富钼酿酒酵母的单倍体和原生质体复合诱变选育及其生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钼(Molybdenum,Mo)是动物、微生物及人体所必需的微量营养元素之一,是固氮酶、硝酸还原酶、黄嘌呤氧化酶、醛氧化酶、亚硫酸氧化酶等多种酶的重要组成成分,参与并影响机体内的多种代谢过程,如参与细胞内电子转运、机体内铁从铁蛋白的释放及铁的运输、醛氧化等。钼与乳腺癌、食道癌、心脑血管疾病、肝脏疾病、克山病、龋齿、小细胞低色素性贫血症等病症密切相关。
     利用酵母富集转化钼具有结合率、利用率高和安全性好等特点,因此富钼酵母作为机体钼源的补充,尤其是作为预防和治疗癌症、心脑血管疾病和肝脏疾病药物的重要功效成分引起了人们的极大重视。本实验旨在通过诱变选育富钼能力强的菌株,分析其生物学功能和黄嘌呤氧化酶、硝酸还原酶等酶活性,为富钼酵母的生产应用奠定基础。
     对十株二倍体酵母菌株进行钼酸钠液体抗性检测后,筛选出一株钼抗性高的二倍体酿酒酵母菌株Y1,其Na2MoO4抗性水平为20 mmol/L。通过Y1单倍体分离,并进行液体抗性水平检测,获得高抗单倍体菌株,将其与单倍体菌株SY10、SY11、SY12和SY14进行不同终浓度的钼酸钠液体抗性水平检测,筛选得到高抗单倍体菌株SY10(Na2MoO4抗性70 mmol/L),将其作为出发菌株。
     以蜗牛酶酶解SY10制备原生质体,并对其原生质体和单倍体菌株进行紫外线诱变,最佳照射时间分别为4 min和3 min。通过抗性水平检测获得了2株诱变菌株SY10-186p和SY10-150s(Na2MoO4抗性分别为300 mmol/L和350 mmol/L),其拮抗Na2MoO4浓度分别为出发菌株的4.29倍和5.0倍。
     分别将SY10-186p的原生质体和SY10-150s的单倍体进行紫外线再次诱变,最佳照射时间分别为4 min和6 min。通过抗性水平检测获得了2株诱变菌株SY10-186p-216u和SY10-150s-208u(Na2MoO4抗性均为400 mmol/L),其拮抗Na2MoO4浓度均为出发菌株的5.71倍,生物量分别为4.575 g/L和1.610 g/L,是出发菌株的1.75倍和1.94倍。通过原子吸收光谱法测定其钼含量分别为38.52 mg/L和43.95 mg/L,为出发菌株的4.86倍和5.55倍。用电感耦合等离子体发射光谱法测定其有机钼元素含量分别为15.87 mg/L和14.20 mg/L,为出发菌株的31.74倍和28.40倍。
     分别将SY10-186p的原生质体和SY10-150s菌株的单倍体进行微波复合诱变,微波源为2450 MHz,功率为850 W,最佳照射时间均为5 s。通过抗性水平检测获得了2株复合诱变菌株SY10-186p-8m和SY10-150s-48m(Na2MoO4抗性均为400 mmol/L),其拮抗Na2MoO4浓度均为出发菌株的5.71倍,生物量为3.725 g/L和2.210 g/L,分别是出发菌株的1.42倍和2.66倍。通过原子吸收光谱法测定其总钼含量分别为39.13 mg/L和40.05 mg/L,为出发菌株的4.94倍和5.06倍。电感耦合等离子体发射光谱法测定其有机钼元素含量分别为15.08 mg/L和17.24 mg/L,为出发菌株的30.16倍和34.48倍。
     诱变菌株SY10-186p-216u、SY10-150s-208u、SY10-186p-8m和SY10-150s-48m的黄嘌呤氧化酶和硝酸还原酶的活性提高,分别为7.679 U/L、7.380 U/L、7.679 U/L、8.876 U/L和0.784 U/L、1.040 U/L、0.525 U/L、0.691U/L,是出发菌株的15.42倍、14.82倍、15.42倍、17.82倍和2.12倍、2.81倍、1.42倍、1.87倍。
     在非重金属选择压力下,50世代的遗传稳定性检测表明,4株诱变菌株SY10-186p-216u、SY10-150s-208u、SY10-186p-8m和SY10-150s-48m的遗传稳定性均保持在90 %以上。
     生物学功能检测结果表明,诱变菌株SY10-186p-216u、SY10-150s-208u、SY10-186p-8m和SY10-150s-48m拮抗紫外线(UV)能力均明显高于出发菌株SY10。它们清除羟基自由基以及超氧阴离子自由基的能力也明显提高,分别达到67.26 %、73.08 %、76.55 %、62.66 %和39.8 %、41.1 %、40.5 %、43.9 %,是出发菌株的6.34倍、6.89倍、7.22倍、5.91倍和3.09倍、3.26倍、3.21倍、3.48倍。
Molybdenum is one of essential trace element of animals and human beings. It is the most important part of enzymes, such as nitrogenase, nitrate reductase, xanthine oxidase and sulfite oxidase. It influences and participates in many metabolisms of body, such as electron transfer of cell, iron metabolism and oxidation of aldehyde, etc. Molybdenum plays a good role in preventing and treating cancer, liver diseases, cardio-/cerebrovascular disease, Keshan disease, decayed tooth, hypochromic microcytic anemia and regional alopecia, etc.
