内质网应激—自噬反应在维生素K3诱导人宫颈癌细胞氧化应激损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往的研究发现,抗肿瘤药物、氧化应激等诱导肿瘤细胞内质网应激,通过IRE1(inositol-requiring enzyme 1,肌醇需要酶1)和PERK(PKR-like ER kinase,PKR样内质网激酶)的未折叠蛋白反应及一个钙介导的信号级联反应激活自噬。被激活的自噬是发挥保护作用还是具有细胞毒性以及自噬调节细胞死亡的机制尚需要进一步探讨。本课题在维生素K3在诱导Hela细胞凋亡同时发生了自噬等前期工作的基础上,重点探讨内质网应激在氧化应激诱导细胞自噬中的作用及其相关机制,进一步揭示肿瘤细胞应答应激的能力及其调控机制。研究内容如下:
     利用维生素K3(Menadione)制作氧化应激模型,以人宫颈癌Hela细胞为研究对象,分别采用醌类药物代谢抑制剂(Dicoumarol),内质网应激诱导剂(Tunicamycin)和内质网应激抑制剂(TUDC),JNK抑制剂(SP600125),MEK抑制剂(U0126)。利用MTT法检测细胞存活率;DCFH-DA染色,共聚焦显微镜观察细胞内活性氧簇(reactive oxygen species,ROS);透射电镜观察内质网等细胞器形态学变化;Western blotting观察自噬相关蛋白LC3-II、Atg12-Atg5、内质网应激相关蛋白GRP78、IRE1α、PERK及其下游MAPK途径相关蛋白JNK、ERK的表达。结果表明,维生素K3可能通过其氧化还原反应产生活性氧簇、引起Hela细胞氧化损伤,维生素K3能够诱导细胞发生内质网应激,被激活的内质网应激通过JNK和ERK途径介导自噬发生。
     利用自噬抑制剂(3-MA),溶酶体抑制剂(NH4Cl,chloroquine),caspase特异性抑制剂(z-VAD-fmk),泛素-蛋白酶体抑制剂(LAC)。采用MTT法检测细胞存活率;光镜观察细胞形态,透射电镜观察内质网等细胞器形态学变化;采用Cathepsin D免疫荧光来检测溶酶体膜通透性;免疫荧光法观察LC3和LAMP1的共定位,检测自噬体与溶酶体融合过程;Western blotting观察自噬相关蛋白Atg12-Atg5、内质网应激相关蛋白GRP78、p62/SQSTM1及泛素和多泛素化蛋白的表达。结果表明,阻断自噬体与溶酶体融合,增加维生素K3诱导的细胞凋亡,伴有caspase激活及溶酶体膜通透性增加;p62/SQSTM1蛋白表达增加,错误折叠蛋白积聚,内质网应激反应延长。
     依据以上结果,本实验认为维生素K3诱导的氧化应激反应引起蛋白的错误折叠,错误折叠蛋白的积聚激活内质网应激,通过其下游JNK、ERK途径诱导自噬发生;抑制肿瘤细胞的自噬过程能够加重内质网应激,进而促进细胞凋亡,增加了维生素K3引起的氧化应激损伤。泛素化修饰和p62/SQSTM1参与维生素K3诱导的自噬过程,表明自噬在降解氧化应激诱导的错误折叠蛋白过程中可能具有特异性。可见,内质网应激-自噬反应参与了调控肿瘤细胞生存过程,进一步的实验研究能够为肿瘤的治疗提供新的理论依据。
Kinds of stress may result in accumulation of misfolded proteins, which may be sorted to either the proteasome or the macroautophagy pathway for degradation. Macroautophagy can degrade all forms of misfolded proteins, whereas proteasomal degradation is likely limited to soluble ones. Unlike the bulk protein degradation that occurs during starvation, autophagic degradation of misfolded proteins induced by antitumor therapy and oxidative stress can have a degree of specificity, determined by ubiquitin modification and so on.
     Research during the last decade has contributed to highlight the important roles and modulation mechanisms on endoplasmic reticulum (ER) stress-autophagy response, in which activates a partial unfolded protein response involving IRE1 (inositol-requiring enzyme 1) and PERK (PKR-like ER kinase), and a calcium-mediated signaling cascade. While it still need to be investigated as to whether autophagy is initiated in response to ER stress plays a protective role or a detrimental role. To deal with the role and mechanisms that determine the final outcome of UPR and autophagy activation will be contributed to understanding the mechanisms of tumor, throwing light on the relationship between autophagy and apoptosis, sensitizing tumor cells to anti-tumor therapy.
