37] Bańus E.D., Milt V.G., MiróE.E. et al. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO_2 supported on Al_2O_3 foam. Applied Catalysis A:General. 2009, 362(1-2):129-138.
    [38] Castoldi L., Matarrese R., Lietti L. et al. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot, Applied Catalysis B-Environmental. 2009, 90(1-2):278-285.
    [39] Sui L. N., Yu L. Y.. Diesel soot oxidation catalyzed by Co-Ba-K catalysts: Evaluation of the performance of the catalysts. Chemical Engineering Journal. 2008, 142(3): 327-330.
    [40] Weng D., Li J., Wu X.D. et al. Promotional effect of potassium on soot oxidation activity and SO_2-poisoning resistance of Cu/CeO2 catalyst, Catalysis Communications. 2008, 9(9): 1898-1901.
    [41]朱玲,王学中,於俊杰等. K-Ce_(0.5)Zr_(0.5)O_2催化碳颗粒物燃烧性能.物理化学学报.2005, 21(8): 840-845.
    [42] Matarrese R., Castoldi L., Lietti L. et al. Soot combustion: Reactivity of alkaline and alkaline earth metal oxides in full contact with soot. Catalysis Today. 2008, 136(1-2):11-17.
    [43] Zhang Y. H., Zou X. T.. The catalytic activities and thermal stabilities of Li/Na/K carbonates for diesel soot oxidation. Catalysis Communications. 2007, 8(5):760–764.
    [44] Castoldi L., Matarrese R., Lietti L. et al. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Applied Catalysis B:Environmental. 2009, 90(1-2):278-285.
    [45] Tikhomirov K., Krocher O., Wokaun A.. Influence of potassium doping on the activity and the sulfur poisoning resistance of soot oxidation catalysts. Catalysis Letters. 2006, 109(1-2):49-53.
    [47]. Zhang Y. H., Zou X. T.. The CO2 absorption characteristics and catalytic oxidation activities of V/K and V/Ce/K-based catalysts for diesel soot oxidation, Catalysis Communications. 2006, 7(8): 523–527.
    [48]. Zhang Y. H., Zou X. H., Sui L. H.. The effects of potassium halides on catalytic activities of CeO2–K based catalysts for diesel soot oxidation. Catalysis Communications. 2006, 7(11): 855–859.
    [49]. Milt V.G., Querini C.A., MiróE.E.. Thermal analysis of K(x)/La_2O_3, active catalysts for the abatement of diesel exhaust contaminants. Thermochimica Acta. 2003, 404(1-2): 177–186.
    [50]. Milt V.G., Querini C.A., MiróE.E. et al. Abatement of diesel exhaust pollutants: NO_x adsorption on Co,Ba,K/CeO_2 catalysts. Journal of Catalysis. 2003, 220(2): 424–432.
    [51]. Gross S.M., Ulla A.M., Querini A.C.. Catalytic oxidation of diesel soot: New characterization and kinetic evidence related to the reaction mechanism on K/CeO_2 catalyst. Applied Catalysis A: General. 2009, 360(1): 81–88.
    [52]. Milt V.G., Pissarello M.L., MiróE.E. et al. Abatement of diesel-exhaust pollutants: NO_x storage and soot combustion on K/La_2O_3 catalysts. Applied Catalysis B: Environmental. 2003, 41(4): 397–414.
    [53]. MiróE.E., Ravelli F., Ulla M.A. et al. Catalytic combustion of diesel soot on Co, K supported catalysts. Catalysis Today. 1999, 53(4): 631–638.
    [54]. Sui L. N., Yu L. Y., Zhang Y. H.. Catalytic Combustion of Diesel Soot on Co-Sr-K Catalysts. Energy & Fuels. 2007, 21(3):1420-1424.
    [55]. Liu J., Zhao Z., Xu C. M. et al. Diesel soot oxidation over supported vanadium oxide and K-promoted vanadium oxide catalysts. Applied Catalysis B: Environmental. 2005, 61(1-2): 36–46.
    [56]. Nejar N., Illán-Gómez M.J.. Potassium–copper and potassium–cobalt catalysts supported on alumina for simultaneous NO_x and soot removal from simulated diesel engine exhaust. Applied Catalysis B: Environmental. 2007, 70(1-4): 261–268.
    [57]. Zhang Y. H., Qin Y. H., Zou X. T.. Preparation, characterization and catalytic activity studies of CeO_2–K diesel soot oxidation catalysts loaded on porous Al_2O_3 substrate using water-immiscible solvent. Catalysis Communications, 2007. 8(11): 1675–1680.
    [58]. Milt V. G., Peralta M. A., Ulla M. A. et al. Soot oxidation on a catalytic NOx trap: Beneficial effect of the Ba–K interaction on the sulfated Ba,K/CeO_2 catalyst. Catalysis Communications, 2007. 8(5): 765–769.