     Molybdenum-enriched yeast is non-toxic and has high combinability and absorptivity. So, as a complementarity of organic-molybdenum and an important component of the medicament to prevent and treat the diseases as above, molybdenum-rich yeast has attracted huge attentions. Our purpose of this research was to breed new strains of Saccharomyces cerevisiae having higher molybdenum enrichment abilities by multi-mutagenesis breeding with ultraviolet and microwave, assaying their biological functions and the activities of nitrate reductase and xanthine oxidase and applying them to production.
     After the original strain Saccharomyces cerevisiae Y1 whose resistance level to Na2MoO4 was 20mmol/L was selected from 10 strains (Y1, Y19, Y21, Y22, Y23, Y24, Y26, Y27, Y30 and Y31) , Y1 was haploided. The resistance levels of its haploids as well as SY10, SY11, SY12 and SY14 were determined to select the higher resistant strain. A strain named SY10 whose resistant level is the highest, reached to 70mmol/L.
     Then SY10 was lysised to get rid of cell wall by snailase. SY10 and the protoplasts obtained were mutated with ultraviolet ray. When the irradiation times were 3 min and 4 min, respectively, the highest positive mutate ratios were obtained. After tolerance assay to Na2MoO4 in liquid, mutant strains named SY10-186p and SY10-150s whose Mo6+ resistant level were 300 mmol/L and 350 mmol/L were selected, respectively. The Mo6+ resistant level of them were 4.29 and 5.0 folds higher than thatn of the original strain SY10.
     Then the protoplasts of mutated strain SY10-186p and the haploid of mutated strain SY10-150s were mutated with ultraviolet ray again by the same method above. When the irradiation times were 4min and 6 min, respectively, the highest positive mutate ratios were obtained. After tolerance assay to Na2MoO4 in liquid, mutant strains named SY10-186p-216u and SY10-150s-208u whose Mo6+ resistance level were both 400 mmol/L (5.71 folds higher than the original strain) were selected, respectively, and their biomasses reached to 4.575 g/L and1.610 g/L,which were 1.75 and 1.94 folds higher than that of the original strain, respectively. Total molybdenum ions accumulated in the cells were estimated by atomic absorption spectrophotometer, which were 38.52mg/L and 43.95 mg/L, were 4.86 and 5.55 folds higher than the original strain, respectively. Organic-molybdenum accumulated in the cells were estimated by ICP-AES, which were 15.87 mg/L and 14.20 mg/L, were 31.74 and 28.40 folds higher than the original strain, respectively.
     Then the protoplasts of mutated strain SY10-186p and the haploid of mutated strain SY10-150s were mutated with microwave in a microwave oven (2450 MHz, 850 W), and the optimum irradiation times were both 5 s. After tolerance assay to Na2MoO4 in liquid, mutant strains named SY10-186p-8m and SY10-150s-48m whose Mo6+ resistant level were both 400 mmol/L (5.71 folds higher than the original strain) were selected, and their biomasses reached to 3.725 g/L and 2.210 g/L,which were 1.42 and 2.26 folds higher than the original strain, respectively. Total copper ions accumulated in the cells were estimated by atomic absorption spectrophotometer, which were 39.13 mg/L and 40.05 mg/L, were 4.94 and 5.06 folds higher than the original strain, respectively. Organic-molybdenum accumulated in the cells were estimated by ICP-AES, which were 15.08 mg/L and 17.24 mg/L, were 30.16 and 34.48 folds higher than that of the original strain, respectively.
     We also assayed the activities of xanthine oxidase and nitrate reductase of the four mutant strains, and the activities of them were higher in comparison with those of initial strain which were 7.679 U/L, 7.380 U/L, 7.679 U/L, 8.876 U/L and 0.784 U/L, 1.040 U/L, 0.525 U/L, 0.691U/L, about 15.42, 14.82, 15.42, 17.82-fold and 2.12, 2.81, 1.42, 1.87-fold higher than that of the original strain, respectively.
     For all the measured generations, genetic stability of SY10-186p-216u, SY10-150s-208u, SY10-186p-8m and SY10-150s-48m all maintained above 90%, suggesting that the mutant strains were genetically stable after 50 generations.
     The capacities of resisting UV, clearing ?OH and O2-? free radical were also compared to that of the original strain. The results showed that lethality of the mutants to UV reduced obviously and the capacities of SY10-186p-216u、SY10-150s-208u、SY10-186p-8m and SY10-150s-48m in clearing ?OH and O2-? free radical which were 67.26 %, 73.08 %, 76.55 %, 62.66 % and 39.8 %, 41.1 %, 40.5 %, 43.9 %, were 7.22, 5.91, 6.34, 6.89-fold and 3.09, 3.26, 3.21, 3.48-fold higher than the original strain, respectively.