     Quinones are widely distributed in nature and many clinically important antitumor drugs contain the quinone nucleus. Menadione is frequently used as oxidative stress model. It is indicated that Menadione could induce apoptosis and autophagy in Hela cells. In our study, wo deal with the role and mechanism of autophagy througy ER stress induction in Hela cell death induced by Menadione, and further reveal the ability to response to stress and modulation mechanisms
     Methods
     To establish injury model of cervical carcinoma Hela cells by Menadione, NAD(P)H: quinone oxidoreductase inhibitor (Dicoumarol), ER stress inducer Tunicamycin (TM), ER stress inhibtor Tauroursodeoxycholate (TUDC), JNK inhibitor SP600125, MEK1/2 inhibitor U0126, autophagy inhibitor 3-Methyladenine (3-MA), lysosomal inhibitors ammonium chloride (NH4Cl) and chloroquine (CQ), caspase special inhibitor z-VAD-fmk, ubiquitin-proteasomal system inhibitor lactacystin (LAC).
     The survival rate of Hela cells was detected by MTT method. Intracellular ROS level is measured by DCFH-DA immunofluorescence. Observing celluar morphology by using light microscopy and ER morphology by transmission Electron Microscopy. Autophagy related proteins Atg12-Atg5, ER stress related proteins expressions GRP78、IRE1α、Phos-PERK and downstream MAPK pathway JNK, ERK proteins expressions were detected by Western blotting. Lysosomal membrane permeabiltiy is using Cathepsin D immunostaing. LAMP1和LC3 immunofl uorescence assay is used to study the fusion of autophagosomes with lysosomes. p62 /SQSTM1 and ubiquitin and polyubquitin proteins expressions are performed by Western blottin.
     Results
     (1) Dicoumarol increased the the effect of Menadione on inhibiting survival rate and DCFH-DA fluorescence in Hela cells.
     (2) Menadione induced ER dilation. Menadione increased the expressions of, IRE1α, Phos-PERK proteins, which the same to TM.
     (3) TM increased the expressions of LC3-II proteins. TUDC increased the effect of Menadione on inhibiting survival rate and downregulated the effect of Menadione on the expressions of GRP78 and LC3-II in Hela cells.
     (4) The expressions of Phos-ERK, phopho-JNK proteins were increased in Hela cells induced by Menadione. SP600125 and U0126 respectively increased the the effect of Menadione on inhibiting survival rate and inhibited the expression of LC3-II. Both SP600125 and U0126 downregulated GRP78 protein expression in Menadione-treated Hela cells.
     (5) 3-MA, NH4Cl and chloroquine increased the effect of Menadione on inhibiting cell viability in Hela cells. Inhibition of caspases with Z-VAD-fmk Z-VAD-fmk partially rescued cell death treated with combination of Menadione with NH4Cl. Cathepsin D-specific immunostaining revealed diffuse staining throughout the entire cell treated with combination of Menadione and NH4Cl. The level of Atg12-Atg5 complex under Menadione conditions did not change in the presence of NH4Cl. These LC3-positive structures, did not colocalize with LAMP1 positive vesicles in Hela cells treated with Menadione and NH4Cl, while LC3-positive. structures partially colocalized with LAMP1 positive vesicles in Menadione-treated cells.
     (6) NH4Cl increased cell viability in the Hela cells treated with LAC and Menadione. NH4Cl increased the ubiquitin and polyubquitin proteins and p62/SQSTM1 protein expressions in Hela cells induced by Menadione. Light microphagy showed that NH4Cl elicit a significant degree of cellular vacuolization compared to Menadione. Electron microscopic analysis indicated that the vacuoles consisted of dilated and expanded ER lumens.Combination of NH4Cl and Menadione increased p62/SQSTM1 protein expression, downregulated ERK activation.
     Conclusions
     (1) The mechanism of ROS is possibly mediated by one-electron reduction of Menadione, which induces oxidative stress injury.
     (2) Menadione induces ER stress during the oxidative stress injury.
     (3) Menadione induces autophagy through ER stress.
     (4) JNK and ERK pathway are involved in autophagy through ER stress.
     (5) Autophagy through ER stress has been proposed to protect against cell death.
     (6) Inhibition of autophagy cannot result in degradation of misfolded proteins, may exacerbate ER stress, which contribute to cell death. Autophagic degradation of misfolded proteins can have a degree of specificity, determined by ubiquitin modification and the interactions of p62/SQSTM1.
