华癸中生根瘤菌类菌体发育基因bacA的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华癸中生根瘤菌(Mesorhizobium huakuii)能与宿主植物紫云英共生,并将空气中的氮气转化为植物可利用的化合态氮。迄今为止,对于根瘤菌从侵入线释放到根瘤含菌细胞后至固氮作用开始之前的共生中期,我们依然所知甚少。
     本研究从华癸中生根瘤菌克隆到了bacA基因。氨基酸序列比对和跨膜区域的拓扑预测显示:华癸中生根瘤菌的BacA蛋白与苜蓿中华根瘤菌(Sinorhizobiummeliloti)的BacA蛋白具有很高的同源性。系统发育学分析也表明:尽管苜蓿中华根瘤菌的BacA蛋白与大肠杆菌的SbmA蛋白在功能上可以互换,但与大肠杆菌的SbmA蛋白相比,苜蓿中华根瘤菌的BacA蛋白显然与华癸中生根瘤菌的BacA蛋白具有更近的亲缘关系。BacA蛋白失活使华癸中生根瘤菌丧失了与宿主植物建立有效共生固氮的能力。
     与华癸中生根瘤菌野生型菌株相比,bacA基因突变株M1对细胞膜完整性检测试剂(酸性pH,乙醇,SDS和结晶紫)更加敏感,但对一种糖肽类抗生素博来霉素的抗性却略有上升。质谱分析表明:BacA蛋白决定了华癸中生根瘤菌LPS结构类脂A组分中超长链脂肪酸(如27-OHC-28:0和29-OHC-30:0等)的特异性修饰。
     本研究结果表明:在华癸中生根瘤菌bacA基因突变株中,细胞膜结构已发生了改变。细胞膜性质的改变能降低根瘤菌对释放到宿主细胞内后环境变化的适应性,但目前尚无证据表明这种细胞膜缺陷与类脂A的特异性VLCFA修饰的改变相关。
Mesorhizobium huakuii is capable of fixing atmospheric nitrogen in symbiosis with the legume Astragalus sinicus,which is an economically important forage and green manure growing in winter throughout Eastern Asia.So far,little is known about the molecular basis of events after the bacteria are released from infection threads into the nodule cells and before nitrogen fixation begins.
     In this study,a bacA gene homologue of S.meliloti was isolated from M.huakuii. Alignment of BacA amino acid sequences and topological prediction for cytoplasmic membrane-spanning region both demonstrated that the BacA protein of M.huakuii showed high homology to S.meliloti.Furthermore,phylogenetic analysis illustrated that BacA of M.huakuii was much closer to BacA of S.meliloti rather than SbmA of E.coli, which is functionally interchangeable with BacA of S.meliloti.Inactivation of the bacA gene abolished the ability of M.huakuii to establish a successful symbiosis with its host.
     Compared with wild-type M.huakuii,the bacA mutant M1 was more sensitive to cell envelope-disrupting agents(acid pH,ethanol,SDS,and crystal violet) and showed increased resistance to bleomycin,a glycolpeptide antibiotic.Mass spectrometry analysis revealed that BacA affected the very-long-chain fatty acids(27-OHC-28:0 and 29-OHC-30:0) contents of lipid A in M.huakuii.
     The evidences from this study suggest that the cell envelope was altered in the bacA mutant of M.huakuii.This alteration of cell envelope may also frustrate bacterial attempts to survive the environmental chang encountered within host cells,while there is no evidence whether this change of cell envelope is related to the unusual lipid A modification.
引文
1. Achouak W, Christen R, Barakat M, Martel M H, Heulin T. Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int J Syst Bacteriol, 1999,49:787-794.
    
    2. Agron P G, Ditta G S, Helinski D R. Mutational analysis of the Rhizobium meliloti nifA promoter. J Bacteriol, 1992,174:4120-4129.
    
    3. Aguilar O M, Taormino J, Thoeny B, Ramseier T, Hennecke H, Szalay A A. The nifEN genes participating in FeMo cofactor biosynthesis and genes encoding dinitrogenase are part of the same operon in Bradyrhizobium species. Mol Gen Genet, 1990, 224:413-420.
    
    4. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402.
    
    5. Anthamatten D, Scherb B, Hennecke H. Characterization of a fixLJ-regulated Bradyrhizobium japonicum gene sharing similarity with the Escherichia coli fnr and Rhizobium meliloti fixK genes. J Bacteriol, 1992,174:2111-2120.
    
    6. Aoki T, Akashi T, Ayabe S. Flavonoids of leguminous plants: structure, biological activity,and biosynthesis. J Plant Res, 2000,113:475-488.
    
    7. Appelbaum E R, Thompson D V, Idler K, Chartrain N. Rhizobium japonicum USDA191 has two nodD genes that differ in primary structure and function. J Bacteriol, 1988, 170:12-20.
    