引文
[1]鲍所言,李书存,王桂花,等.催化荧光法测定痕量钼[J].河北大学学报(自然科学版) 2001,21(1):61-64.
    [2]陈新民.火焰原子吸收法测定钼[J].中国钼业,2006,30(1):29-30.
    [3]陈劲春,尉渤,周代福.原生质体技术在工业微生物育种中的应用[J].工业微生物,1997,27(4):34-36.
    [4]陈明,赵永红.微生物吸附重金属的试验研究[J].南方冶金学院学报,2001,22(3):168-174.
    [5]陈平,樊瑞胜,聂芊,等.橙皮苷磺酸钠对自由基清除能力的研究[J].食品工业科技,2007,28(9):64-69.
    [6]陈建伟,阳琳,吴丽娜,等.锌钼对氟中毒大鼠脂质过氧化作用的影响[J].医学动物防治,1999,15(9):459-460.
    [7]程鲁榕,邓秀珍.紫外线诱变原生质体选育核黄素高产菌株[J].微生物学通报,1993,20(1):19-21.
    [8]杜珠还,张泉渡.紫外线和氯化锂对棒状杆菌原生质体的诱变作用[J].生物工程学报,1985,1(4):59-62.
    [9]冯江,冯宇川,周彤,等.石墨炉原子吸收法测定中药材中的硒和钼量[J].元素与健康研究,2002,19(4):47-49.
    [10]高润平,井令,张学忠.钼对家兔亚硝酸钠中毒红细胞高铁血红蛋白还原的影响[J].中国地方病学杂志,1998,17(3):147-149.
    [11]诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994:335-338.
    [12]苟兴华.利用紫外线诱变原生质体选育糖化酶高产菌株的研究[J].四川大学学报(自然科学版),1994,3(1):31-33.
    [13]郭云霞,黄仁录.微量元素钼在畜禽生产中的应用[J].中国饲料,2005(8):32-34.
    [14]郭小泉,胡国梁,刘姝.动物必需的微量元素—钼[J].郑州牧业工程高等专科学校学报,2001,21(1):26-28.
    [15]侯明,王小丽.磺基水杨酸—溴邻苯三酚红—溴化十六烷基吡啶分光光度法测定食品中钼的研究[J].分析试验室,2004,23(3):62-64.
    [16]胡相红.微量元素钼与人类健康[J].现代预防医学,2001,28(3):353-355.
    [17]贾乐,王龙,林稚兰.酵母金属硫蛋白对酵母和小鼠抗γ射线损伤的作用[J].微生物学通报,1999, 26(2):102-106.
    [18]贾如宝.钼在医药保健方面的研究进展与展望[J].中国钼业,1994,18(6):51-54.
    [19]贾如宝.钼元素与胃癌研究新进展[J].中国钼业,2000,24(1):46-49.
    [20]康新平,潘教麦.二甲氧基羟基苯基荧光酮光度法测药物中的钼[J].化学研究与应用,2004,16(1):95-96.
    [21]李惠萍.钼—生物体必需的微量元素[J].中国钼业,2001,25(2):41.
    [22]李瑞莲.液体肥料中钼的测定[J].福建化工,1998,(1):22-24.
    [23]李信民,李广元.钼对缺硒大鼠心肌线粒体功能的影响[J].地方病通报,1996,11(2):13-14.
    [24]李淑敏.酵母作为微量元素载体的研究及应用前景[J].微生物学通报,1999, 26(3):220-222.
    [25]李淑敏,史秀云.微生物富集微量元素作为动物营养添加剂的研究及展望[J].饲料业,1998,19(2):29-31.
    [26]李用芳,李学梅,杨清香,等.面包酵母原生质体的制备、再生及紫外线诱变的初步研究[J].生物技术,2000,10(2):23-26.
    [27]李忠琴,许小平,王武.反相高效液相色谱法测定Arthrobacter sp.黄嘌呤氧化酶活性[J].分析试验室,2007,26(8):41-44.
    [28]李忠琴,许小平,杨海麟,等.辣根过氧化物酶分光光度法测定黄嘌呤氧化酶的活性[J].分析化学,2006,34(6):821-824.
    [29]连祥霖,连微峰,黄端.钼对亚急性镉中毒大鼠肾损伤的影响[J].工业卫生与职业病,2000,26(3):177-178.
    [30]刘牧.钼对人体健康的影响[J].中国钼业,2001,25(5):43-45.
    [31]刘松岩,王凡,李才,王丽娟,等.硒和钼对缺氧性心肌损伤保护作用的研究[J].中国地方病防治杂志,1993,4(4):196-199
    [32]林德球.酿酒酵母原生质体融合的研究[J].微生物学杂志,1990,10(2):10-13.
    [33]林稚兰,田哲贤.微生物对重金属的抗性及解毒机理[J].微生物学通报,1998,25(1):36-39.
    [34]马红燕,王云. 5—溴水杨基荧光酮-溴化十六烷基三甲铵荧光熄灭法测定微量钼的研究[J].光谱实验室,2000,17(1):100-103.
    [35]樊游.李在均.微生物细胞质中钼的光度法研究[J].理化检验—化学分册,2004,40(3):129-131.