引文
[1]Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense[J]. Cell, 2005, 120(2):159-162.
    [2]Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae[J]. FEBS Lett, 2007, 581(11):2156-2161.
    [3]Jin S, White E. Role of autophagy in cancer: management of metabolic stress[J]. Autophagy, 2007, 3(1):28-31.
    [4]Mizushima N, Yoshimori TLevine B. Methods in mammalian autophagy research[J]. Cell, 140(3):313-326.
    [5]Fader C M, Colombo M I. Autophagy and multivesicular bodies: two closely related partners[J]. Cell Death Differ, 2009, 16(1):70-78.
    [6]Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control[J]. Nat Rev Cancer, 2005, 5(11):886-897.
    [7]Eskelinen E L. Maturation of autophagic vacuoles in Mammalian cells[J]. Autophagy, 2005, 1(1):1-10.
    [8]Pattingre S, Espert L, Biard-Piechaczyk M, et al. Regulation of macroautophagy by mTOR and Beclin 1 complexes[J]. Biochimie, 2008, 90(2):313-323.
    [9]Arsham A M, Neufeld T P. Thinking globally and acting locally with TOR[J]. Curr Opin Cell Biol, 2006, 18(6):589-597.
    [10]Djavaheri-Mergny M, Amelotti M, Mathieu J, et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy[J]. J Biol Chem, 2006, 281(41):30373-30382.
    [11]Arico S, Petiot A, Bauvy C, et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway[J]. J Biol Chem, 2001, 276(38):35243-35246.
    [12]Pankiv S, Clausen T H, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33):24131-24145.
    [13]Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems[J]. Nat Rev Mol Cell Biol, 2001, 2(3):211-216.
    [14]Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J]. EMBO J, 2007, 26(7):1749-1760.
    [15]Liu Z, Lenardo M J. Reactive oxygen species regulate autophagy through redox-sensitive proteases[J]. Dev Cell, 2007, 12(4):484-485.
    [16]Maiuri M C, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis[J]. Nat Rev Mol Cell Biol, 2007, 8(9):741-752.
    [17]Mousavi S A, Kjeken R, Berg T O, et al. Effects of inhibitors of the vacuolar proton pump on hepatic heterophagy and autophagy[J]. Biochim Biophys Acta, 2001, 1510(1-2):243-257.
    [18]Yamamoto A, Tagawa Y, Yoshimori T, et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells[J]. Cell Struct Funct, 1998, 23(1):33-42.
    [19]Vousden K H, Lane D P. p53 in health and disease[J]. Nat Rev Mol Cell Biol, 2007, 8(4):275-283.
    [20]Galonek H L, Hardwick J M. Upgrading the BCL-2 network[J]. Nat Cell Biol, 2006, 8(12):1317-1319.
    [21]Maiuri M C, Le Toumelin G, Criollo A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1[J]. EMBO J, 2007, 26(10):2527-2539.
    [22]Kessel D, Reiners J J, Jr. Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14-1[J]. Cancer Lett, 2007, 249(2):294-299.
    [23]Kessel D, Reiners J J, Jr., Hazeldine S T, et al. The role of autophagy in the death of L1210 leukemia cells initiated by the new antitumor agents, XK469 and SH80[J]. Mol Cancer Ther, 2007, 6(1):370-379.
    [24]Daido S, Kanzawa T, Yamamoto A, et al. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells[J]. Cancer Res, 2004, 64(12):4286-4293.
    [25]Hamacher-Brady A, Brady N R, Logue S E, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy[J]. Cell Death Differ, 2007, 14(1):146-157.
    [26]Adams J M, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy[J].Oncogene, 2007, 26(9):1324-1337.
    [27]Oberstein A, Jeffrey P DShi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein[J]. J Biol Chem, 2007, 282(17):13123-13132.
    [28]Maiuri M C, Criollo A, Tasdemir E, et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L)[J]. Autophagy, 2007, 3(4):374-376.
    [29]Ishii N. Role of oxidative stress from mitochondria on aging and cancer[J]. Cornea, 2007, 26(9 Suppl 1):S3-9.
    [30]Hippert M M, O'Toole P SThorburn A. Autophagy in cancer: good, bad, or both?[J]. Cancer Res, 2006, 66(19):9349-9351.
    [31]Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy[J]. Trends Cell Biol, 2007, 17(9):422-427.
    [32]Chen Y, Gibson S B. Is mitochondrial generation of reactive oxygen species a trigger for autophagy?[J]. Autophagy, 2008, 4(2):246-248.