    8. Arigoni F, Kaminski P A, Hennecke H, Elmerich C. Nucleotide sequence of the fixABC region of Azorhizobium caulinodans ORS571: similarity of the fixB product with eukaryotic flavoproteins, characterization of fixX, and identification of nifW. Mol Gen Genet, 1991, 225:514-520.
    
    9. Arnold W, Rump A, Klipp W, Priefer U B, Pühler A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol, 1988, 203:715-738.
    
    10. Ausubel F M. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol, 2005, 6:973-979
    
    11. Baker M E. Similarities between legume-rhizobium communication and steroid-mediated intercellular communication in vertebrates. Can J Microbiol, 1992,38:541-547.
    
    12. Banfalvi Z, Nieuwkoop A, Schell M, Besl L, Stacey G Regulation of nod gene expression in Bradyrhizobium japonicum. Mol Gen Genet, 1988, 214:420-424.
    13. Barnett M J, Long S R. Identification and characterization of a gene on Rhizobium meliloti pSyma, syrB, that negatively affects syrM expression. Mol Plant-Microbe Interact, 1997, 10:550-559.
    
    14. Basu S S, Karbarz M J, Raetz C R. Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. J Biol Chem, 2002, 277: 28959-28971.
    
    15. Battisti L, Lara J C, Leigh J A. Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci USA, 1992, 89:5625-5629.
    
    16. Batut J, Daveran-Mingot M L, David M, Jacobs J, Garnerone A M, Kahn D. fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J, 1989, 8:1279-1286.
    
    17. Batut J, Terzaghi B, Gherardi M, Huguet M, Terzaghi E, Garnerone A M, Boistard P, Huguet T. Localization of a symbiotic fix region on Rhizobium meliloti pSym megaplasmid more than 200 kilobases from the nod-nif region. Mol Gen Genet, 1985, 199:232-239.
    
    18. Bec-Ferte M P, Krishnan H B, Savagnac A, Pueppke S G, Prome J C. Rhizobium fredii synthesizes an array of lipooligosaccharides, including a novel compound with glucose inserted into the backbone of the molecule. FEBS Letter, 1996, 393:273-279.
    
    19. Begum A A, Leibovitch S, Migner P, Zhang F. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot. 2001, 52:1537-1543.
    
    20. Bennett L T, Cannon F, Dean D R. Nucleotide sequence and mutagenesis of the nifA gene from Azotobacter vinelandii. Mol Microbiol, 1988, 2:315-321.
    
    21. Berg J M. Potential metal-binding domains in nucleic acid binding proteins. Science, 1986, 232:485-487.
    
    22. Beynon J L, Williams M K, Cannon F C. Expression and functional analysis of the Rhizobium meliloti nifA gene. EMBO J, 1988, 7:7-14.
    
    23. Bhat U R, Carlson R W, Busch M, Mayer H. Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroup of Proteobacteria. Int J Syst Bacteriol, 1991b, 41:213-217.
    
    24. Bhat U R, Mayer H, Yokota A, Hollingsworth R I, Carlson R W. Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae. J Bacteriol, 1991a, 173:2155-2159.
    25. Bloemberg G V, Thomas-Oates J E, Lugtenberg B J J, Spaink H P. Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipooligosaccharides, Chitin fragments and N-acetylglucosamine in vitro. Mol Microbiol, 1994,11:793-804.
    
    26. Bohlool B B, Schmidt E L. Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science, 1974, 185:269-271.
    
    27. Bolanos-Vasquez M C, Werner D. Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod Gene-Inducing Flavonoids in Root Exudates of Phaseolus vulgaris. Mol Plant-Microbe Interact, 1997,10:339-346.
    
    28. Bourdineaud J P, Bono J J, Ranjeva R, Cullimore J V. Enzymatic radiolabelling to a high specific activity of legume lipo-oligosaccharidic nodulation factors from Rhizobium meliloti. Biochem J, 1995, 306:259-264.
    
    29. Bouzar H, Jones J B. Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol, 2001, 51:1023-1026.
    
    30. Brencic A, Winans S. Detection and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev, 2005, 69:155-194.
    
    31. Brigle K E, Weiss M C, Newton W E, Dean D R. Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK. J Bacteriol, 1987, 169:1547-1553.
    
    32. Broughton W J, Hanin M, Relic B, Kopcinska J, Golinowski W, Simsek S, Ojanen-Reuhs T, Reuhs B, Marie C, Kobayashi H, Bordogna B, Le Quere A, Jabbouri S, Fellay R, Perret X, Deakin WJ. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. J Bacteriol, 2006, 188:3654-3663.
    
    33. Brozek K A, Carlson R W, Raetz C R. A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium. J Biol Chem, 1996, 271: 32126-32136.
    
    34. Brushi M, Guerlesquin F. Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev, 1988, 54:155-176.
    
    35. Buchanan-Wollaston V, Cannon M C, Beynon J L, Cannon F C. Role of the nifA gene product in the regulation of nif expression in Kiebsiella pneumoniae. Nature, 1981, 294: 776-778.
    