    [36]裴学文.微量元素与冠心病关系初探[J].中国公共卫生,2001,17(4):302-304.
    [37]彭珊珊,张霖霖,黄婷,等.豆制品中钼的分析研究[J].食品科学,2002,23,(8):210-211.
    [38]秦俊法.微量元素与脑功能[M].北京:原子能出版社,1993,77.
    [39]屈健.动物营养中必需微量元素—钼[J].饲料研究,2000,(6):16-18.
    [40]童群义,陈坚,李华钟.高产谷胱甘肽的酵母菌选育及其培养条件研究[J].工业微生物,2002,32(2):13-17.
    [41]王崔平.荧光法测定羟基自由基及中草药抗氧化性[J].德州学院学报,2007,23(4):40-42.
    [42]王凡,李广生,安汝国.关于钼缺乏和克山病病因关系的研究[J].营养学报,1982,4(3):271-276.
    [43]王俊东,董希德.畜禽营养代谢与中毒病[M].北京:中国林业出版社,2001,235-239.
    [44]王海宽,赵新淮,姜岩.甘草有效成分分离及其对自由基的清除能力[J].食品与机械,2000(4):23-24.
    [45]王夔.生命科学中的微量元素(第二版)[M].北京:中国计量出版社,1996,7:281-286.
    [46]王弘,齐秀兰.紫外线诱发原生质体选育赖氨酸高产菌株[J].生物工程学报,1990,6(1):32-38.
    [47]王秋霞.微量元素钼与人体健康[J].微量元素与健康研究,2003,20(4):58-59.
    [48]王婷,龙塔,杨自军.钼对小鼠免疫功能的影响[J].中国兽医杂志,2006,42(2):21-22.
    [49]王自良.微量元素钼在养鸡生产中的应用[J].中国家禽,1999,21 (9):37-40.
    [50]闻平. MTS/PMS比色法测定血清黄嘌呤氧化酶[J].陕西医学检验,2000,15(1):10-11.
    [51]吴建之.电感耦合等离子体光谱法测定豆科作物中钼含量[J] .浙江大学学报(农业与生命科学版),2000,26(3):313-316.
    [52]吴扬,丁雷,沈亚如,等.催化极谱法测定生物样品中痕量钼[J].分析化学, 1995,23(10):1233.
    [53]肖熙佩,刘中山,曲立民.酵母原生质体的制备[J].辽宁食品与发酵,1984,2:3-7.
    [54]严永华,杜娟,吴晓琴.钼与健康[J].职业卫生与病伤,2002,17(2):136-137.
    [55]杨青.中国营养学会第二届微量元素专题讨论会论文摘要汇编.中国营养学会,1988,8.
    [56]杨原,王凡,李广生.钼和高铁血红蛋白还原酶的关系[J].营养学报,1994,16(1):39.
    [57]杨自军,龙塔,冉林武.钼的生物学功能及其在动物生产中的作用[J].河南科技大学学报(农学版),2004,24(2):40-43.
    [58]易超,赵信义.钼在生物体中的代谢[J].国外医学医学地理分册,2000,21(4):166-167.
    [59]于海彬,蔡葆,孙国琴,等.甜菜硝酸还原酶活性测定[J].中国甜菜,1993(3):18-23.
    [60]俞伟辉,毛燕杰,郭荣富.微量元素钼与动物营养的研究进展[J].兽药与饲料添加剂,2007,12(2):20-22.
    [61]张国政,杨志岩,路福平,等.紫外线诱变原生质体己酸高产菌株的选育(II)―原生质体的制备、诱变及选育己酸高产菌株[J].天津轻工业学院学报,1999,3:16-19.
    [62]张录强.钼(Mo)的生理及其生物学效应[J].生物学通报,1999 ,34(11):24-25.
    [63]赵福弟,陈瑞军,杨润玲,等.钼、锌对克山病心肌坏死的保护作用—钼、锌对缺氧性心肌损伤血浆CGMP血清Mg2+、Ca2+含量变化的实验研究[J].中国地方病防治杂志,1997,12(6):332-333.
    [64]赵华成,孙建义,许梓荣.微量元素钼的营养研究进展[J].中国饲料,2002(23):11-13.
    [65]郑艺梅,胡承孝.食物中的钼与人体健康[J].广东微量元素科学,2005,12(8):1-4.
    [66]周国庆,程先忠,张开诚.微波消解—催化极谱法对酵母中微量钼的测定[J].湖北农业科学,2006,45(5):666-667.
    [67]周德庆.微生物实验手册[M].上海:上海科技出版社,1983,200~231.
    [68]朱青青.火焰原子吸收光谱法测定土壤中钼[J] .理化检验—化学分册,2005,41(5):351-352.
    [69]诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994:335-338.
    [70] A. H. Gennip, N. G. G. M. Abeling, A. E. M. Stroomer, et al. The detection of molybdenum cofactor deficiency: Clinical symptomatology and urinary metabolite profile[J]. Journal of Inherited Metabolic Disease, 1994, 17(1):142-145.