    [33]Azad M B, Chen YGibson S B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment[J]. Antioxid Redox Signal, 2009, 11(4):777-790.
    [34]Kissova I, Deffieu M, Samokhvalov V, et al. Lipid oxidation and autophagy in yeast[J]. Free Radic Biol Med, 2006, 41(11):1655-1661.
    [35]Kirkland R A, Adibhatla R M, Hatcher J F, et al. Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy[J]. Neuroscience, 2002, 115(2):587-602.
    [36]Xu Y, Kim S O, Li Y, et al. Autophagy contributes to caspase-independent macrophage cell death[J]. J Biol Chem, 2006, 281(28):19179-19187.
    [37]Kim E H, Sohn S, Kwon H J, et al. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells[J]. Cancer Res, 2007, 67(13):6314-6324.
    [38]Yu L, Wan F, Dutta S, et al. Autophagic programmed cell death by selective catalase degradation[J]. Proc Natl Acad Sci U S A, 2006, 103(13):4952-4957.
    [39]Kiffin R, Bandyopadhyay UCuervo A M. Oxidative stress and autophagy[J]. AntioxidRedox Signal, 2006, 8(1-2):152-162.
    [40]Moore M N, Allen J ISomerfield P J. Autophagy: role in surviving environmental stress[J]. Mar Environ Res, 2006, 62 Suppl:S420-425.
    [41]Bergamini E, Cavallini G, Donati A, et al. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically[J]. Biomed Pharmacother, 2003, 57(5-6):203-208.
    [42]Kiffin R, Christian C, Knecht E, et al. Activation of chaperone-mediated autophagy during oxidative stress[J]. Mol Biol Cell, 2004, 15(11):4829-4840.
    [43]Fink A L. Protein aggregation: folding aggregates, inclusion bodies and amyloid[J]. Fold Des, 1998, 3(1):R9-23.
    [44]Wolozin B, Behl C. Mechanisms of neurodegenerative disorders: Part 1: protein aggregates[J]. Arch Neurol, 2000, 57(6):793-796.
    [45]Sanchez I, Xu C J, Juo P, et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats[J]. Neuron, 1999, 22(3):623-633.
    [46]Friguet B, Szweda L I. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein[J]. FEBS Lett, 1997, 405(1):21-25.
    [47]Sitte N, Huber M, Grune T, et al. Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts[J]. FASEB J, 2000, 14(11):1490-1498.
    [48]Kim I, Rodriguez-Enriquez SLemasters J J. Selective degradation of mitochondria by mitophagy[J]. Arch Biochem Biophys, 2007, 462(2):245-253.
    [49]Kondo Y, Kondo S. Autophagy and cancer therapy[J]. Autophagy, 2006, 2(2):85-90.
    [50]Agostinelli E, Seiler N. Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications[J]. Amino Acids, 2006, 31(3):341-355.
    [51]Lefranc F, Facchini VKiss R. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas[J]. Oncologist, 2007, 12(12):1395-1403.
    [52]Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis[J]. Cancer Cell, 2006, 10(1):51-64.
    [53]Abedin M J, Wang D, McDonnell M A, et al. Autophagy delays apoptotic death in breast cancer cells following DNA damage[J]. Cell Death Differ, 2007, 14(3):500-510.
    [54]Amaravadi R K, Yu D, Lum J J, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma[J]. J Clin Invest, 2007, 117(2):326-336.
    [55]Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice[J]. J Cell Biol, 2005, 169(3):425-434.
    [56]Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice[J]. Nature, 2006, 441(7095):880-884.
    [57]Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS Lett, 1993, 333(1-2):169-174.
    [58]Doelling J H, Walker J M, Friedman E M, et al. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana[J]. J Biol Chem, 2002, 277(36):33105-33114.
    [59]Boya P, Gonzalez-Polo R A, Casares N, et al. Inhibition of macroautophagy triggers apoptosis[J]. Mol Cell Biol, 2005, 25(3):1025-1040.
    [60]Lum J J, Bauer D E, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis[J]. Cell, 2005, 120(2):237-248.
    [61]Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period[J]. Nature, 2004, 432(7020):1032-1036.
    [62]Hamacher-Brady A, Brady N RGottlieb R A. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes[J]. J Biol Chem, 2006, 281(40):29776-29787.
    [63]Cui Q, Tashiro S, Onodera S, et al. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells[J]. Biol Pharm Bull, 2007, 30(5):859-864.
    [64]Gonzalez-Polo R A, Boya P, Pauleau A L, et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death[J]. J Cell Sci, 2005, 118(Pt 14):3091-3102.