    [59]. Peralta M. A., Milt V. G., Cornaglia L. M. et al. Stability of Ba,K/CeO_2 catalyst during diesel soot combustion: Effect of temperature, water, and sulfur dioxide. Journal of Catalysis, 2006. 242(1): 118–130.
    [60]. Laversin H., Courcot D., Zhilinskaya E.A. et al. Study of active species of Cu-K/ZrO_2 catalysts involved in the oxidation of soot. Journal of Catalysis, 2006. 241(2): 456–464.
    [61]. Biamino S., Fino P., Fino D. et al.Catalyzed traps for diesel soot abatement: In situ processing and deposition of perovskite catalyst. Applied Catalysis B:Environmental, 2005. 61(3-4):297-305.
    [62]. Palmisano P., Russo N., Fino D. et al.High catalytic activity of SCS-synthesized ceria towards diesel soot combustion. Applied Catalysis B:Environmental, 2006. 69(1-2):85-92.
    [63]. Mescia D., Cauda E., Russo N. et al. Towards practical application of lanthanum chromite catalysts for diesel particulate combustion. Catalysis Today. 2006, 117(1-3):369-375.
    [64]. Liang Q., Wu X. D., Weng D. et al. Oxygen activation on Cu/Mn–Ce mixed oxides and the role in diesel soot oxidation. Catalysis Today. 2008, 139(1-2): 113-118.
    [65]. Terribile D., Trovarelli A., Leitenburg C. et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria–zirconia solid solutions. Catalysis Today. 1999, 47(1-4): 133-140.
    [66]. Jia L. W., Shen M. Q., Wang J. et al. Redox behaviors and structural characteristics of Mn_(0.1)Ce_(0.9)O_x and Mn_(0.1)Ce_(0.6)Zr_(0.3)O_x. Journal of Rare Earths. 2008, 26(4): 523-527.
    [67]. Escribano S. V., López F. E., Gallardo-Amores J.M. et al. A study of a ceria–zirconia-supported manganese oxide catalyst for combustion of Diesel soot particles. Combustion and Flame. 2008, 153(1-2): 97-104.
    [68]. Wu X. D. , Liang Q., Weng D. et al. Synthesis of CeO_2–MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catalysis Today. 2007, 126(3-4): 430-435.
    [69]. Tikhomirov K., Krocher O., Elsener M. et al. MnOx-CeO_2 mixed oxides for the low-temperature oxidation of diesel soot. Applied Catalysis B: Environmental. 2006, 64(1-2): 72-78.
    [70]. Machida M., Uto M., Kurogi D. et al. MnOx-CeO_2 Binary Oxides for Catalytic NOx Sorption at Low Temperatures. Sorptive Removal of NO_x. Chemistry Materials. 2000, 12(10): 3158-3164.
    [71]. Machida M., Kurogi D., and Kijima. T.. MnO_x-CeO_2 Binary Oxides for Catalytic NOx-Sorption at Low Temperatures. Selective Reduction of Sorbed NO_x. Chemistry Materials. 2000, 12(10): 3165-3170.
    [72] Cousin R., Capelle S., Abi-Aad E. et al. Copper-vanadium-cerium oxide catalysts for carbon black oxidation. Applied Catalysis B: Environmental. 2007, 70(1-4): 247-253.
    [73] Delimaris D., Ioannides T.. VOC oxidation over MnOx–CeO_2 catalysts prepared by a combustion method. Applied Catalysis B: Environmental. 2008, 84(1-2): 303-312.
    [74] Picasso G., Gutierrez M., Pina M. P. et al. Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors. Chemical Engnieering Journal. 2007, 126(2-3): 119-130.
    [75] Chen H., Sayari A., Adnot A. et al. Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental. 2001, 32(3): 195-204.
    [76] Shan W. J., Shen W. J., Li C.. Structural Characteristics and Redox Behaviors of Ce_(1-x)Cu_xO_y Solid Solutions. Chemistry Materials. 2003, 15(25): 4761-4767.
    [77] Silva A. M. T., Marques R. R. N., Quinta-Ferreira R. M.. Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks. Applied Catalysis B: Environmental. 2004, 47(4): 269-279.
    [78] Murugan B., Ramaswamy A. V., Srinivas D., et al. Nature of manganese species in Ce1-xMnxO_2-δsolid solutions synthesized by the solution combustion route. Chemistry Materials. 2005, 17(15): 3983-3993.
    [79] Kang C. Y., Kusaba H., Yahiro H. et al. Preparation, characterization and electrical property of Mn-doped ceria-based oxides. Solid State Ionics. 2006, 177(19-25): 1799-1802.