    [71] A.-K. Duhme, W. Meyer-Klaucke, D. J. White, et al. Extended X-ray absorption fine structure studies on periplasmic and intracellular molybdenum-binding proteins[J]. Journal of Biological Inorganic Chemistry,1999, 4(5):588-592.
    [72] A. Munnich, J. M. Saudubray, C. Charpentier, et al. Multiple molybdoenzyme deficiencies due to an inborn error of molybdenum cofactor metabolism: Two additional cases in a new family[J]. Journal of Inherited Metabolic Disease, 1983, 6(2,Supplement):95-96.
    [73] A. N. Antipov, E. V. Morozkina, D. Yu. Sorokin, et al. Characterization of Molybdenum-Free Nitrate Reductase from Haloalkalophilic Bacterium Halomonas sp. Strain AGJ 1-3[J]. Biochemistry (Moscow), 2005, 70(7):799-803.
    [74] Anders Thapper, D. R. Boer, Carlos D. Brondino, et al. Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase[J]. Journal of Biological Inorganic Chemistry, 2007, 12(3):353-366.
    [75] Antonius M. Bogaart, Luigi F. Bernini. The molybdoenzyme system of Drosophila melanogaster. I. Sulfite oxidase: Identification and properties. Expression of the enzyme in maroon-like (mal), low-xanthine dehydrogenase (lxd), and cinnamon (cin) flies[J]. Biochemical Genetics, 1981, 19(9-10):929-946.
    [76] Armin Quentmeier, Regine Kraft, Susanne Kostka, et al. Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17[J]. Archives of Microbiology, 2000, 17392):117-125.
    [77] Audrey C. Braaten, Michael M. Bentley. Sulfite Sensitivity and Sulfite Oxidase Activity in Drosophila melanogaster[J]. Biochemical Genetics, 1993, 31(9-10):375-391.
    [78] B. Danko, R. Dybczyński. Determination of molybdenum and uranium in biological materials by radiochemical neutron activation analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 1997, 216(1):51-57.
    [79] B. Danko, R. Dybczyński. Radiochemical scheme for the determination of molybdenum and uranium in biological materials by NAA[J]. Journal of Radioanalytical and Nuclear Chemistry, 1995, 192(1):117-129.
    [80] Bedell G W. Biosorption of Heavy Metals[J]. CRC Press, 1990, 313-326.
    [81] Brierley J A. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries[J]. Geomlcrobial, J.1990, 8:201-223.
    [82] Burkin,I.A. The Physiological role and the agricultural significance of molybdenum[J]. Nauka Moscow,1968, 294.
    [83] Butt, T. R., E Sternberg, J Herd et al. Cloning and expressing of a yeast copper metllothionein gene[J]. Gene, 1984, 27:23-33.
    [84] Caixin Su, Wei Zhou, Yonghong Fan, et al. Mutation breeding of chitosanase-producing strain Bacillus sp. S65 by low-energy ion implantation[J]. J Ind Microbiol Biotechnol, 2006, 33:1037-1042.
    [85] Changyong Sun, Songdong Yao, Wenjie Shen et al. Highly Dispersed Molybdenum Oxide Supported on HZSM-5 for Methane Dehydroaromatization[J]. Catalysis Letters, 2008, 122(1-2):84-90.
    [86] C. M. Johnson, G. A. Pearson, P. R. Stout, et al. Molybdenum nutrition of crop plants[J]. Plant and Soil, 1952, 4(2):178-196.
    [87] Cynthia K. Warner, Victoria Finnerty. Molybdenum hydroxylases in Drosophila[J]. Molecular and General Genetics MGG, 1981, 184(1):92-96.
    [88] David R. Schott, Madeline C. Baldwin, Victoria Finnerty. Molybdenum Hydroxylases in Drosophila. III. Further Characterization of the low xanthine dehydrogenase Gene[J]. Biochemical Genetics, 1986, 24(7-8):509-527.
    [89] Edward I. Stiefel. Molybdenum enzymes: integration of X-ray crystallographic, EXAFS, spectroscopic, mechanistic, and model system studies [J]. Journal of Biological Inorganic Chemistry, 1997, 2(6):772.
    [90] Erika Sievers, Urte Schleyerbach, Thomas Arpe, et al. Molybdenum supply of very low-birth-weight premature infants during the first months of life[J]. Biological Trace Element Research, 2001, 80(2):900-901.
    [91] E. V. Morozkina, A. N. Nosikov, R. A. Zvyagilskaya, et al. Isolation, Purification, and Characterization of Nitrate Reductase from a Salt-Tolerant Rhodotorula glutinis Yeast Strain Grown in the Presence of Tungsten[J]. Biochemistry (Moscow), 2005, 70(7):809-814.
    [92] E. V. Morozkina, R. A. Zvyagilskaya. Nitrate reductases: Structure,functions, and effect of stress factors[J]. Biochemistry (Moscow), 2007, 72(10):1151-1160.
    [93] Fellous A, Lennon,A M, Franconl. Thyroid Hormones and Neurotubule Assembly in Vitro during Brain Development[J]. Eur.J Biochem, 1979, 101:365-375.
    [94] Fogel, S., J.W.Welch., Tandem gene amplification mediates copper resistance in yeast[J]. Proc Natl Acad Sci USA, 1982, 79:5342-5346.