    [65]Edinger A L, Thompson C B. Death by design: apoptosis, necrosis and autophagy[J]. Curr Opin Cell Biol, 2004, 16(6):663-669.
    [66]Kanzawa T, Zhang L, Xiao L, et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3[J]. Oncogene, 2005, 24(6):980-991.
    [67]Reef S, Zalckvar E, Shifman O, et al. A short mitochondrial form of p19ARF inducesautophagy and caspase-independent cell death[J]. Mol Cell, 2006, 22(4):463-475.
    [68]Azad M B, Chen Y, Henson E S, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3[J]. Autophagy, 2008, 4(2):195-204.
    [69]Chen Y, McMillan-Ward E, Kong J, et al. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells[J]. Cell Death Differ, 2008, 15(1):171-182.
    [70]Chen Y, McMillan-Ward E, Kong J, et al. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species[J]. J Cell Sci, 2007, 120(Pt 23):4155-4166.
    [71]Bras M, Queenan BSusin S A. Programmed cell death via mitochondria: different modes of dying[J]. Biochemistry (Mosc), 2005, 70(2):231-239.
    [72]Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy[J]. Cell, 2005, 122(6):927-939.
    [73]Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore[J]. Mol Cell Biol, 2000, 20(15):5454-5468.
    [74]Yang C, Kaushal V, Shah S V, et al. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells[J]. Am J Physiol Renal Physiol, 2008, 294(4):F777-787.
    [75]Sivaprasad U, Basu A. Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-alpha-induced cell death in MCF-7 cells[J]. J Cell Mol Med, 2008, 12(4):1265-1271.
    [76]Carew J S, Nawrocki S T, Kahue C N, et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance[J]. Blood, 2007, 110(1):313-322.
    [77]Kim K W, Mutter R W, Cao C, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling[J]. J Biol Chem, 2006, 281(48):36883-36890.
    [78]Demasters G, Di X, Newsham I, et al. Potentiation of radiation sensitivity in breasttumor cells by the vitamin D3 analogue, EB 1089, through promotion of autophagy and interference with proliferative recovery[J]. Mol Cancer Ther, 2006, 5(11):2786-2797.
    [79]Chau Y P, Lin S Y, Chen J H, et al. Endostatin induces autophagic cell death in EAhy926 human endothelial cells[J]. Histol Histopathol, 2003, 18(3):715-726.
    [80]Ertmer A, Huber V, Gilch S, et al. The anticancer drug imatinib induces cellular autophagy[J]. Leukemia, 2007, 21(5):936-942.
    [81]Xu C, Bailly-Maitre BReed J C. Endoplasmic reticulum stress: cell life and death decisions[J]. J Clin Invest, 2005, 115(10):2656-2664.
    [82]Verfaillie T, Salazar M, Velasco G, et al. Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy[J]. Int J Cell Biol, 2010:930509.
    [83]Gorlach A, Klappa PKietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control[J]. Antioxid Redox Signal, 2006, 8(9-10):1391-1418.
    [84]Berridge M J. The endoplasmic reticulum: a multifunctional signaling organelle[J]. Cell Calcium, 2002, 32(5-6):235-249.
    [85]Ding W X, Yin X M. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome[J]. Autophagy, 2008, 4(2):141-150.
    [86]Szegezdi E, Logue S E, Gorman A M, et al. Mediators of endoplasmic reticulum stress-induced apoptosis[J]. EMBO Rep, 2006, 7(9):880-885.
    [87]Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation[J]. Cell Death Differ, 2007, 14(2):230-239.
    [88]Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress[J]. Mol Cell Biol, 2006, 26(24):9220-9231.
    [89]Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182):1069-1075.
    [90]Levine B, Yuan J. Autophagy in cell death: an innocent convict?[J]. J Clin Invest, 2005, 115(10):2679-2688.
    [91]Moenner M, Pluquet O, Bouchecareilh M, et al. Integrated endoplasmic reticulum stress responses in cancer[J]. Cancer Res, 2007, 67(22):10631-10634.
    [92]Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer, 2005, 5(9):726-734.
    [93]Kang S W, Rane N S, Kim S J, et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway[J]. Cell, 2006, 127(5):999-1013.
    [94]Szegezdi E, Macdonald D C, Ni Chonghaile T, et al. Bcl-2 family on guard at the ER[J]. Am J Physiol Cell Physiol, 2009, 296(5):C941-953.
    [95]Youle R J, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death[J]. Nat Rev Mol Cell Biol, 2008, 9(1):47-59.