    [80]彭小圣,林赫,黄震等. La-Mn-O钙钛矿催化剂成分对NO_x和碳烟同时催化去除的影响.高校化学工程学报. 2006, 20(5):831-836.
    [81]彭小圣,林赫,上官文峰等. K和Cu部分取代对LaMnO_3钙钛矿型催化剂同时去除NO_x和碳烟的影响.催化学报. 2006, 27(9):767-771.
    [82]彭小圣,林赫,黄震等.采用钙钛矿型催化剂(La_(0.8)K_(0.2)Cu_(0.05)Mn_(0.95)O_3)同时催化去除NO_x和碳烟的研究.环境科学学报. 2006, 26(5) :779-784.
    [83] Teraoka Y., Nakano K., Kagawa S. et al. Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides. Applied Catalysis B: Environmental. 1995, 5(3):181-185.
    [84]杨春文.钙钛矿型稀土复合氧化物对CO催化氧化性能的研究.甘肃科技. 2005, 21(2): 83-85.
    [85] Teraoka Y., Kanada K., Kagawa S.. Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NO_x and diesel soot particulates. Applied Catalysis B:Environmental. 2001, 34(1): 73-78.
    [86] Hong S-S., Lee G-D.. Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts. Catalysis Today. 2000, 63(2-4):397-404.
    [87] Cimino S., Lisi L., Pirone R. et al. Methane combustion on perovskites-based structured catalysts. Catalysis Today. 2000, 59(1-2):19-31.
    [88] Miyazaki T., Tokubuchi N., Arita M. et al. Catalytic Combustion of Carbon by Alkali Metal Carbonates Supported on Perovskite-Type Oxide. Energy & Fuels. 1997, 11(4):832-836.
    [89] Tejuca L. G., Fierro J. L. G., Tascon J. M. D.. Structure and reactivity of perovskite-type oxides. Advanced in Catalysis. 1989, 36(2):237~328.
    [90] Ciambelli P., Cimino S., DeRossi S. et al. AMnO_3(A=La,Nd,Sm) and Sm_(1-x)Sr_xMnO_3 perovskites as combustion catalysts: structural, redox and catalytic properties. Applied Catalysis B:Environmental. 2000, 24(3-4):243~253.
    [91] Delmastro A., Mazza D., Ronchetti S. et al. Synthesis and characterization of non-stoichiometric LaFeO_3 perovskite. Materials Science and Engineering B. 2001, 79(2):140~145.
    [92] Shu J., Kaliaguene S.. Well-dispersed perovskite-type oxidation catalysts. Applied Catalysis B:Environmental. 1998, 16(3):303~308.
    [93] Teraoka Y., Nakano K., Shangguan W. F. et al. Simultaneous Catalytic Removal of Nitrogen Oxides and Diesel Soot Particulate over Perovskite-related Oxides. Catalysis Today. 1996, 27(1-2): 107?113.
    [94] Simonot L., Garin F., Maire G.. A Comparative Study of LaCoO_3, Co_3O_4 and LaCoO_3-Co_3O-4: I. Preparation, Characterisation and Catalytic Properties for the Oxidation of CO. Applied Catalysis B:Environmental. 1997, 11(2): 167-179.
    [95]何琳琳,李杰,林红.溶胶-凝胶法制备钙钛矿型复合氧化物La_(1-x)Ca_xCoO_3纳米晶.佳木斯大学学报(自然科学版). 2003, 21(3):357-360.
    [96] Khalil M. S.. Synthesis, X-ray, Infrared Spectra and Electrical Conductivity of La/Ba–CoO_3 Systems. Materials Science and Engineering A. 2003, 352(1-2): 64-70.
    [97]胡瑞生,付冬,王克冰等. LaCoO_3与LaFeO_3结构与CO催化氧化性能比较研究.内蒙古大学学报(自然科学版). 2001, 32(2): 189-192.
    [98]埃文R C.结晶化学导论.胡玉才等译.北京:人民教育出版社,1981:163.
    [99] Cauda E., Fino D., Saracco G. et al. Nanosized Pt-perovskite catalyst for the regeneration of a wall-flow filter for soot removal from diesel exhaust gases. Topics in Catalysis. 2004, 30(31):299-303.
    [100]. Giebeler L., KieBling D., Wendt G.. LaMnO3 Perovskite Supported Noble Metal Catalysts for the Total Oxidation of Methane. Chemical Engineering Technology. 2007, 30(7):889-894.
    [101]. Tanaka H., Tan I., Uenishi M. et al. LaFePdO_3 perovskite automotive catalyst having a self-regenerative function. Journal of Alloys and Compounds. 2006, 408–412(9): 1071-1077.
    [102]. Tanaka H. An Intelligent Catalyst: The Self-Regenerative Palladium–Perovskite Catalyst for Automotive Emissions Control. Catalysis Surveys from Asia. 2005,9(2): 63-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700