    [95] Food & Nutrition Board. Recommended Dietary Allowances.9th rev. ed, National Academy of Sci,1980:1.
    [96] Francisco M. Gírio, J. Carlos Roseiro, A. Isabel Silva. The Effect of the Simultaneous Addition of Molybdenum and Tungsten to the Culture Medium on the Formate Dehydrogenase Activity from Methylobacterium sp. RXM[J]. Current Microbiology, 1998, 36(16):337-340.
    [97] Gerd Folkers, Michael Krug, Susanne Trumpp. Computer graphic study on models of the molybdenum cofactor of xanthine oxidase[J]. Journal of Computer-Aided Molecular Design, 1987, 1(1):87-94.
    [98] G. Pintos-Morell, M. A. Naranjo, M. Artigas, et al. Molybdenum cofactor deficiency associated with Dandy-Walker malformation[J]. Journal of Inherited Metabolic Disease, 1995, 18(1):86-87.
    [99] Grady.D.L., P.K.Moyzis. Molecular and cellular mechanisms of cadmium resistance in cultured cells[J]. C.E.Hildebrand.Experientia(Basel), 1987, 52(supple): 447-456.
    [100] Graham N. George. X-ray absorption spectroscopy of molybdenum enzymes[J]. Journal of Biological Inorganic Chemistry, 1997, 2(6):790-796.
    [101] G. Schwarz. Molybdenum cofactor biosynthesis and deficiency[J]. Cellular and Molecular Life Sciences (CMLS), 2005, 62(23):2792-2810.
    [102] H. D. Bakker, N. G. G. M. Abeling, R. Houten, et al. Molybdenum cofactor deficiency can mimic postanoxic encephalopathy[J]. Journal ofInherited Metabolic Disease, 1993, 16(5):900-901.
    [103] Hemlata Tamta, Sukirti Kalra, Anup K. Mukhopadhyay. Biochemical characterization of some pyrazolopyrimidine-based inhibitors of xanthine oxidase[J]. Biochemistry (Moscow), 2006, 71(1, Supplement):s49-s54.
    [104] H. Paschinger. A changed nitrogenase activity in Rhodospirillum rubrum after substitution of tungsten for molybdenum[J]. Archives of Microbiology, 1974, 101(1):379-389.
    [105] H. Uchida, T. Fukuda, Y. Satoh et al. Characterization and potential application of purified aldehyde oxidase from Pseudomonas stutzeri IFO12695[J]. Applied Microbiology and Biotechnology, 2005, 68(1):53-56.
    [106] Ikeda H, Inoue M, Omura S. Improvement of macrobide antibiotic-producing streptomycetes strains by the regeneration of protoplast[J]. Antibiot, 1983, 36:283.
    [107] Inouhe.M., M Hiyama., H Tohoyama, et al. Cadmium-binding protein in a cadmium-resistant strain of Saccharomyces cerevisiae[J]. Bichem Biophy Acta, 1989, 993:51-55.
    [108] I. P. Lichino, M. I. Gomanova, L. I. Milenysheva, et al. Influence of molybdenum on the accumulation and composition of the water-soluble polysaccharides of Plantago psyllium[J]. Chemistry of Natural Compounds, 1986, 22(1):100.
    [109] Iva Snyrychova, Pavel Posp?sil, Jan Naus. The effect of metal chelators on the production of hydroxyl radicals in thylakoids[J]. Photosynth Res, 2006, 88:323-329.
    [110] J E Burgess, J Quarmby, T Stephenson. Vitamin addition: an option for sustainable activated sludge process effluent quality[J]. Journal of Industrial Microbiology and Biotechnology, 2000, 24(4):267-274.
    [111] Jér?me Gabard, Frédérique Pelsy, Annie Marion-Poll, et al. Genetic analysis of nitrate reductase deficient mutants of Nicotiana plumbaginifolia: Evidence for six complementation groups among 70classified molybdenum cofactor deficient mutants[J]. Molecular and General Genetics MGG, 1988, 213(2-3):206-213.
    [112] Ji G, Silver S. Bacterial resistance mechanisms for heavy metals of environment mental concern [J]. Ind Microbiol, 1995, 14:61-75.
    [128] Jiyan Shi, Bei Wu, Xiaofeng Yuan, et al. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens[J]. Plant Soil, 2008, 302:163-174.
    [113] J. L. Johnson, K. V. Rajagopalan, J. T. Lanman, et al. Prenatal diagnosis of molybdenum cofactor deficiency by assay of sulphite oxidase activity in chorionic villus samples[J]. Journal of Inherited Metabolic Disease, 1991, 14(6):932-937.
    [114] John D. Morgan, David G. Mitchell, Peter M. Chapman. Individual and combined toxicity of manganese and molybdenum to mussel[J]. Mytilus edulis, larvaeBulletin of Environmental Contamination and Toxicology, 1986, 37(1):303-307.
    [115] J. Pelzer, F. Scholz, G. Henrion, P. Heininger. A reliable and ultrasensitive voltammetric method for the determination of molybdenum[J]. Fresenius' Journal of Analytical Chemistry, 1989, 334(4):331-334.