    [96]Chipuk J E, Green D R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?[J]. Trends Cell Biol, 2008, 18(4):157-164.
    [97]Kuwana T, Newmeyer D D. Bcl-2-family proteins and the role of mitochondria in apoptosis[J]. Curr Opin Cell Biol, 2003, 15(6):691-699.
    [98]Rong Y, Distelhorst C W. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis[J]. Annu Rev Physiol, 2008, 70:73-91.
    [99]Chami M, Prandini A, Campanella M, et al. Bcl-2 and Bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region[J]. J Biol Chem, 2004, 279(52):54581-54589.
    [100]Criollo A, Maiuri M C, Tasdemir E, et al. Regulation of autophagy by the inositol trisphosphate receptor[J]. Cell Death Differ, 2007, 14(5):1029-1039.
    [101]Maiuri M C, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes[J]. Cell Death Differ, 2009, 16(1):87-93.
    [102]Levine B, Abrams J. p53: The Janus of autophagy?[J]. Nat Cell Biol, 2008, 10(6):637-639.
    [103]Mathew R, Karantza-Wadsworth VWhite E. Role of autophagy in cancer[J]. Nat Rev Cancer, 2007, 7(12):961-967.
    [104]Ding W X, Ni H M, Gao W, et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability[J]. Am J Pathol, 2007, 171(2):513-524.
    [105]Marx J. Autophagy: is it cancer's friend or foe?[J]. Science, 2006,312(5777):1160-1161.
    [106]Schroder M, Kaufman R J. The mammalian unfolded protein response[J]. Annu Rev Biochem, 2005, 74:739-789.
    [107]Winslow A R, Rubinsztein D C. Autophagy in neurodegeneration and development[J]. Biochim Biophys Acta, 2008, 1782(12):723-729.
    [108]Matus S, Lisbona F, Torres M, et al. The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration[J]. Curr Mol Med, 2008, 8(3):157-172.
    [109]Ding W X, Ni H M, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival[J]. J Biol Chem, 2007, 282(7):4702-4710.
    [110]Pattingre S, Bauvy C, Carpentier S, et al. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy[J]. J Biol Chem, 2009, 284(5):2719-2728.
    [111]Wei Y, Sinha SLevine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation[J]. Autophagy, 2008, 4(7):949-951.
    [112]Wei Y, Pattingre S, Sinha S, et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy[J]. Mol Cell, 2008, 30(6):678-688.
    [113]Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402(6762):672-676.
    [114]Hoyer-Hansen M, Bastholm L, Szyniarowski P, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2[J]. Mol Cell, 2007, 25(2):193-205.
    [115]Salazar M, Carracedo A, Salanueva I J, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells[J]. J Clin Invest, 2009, 119(5):1359-1372.
    [116]Martin A P, Park M A, Mitchell C, et al. BCL-2 family inhibitors enhance histone deacetylase inhibitor and sorafenib lethality via autophagy and overcome blockade of the extrinsic pathway to facilitate killing[J]. Mol Pharmacol, 2009, 76(2):327-341.
    [117]Park M A, Zhang G, Norris J, et al. Regulation of autophagy by ceramide-CD95-PERK signaling[J]. Autophagy, 2008, 4(7):929-931.
    [118]Park M A, Yacoub A, Sarkar D, et al. PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells[J]. Autophagy, 2008, 4(4):513-515.
    [119]Bellodi C, Lidonnici M R, Hamilton A, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells[J]. J Clin Invest, 2009, 119(5):1109-1123.
    [120]Gills J J, Lopiccolo JDennis P A. Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths to autophagy[J]. Autophagy, 2008, 4(1):107-109.
    [121]Gills J J, Lopiccolo J, Tsurutani J, et al. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo[J]. Clin Cancer Res, 2007, 13(17):5183-5194.
    [122]Yacoub A, Park M A, Gupta P, et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells[J]. Mol Cancer Ther, 2008, 7(2):297-313.
    [123]Zismanov V, Lishner M, Tartakover-Matalon S, et al. Tetraspanin-induced death of myeloma cell lines is autophagic and involves increased UPR signalling[J]. Br J Cancer, 2009, 101(8):1402-1409.
    [124]Kruse K B, Dear A, Kaltenbrun E R, et al. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease[J]. Am J Pathol, 2006, 168(4):1299-1308; quiz 1404-1295.
    [125]Pandey U B, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS[J]. Nature, 2007, 447(7146):859-863.