    [116] J. Reiss. Genetics of molybdenum cofactor deficiency[J]. Human Genetics, 2000, 106(2):157-163.
    [117] Katarzyna Serdiuk, Roman Gancarz, Maria Cie?lak-Golonka. Synthesis and spectroscopic properties of novel polynuclear molybdenum(VI) peroxo complexes containing amino acids[J]. Transition Metal Chemistry, 2001, 26(4-5):538-543.
    [118] Kneer.R., Kutchan.T.M. Saccharomuces cerevisiae and Neurospora crasaa contain heavy metal sequesting phytochelatin[J]. Arch. Microbiol., 1992, 157(4):305-310.
    [119] K.V.Rajagopalan. Biochemistry of the Essential Elements[J]. E.Frienden,ed. Plenum Press, 1984, 149.
    [120] K .V. Ra jagopalan. Enzymatic Basis for Detoxifation,W.B.Jacobyed., Academic Press, 1980, 295.
    [121] Liu Zongping. Studies on the Haematology and Trace Element Status of Adult Bactrian Camels (Camelus bactrianus) in China[J]. Veterinary Research Communications, 2003, 27(5):397-415.
    [122] Li Zaijun, Pan Jiaomai,Tang Jian. Determination of trace molybdenum in vegetable and food samples by spectrophotometry with p-carboxyphenylfluorone[J]. Analytical and Bioanalytical Chemistry, 2002, 374(6):1125-1131.
    [123] L. K. Hansen, K. Wulff, C. Dorche, et al. Molybdenum cofactor deficiency in two siblings: Diagnostic difficulties[J]. European Journal of Pediatrics, 1993,152(8):662-664.
    [124] L. Stivaletta, C. K. Warner, S. Langley, et al. Molybdoenzymes in Drosophila.ⅲFurther characterization of the cinnamon phenotype[J]. Molecular and General Genetics MGG, 1988, 213(2-3):505-512.
    [125] M. A. Bazhenova, T. A. Bazhenova, G. N. Petrova, et al. Mutual Effects of Substrates and Inhibitors in Reactions Catalyzed by the Nitrogenase Iron–Molybdenum Cofactor outside the Enzyme[J]. Kinetics and Catalysis, 2002, 43(2):199-209.
    [126] Macaskie L E, Alan R Liss. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows[J]. Bioligical Waste Treatment, 1990, 159-201.
    [127] Macreadie, I.G.. Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake[J]. Teast , 1991, 7(2):127-135.
    [128] Marie Kselíková, Tomá? Ma?ík, Bed?ich Bíbr, et al. Interaction of molybdenum with human erythrocyte membrane proteins[J]. Biological Trace Element Research, 1980, 2(1): 57-64.
    [129] Matthias Hofmann. Density functional theory studies of model complexes for molybdenum-dependent nitrate reductase active sites[J].Journal of Biological Inorganic Chemistry, 2007, 12(7):989-1001.
    [130] M.E. Lucca, M.A. Loray, L.I.C. de Figueroa, et al. Characterisation of osmotolerant hybrids obtained by fusion between protoplasts of Saccharomyces cerevisiae and heat treated protoplasts of Torulaspora delbrueckii[J]. Biotechnology Letters, 1999, 21(4): 343-348
    [131] Michael Krachler, Wolfgang Domej. Clinical laboratory parameters in osteoarthritic knee-joint effusions correlated to trace element concentrations[J]. Biological Trace Element Research, 2001, 79(2):139-148.
    [132] Michael M. Bentley, Roy G. Meidinger, Audrey C. Braaten. Thealdox-2 locus ofDrosophila melanogaster also affects sulfite oxidase and molybdenum metabolism[J]. Biochemical Genetics, 1989, 27(1-2):99-118.
    [133] M. I. Farberov, G. A. Stozhkova, A. V. Bondarenko,et al. Homogeneous catalytic epoxidation of olefins with organic hydroperoxides in the presence of molybdenum catalysts I. Epoxidation of propylene[J]. International Applied Mechanics, 1969, 5(10):263-268.
    [134] M. Isiloglu, M. Merdivan, F. Yilmaz. Heavy Metal Contents in Some Macrofungi Collected in the Northwestern Part of Turkey[J]. Arch. Environ. Contam. Toxicol, 2001, 41:1-7.
    [135] M. G. Guerrero, J. M. Vega. Molybdenum and iron as functional constituents of the enzymes of the nitrate-reducing system of Azotobacter chroococcum[J]. Archives of Microbiology, 1975, 102(1):91-94.
    [136] M. P. Coughlan. The role of molybdenum in human biology[J]. Journal of Inherited Metabolic Disease, 1989, 6(1, Supplement):70-77.
    [137] Nigel Stuart Dunn-Coleman. Biochemical characterization of the molybdenum cofactor mutants of Neurospora crassa: in vivo and in vitro reconstitution of NADPH-nitrate reductase activity[J]. Current Genetics, 1984, 8(8):581-588.
    [138] Oktay Hasan ?ztürk, Vural Kü?ükatay, Zafer Y?nden, et al. Expressionsof N-methyl-D -aspartate receptors NR2A and NR2B subunit proteins in normal and sulfite-oxidase deficient rat’s hippocampus: effect of exogenous sulfite ingestion[J]. Archives of Toxicology, 2006, 80(10):671-679.
    [139] Pazirandeh M, Wells B M, Rgan R L. Development of bacterium-based heavy mental biosorbent: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif [J]. Microbiol, 1998, 64: 4068-4072.
    [140] P. Bermejo-Barrera, C. Pita-Calvo, A. Bermejo-Barrera, et al. Chemical modifiers in the determination of molybdenum in human serum by electrothermal atomic absorption spectrometry[J]. Fresenius' Journal of Analytical Chemistry, 1991, 340(4):265-268 .
    [141] P. Burba, P. G. Willmer. Trace determination of molybdenum and vanadium in natural waters by means of atomic spectroscopy (AAS, ICP-OES) after preconcentration[J]. Fresenius' Journal of Analytical Chemistry, 1986, 324(3-4):298-299.
    [142] Polski EW. Role of molybdenum in metabolism of animals [J]. Nutr Abstr Rev Seris,1977, A7:154
    [143] Prasun Ray, Richa Tiwari, U. Gangi Reddy and Alok Adholeya, Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro[J]. World Journal of Microbiology & Biotechnology, 2005, 21: 309-315.
    [144] Ralf R. Mendel. Molybdenum cofactor of higher plants: biosynthesis and molecular biology[J]. Planta, 1997, 203(4):399-405.
    [145] Ralf R. Mendel, Andreas J. Müller. Repair in vitro of nitrate reductase-deficient tobacco mutants (cnxA) by molybdate and by molybdenum cofactor[J]. Planta, 1985, 163(3):370-375.
    [146] R. A. Roesel, F. Bowyer, P. R. Blankenship, et al. Combined xanthine and sulphite oxidase defect due to a deficiency of molybdenum cofactor[J]. Journal of Inherited Metabolic Disease, 1986, 9(4):34-347.
    [147] Richard JM, Swisloki NI. Activation of adenylate cyclase by molybdate[J]. J Biol Chem, 1979, 254(15):6857.
    [148] Robert H?nsch, Ralf R. Mendel. Sulfite oxidation in plant peroxisomes[J]. Photosynthesis Research, 2005, 86(3):337-343.
    [149] Robinson J B., Tuovinen O. Mechanisms of microbial resistance and organomerary compounds physiological, biochemical and genetic analyses [J]. Microbiogical Reviews, 1984, 48(2):95-124.
    [150] Roger Thorneley. Nitrogen fixation– what is biomi metic and theoretical chemistry telling us about substrate binding and activation at the iron-molybdenum cofactor of nitrogenase? [J]. Journal of Biological Inorganic Chemistry, 1996, 1(6):575.
    [150] Roux. J.C. Biotechnology for the mining metal refining and fossil fuel industries[J]. Biofutur, 1993, 129:46-48.
    [152] Russ Hille. Structure and function of mononuclear molybdenum enzymes[J]. Journal of Biological Inorganic Chemistry, 1996, 1(5):397-404.
    [153] Sabine H H. Cancer Risk from Inorganics Cancer and Metastasis Reviews 1987, 6(2):113-154.
    [154] Sareen S. Gropper, Steven Yannicelli、Plasma molybdenum concentrations in children with and without phenylketonuria[J]. Biological Trace Element Research, 1993, 38(3):227-231
    [155] Simon V Avery, Shareeka L. Smith, A. Mohamad Ghazi, et al. Stimulation of Strontium Accumulation in Linoleate-Enriched Saccharomyces cerevisiae is a Result of Reduced Sr2+ Efflux[J]. Applied and Environmental Microbiology, 1999, 65(3): 1191-1197.
    [156] Snow E T. Environ Health Pespect [M], 1994, 102(suppl 3): 41-44.
    [157] T. Nystr?m. The free-radical hypothesis of aging goes prokaryotic. CMLS, Cell. Mol. Life Sci, 2003, 60:1333-1341.
    [158] Urvashi Patel, Mayur D. Baxi, Vinod V. Modi. Evidence for the involvement of iron siderophore in the transport of molybdenum incowpeaRhizobium[J]. Current Microbiology, 1988, 17(5):179-182.
    [159] V. P. Claassen, L. F. Oltmann, C. E. M. Vader, et al. Molybdenum cofactor from the cytoplasmic membrane of Proteus mirabilis[J]. Archives of Microbiology, 1982, 133(4):283-288.
    [160] Wilfred N, Arnold Robert, G. Garrison. Isolation and Characterization of Protoplast from Saccharomyces rouii, Journal of Bacteriology [J], 1979, 137(3): 1386-1394.
    [160] W. ?mijewska. Determination of molybdenum in biological materials by neutron activation[J]. Journal of Radioanalytical and Nuclear Chemistry, 1980, 58(1-2):367-371.
    [162] Yong Wang, Lina Kang, Yayi Hou, et al. Microelements in seminal plasma of infertile men infected with Ureaplasma urealyticum[J]. Biological Trace Element Research, 2005, 105(1-3):11-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700