    [126]Iwata A, Riley B E, Johnston J A, et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin[J]. J Biol Chem, 2005, 280(48):40282-40292.
    [127]Rideout H J, Lang-Rollin IStefanis L. Involvement of macroautophagy in the dissolution of neuronal inclusions[J]. Int J Biochem Cell Biol, 2004, 36(12):2551-2562.
    [128]Keller J N, Dimayuga E, Chen Q, et al. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain[J]. Int J Biochem Cell Biol, 2004, 36(12):2376-2391.
    [129]Garcia-Mata R, Gao Y SSztul E. Hassles with taking out the garbage: aggravatingaggresomes[J]. Traffic, 2002, 3(6):388-396.
    [130]Kopito R R. Aggresomes, inclusion bodies and protein aggregation[J]. Trends Cell Biol, 2000, 10(12):524-530.
    [131]Ravikumar B, Rubinsztein D C. Can autophagy protect against neurodegeneration caused by aggregate-prone proteins?[J]. Neuroreport, 2004, 15(16):2443-2445.
    [132]Teckman J H, Perlmutter D H. Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 279(5):G961-974.
    [133]Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
    [134]Szeto J, Kaniuk N A, Canadien V, et al. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy[J]. Autophagy, 2006, 2(3):189-199.
    [135]Lelouard H, Gatti E, Cappello F, et al. Transient aggregation of ubiquitinated proteins during dendritic cell maturation[J]. Nature, 2002, 417(6885):177-182.
    [136]Simms-Waldrip T, Rodriguez-Gonzalez A, Lin T, et al. The aggresome pathway as a target for therapy in hematologic malignancies[J]. Mol Genet Metab, 2008, 94(3):283-286.
    [137]Kirkin V, McEwan D G, Novak I, et al. A role for ubiquitin in selective autophagy[J]. Mol Cell, 2009, 34(3):259-269.
    [138]Nagaoka U, Kim K, Jana N R, et al. Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions[J]. J Neurochem, 2004, 91(1):57-68.
    [139]Zatloukal K, Stumptner C, Fuchsbichler A, et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases[J]. Am J Pathol, 2002, 160(1):255-263.
    [140]Yue Z. Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration[J]. Autophagy, 2007, 3(2):139-141.
    [141]Mizushima N, Hara T. Intracellular quality control by autophagy: how does autophagy prevent neurodegeneration?[J]. Autophagy, 2006, 2(4):302-304.
    [142]Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death[J]. J CellBiol, 2005, 171(4):603-614.
    [143]Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J]. Nature, 2006, 441(7095):885-889.
    [144]Meusser B, Hirsch C, Jarosch E, et al. ERAD: the long road to destruction[J]. Nat Cell Biol, 2005, 7(8):766-772.
    [145]Harding H P, Calfon M, Urano F, et al. Transcriptional and translational control in the Mammalian unfolded protein response[J]. Annu Rev Cell Dev Biol, 2002, 18:575-599.
    [146]Rao R V, Bredesen D E. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration[J]. Curr Opin Cell Biol, 2004, 16(6):653-662.
    [147]Yorimitsu T, Nair U, Yang Z, et al. Endoplasmic reticulum stress triggers autophagy[J]. J Biol Chem, 2006, 281(40):30299-30304.
    [148]Bernales S, McDonald K LWalter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response[J]. PLoS Biol, 2006, 4(12):e423.
    [149]Rao R V, Ellerby H MBredesen D E. Coupling endoplasmic reticulum stress to the cell death program[J]. Cell Death Differ, 2004, 11(4):372-380.
    [150]Breckenridge D G, Germain M, Mathai J P, et al. Regulation of apoptosis by endoplasmic reticulum pathways[J]. Oncogene, 2003, 22(53):8608-8618.
    [151]Nawrocki S T, Carew J S, Pino M S, et al. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells[J]. Cancer Res, 2006, 66(7):3773-3781.
    [152]Kawaguchi Y, Kovacs J J, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress[J]. Cell, 2003, 115(6):727-738.
    [153]Yoneda T, Urano FRon D. Transmission of proteotoxicity across cellular compartments[J]. Genes Dev, 2002, 16(11):1307-1313.
    [154]Zhang L, Yu J, Park B H, et al. Role of BAX in the apoptotic response to anticancer agents[J]. Science, 2000, 290(5493):989-992.
    [155]Nawrocki S T, Carew J S, Dunner K, Jr., et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells[J]. Cancer Res, 2005, 65(24):11510-11519.
    [156]Fribley A, Zeng QWang C Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells[J]. Mol Cell Biol, 2004, 24(22):9695-9704.
    [157]Wei M C, Zong W X, Cheng E H, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death[J]. Science, 2001, 292(5517):727-730.
    [158]Yu J, Tiwari S, Steiner P, et al. Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS-341] in Bax-deficient and p21-deficient colon cancer cells[J]. Cancer Biol Ther, 2003, 2(6):694-699.
    [159]Chandra D, Choy G, Daniel P T, et al. Bax-dependent regulation of Bak by voltage-dependent anion channel 2[J]. J Biol Chem, 2005, 280(19):19051-19061.
    [160]Levine B. Cell biology: autophagy and cancer[J]. Nature, 2007, 446(7137):745-747.
    [161]Huang J, Wu L, Tashiro S, et al. Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways[J]. J Pharmacol Sci, 2008, 107(4):370-379.
    [162]Gonzalez-Polo R A, Niso-Santano M, Ortiz-Ortiz M A, et al. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells[J]. Toxicol Sci, 2007, 97(2):448-458.
    [163]Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death[J]. Oncogene, 2008, 27(50):6434-6451.
    [164]Klionsky D J,Abeliovich H,Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes[J]. Autophagy, 2008, 4(2):151-175.
    [165]Thor H, Smith M T, Hartzell P, et al. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells[J]. J Biol Chem, 1982, 257(20):12419-12425.
    [166]刘玉和.氧化应激诱导宫颈癌细胞死亡过程中溶酶体—线粒体途径的作用机制[D].吉林大学, 2009.
    [167]Erdal H, Berndtsson M, Castro J, et al. Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis[J]. Proc Natl Acad Sci U S A, 2005, 102(1):192-197.
    [168]Fass E, Shvets E, Degani I, et al. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes[J]. J Biol Chem, 2006, 281(47):36303-36316.
    [169]Xie Z, Nair UKlionsky D J. Atg8 controls phagophore expansion during autophagosome formation[J]. Mol Biol Cell, 2008, 19(8):3290-3298.
    [170]Geng J, Klionsky D J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series[J]. EMBO Rep, 2008, 9(9):859-864.
    [171]Ichimura Y, Kumanomidou T, Sou Y S, et al. Structural basis for sorting mechanism of p62 in selective autophagy[J]. J Biol Chem, 2008, 283(33):22847-22857.
    [172]Liao W, Li X, Mancini M, et al. Proteasome inhibition induces differential heat shock protein response but not unfolded protein response in HepG2 cells[J]. J Cell Biochem, 2006, 99(4):1085-1095.
    [173]陈瑶,陈誉华.未折叠蛋白反应——从内质网到细胞核的细胞内信号传导[J].国外医学(分子生物学分册), 2002, (04):239-241.
    [174]Hoyer-Hansen M, Jaattela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium[J]. Cell Death Differ, 2007, 14(9):1576-1582.
    [175]Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting[J]. Autophagy, 2007, 3(6):542-545.
    [176]Dunn W A, Jr. Studies on the mechanisms of autophagy: formation of the autophagic vacuole[J]. J Cell Biol, 1990, 110(6):1923-1933.
    [177]Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1[J]. Science, 2000, 287(5453):664-666.
    [178]Aoki H, Takada Y, Kondo S, et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways[J]. Mol Pharmacol, 2007, 72(1):29-39.
    [179]Kawakami T, Inagi R, Takano H, et al. Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells[J]. Nephrol Dial Transplant, 2009, 24(9):2665-2672.
    [180]Cuervo A M. Autophagy: many paths to the same end[J]. Mol Cell Biochem, 2004,263(1-2):55-72.
    [181]Bursch W. The autophagosomal-lysosomal compartment in programmed cell death[J]. Cell Death Differ, 2001, 8(6):569-581.
    [182]Reinheckel T, Sitte N, Ullrich O, et al. Comparative resistance of the 20S and 26S proteasome to oxidative stress[J]. Biochem J, 1998, 335 ( Pt 3):637-642.
    [183]Nishizawa-Yokoi A, Tainaka H, Yoshida E, et al. The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress[J]. Plant Cell Physiol, 51(3):486-496.
    [184]Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell, 2007, 131(6):1149-1163.
    [185]Minet E, Arnould T, Michel G, et al. ERK activation upon hypoxia: involvement in HIF-1 activation[J]. FEBS Lett, 2000, 468(1):53-58.
    [186]Rodriguez A, Duran A, Selloum M, et al. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62[J]. Cell Metab, 2006, 3(3):211-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700