    36. Buikema W J, Klingensmith J A, Gibbons S L, Ausubel F M. Conservation of structure and location of Rhizobium meliloti and Kiebsiella pneumoniae nifB genes. J Bacteriol, 1987, 169:1120-1126.
    
    37. Buikema W J, Szeto W W, Lemley P V, Orme-Johnson W H, Ausubel F M. Nitrogen fixation specific regulatory genes of Kiebsiella pneumoniae and Rhizobium meliloti share homology with the general nitrogen regulatory gene ntrC of K. pneumoniae. Nucleic Acids Res, 1985,13:4539-4555.
    
    38. Caetano-Anolles G, Gresshoff P M. Plant genetic suppression of the non-noduiation phenotype of Rhizobium meliloti host-range nodH mutants: gene-for-gene interaction in the alfalfa-Rhizobium symbiosis? Theor Appl Genet, 1992, 84:624-632.
    
    39. Campbell G R, Reuhs B L, Walker G C. Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Proc Natl Acad Sci USA, 2002, 99:3938-3943.
    
    40. Cannon W, Buck M. Central domain of the positive control protein NifA and its role in transcriptional activation. J Mol Biol, 1992, 225:271-286.
    
    41. Carlson R W, Price N P J, Stacey G The biosynthesis of Rhizobial Lipooligosaccharide nodulation signal molecules. Mol Plant-Microbe Interact, 1995, 7:684-695.
    
    42. Casida L E Jr. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol, 1982, 32:339-345.
    
    43. Chan C L, Lumpkin T A, Root C S. Characterization of Bradyrhizobium sp. (Astragalus sinicus L.) using scrological agglutination, intrinsic antibiotic resistance, plasmid visualization and field performance. Plant and Soil, 1988, 109:58-59.
    
    44. Chen H C, Gray J X. Nayudu M, Djordjevic M A, Batley M, Redmond J, Rolfe B G. Five genetic loci involved in the synthesis of acidic exopolysaccharide cloning linked in the genome of Rhizobium sp. strain NGR234. Mol Gen Genet, 1988, 212:310-316.
    
    45. Chen H K, Shu M K. Notes on the root nodule bacteria of Astragalus sinicus L. Soil Sci, 1944,58:291-293.
    
    46. Chen H, Higgins J, Oresnik I J, Hynes M F, Natera S, Djordjevic M A, Weinman J J, Rolfe B G Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011. Electrophoresis, 2000, 21:3833-3842.
    
    47. Chen W M, James E K, Coenye T, Chou J H, Barrios E, de Faria S M, Elliott G N, Sheu S Y, Sprent J I, Vandamme P. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol, 2006, 56:1847-1851.
    
    48. Chen W M, Laevens S, Lee T M, Coenye T, De Vos P, Mergeay M, Vandamme P. Ralstonia taiwanensis sp. nov. isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol, 2001, 51:1729-1735.
    49. Chen W M, Laevens S, Lee T M, de Vos P, Mergeay M, Vandamme P. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol, 2001, 51:1729-1735.
    
    50. Chen W X, Li G S, Qi Y L, Wang E T, Yuan H L, Li J L. Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol, 1991,41:275-280.
    
    51. Chen W X, Wang E T, Wang S Y, Li Y B, Chen X Q, Li Y. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int J Syst Bacteriol, 1995, 45:153-159.
    
    52. Chen W X, Yan G H, Li J L. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol, 1988, 38:392-397.
    
    53. Chen X C, Feng J, Hou B H, Li F Q, Li Q, Hong G F. Modulating DNA bending affects NodD mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res, 2005, 33:2540-2548.
    
    54. Cheng G J, Li Y G, Zhou J C. Cloning and identification of opa22, a new gene involved in nodule formation by Mesorhizobium huakuii. FEMS Microbiol Lett, 2006, 257:152-157.
    
    55. Cheng H P, Walker G C. Succinoglycan production by Rhizobium meliloti is regulated through the ExoS/ChvI two-component regulatory system. J Bacteriol, 1998,180: 20-26.
    
    56. Cherfils J, Gibrat J F, Levin J, Batut J, Kahn D. Model-building of Fnr and FixK DNA-binding domains suggests a basis for specific DNA recognition. J Mol Recognit, 1989,2:114-121.
    
    57. Choma A, Sowinski P. Characterization of Mesorhizobium huakuii lipid A containing both D-galacturonic acid and phosphate residues. Eur J Biochem, 2004, 271:1310-1322.
    
    58. Choma A. Fatty acid composition of Mesorhizobium huakuii lipopolysaccharides. Identification of 27-oxooctacosanoic acid. FEMS Microbiol Lett, 1999, 177:257-262.
    
    59. Choma A. Lipopolysaccharides from Mesorhizobium huakuii and Mesorhizobium ciceri: chemical and immunological comparative data. Acta Biochim Pol, 2002,49:1043-1052.
    
    60. Christiansen J, Dean D R, Seefeld L C. Mechanistic features of the Mo-containing nitrogenase. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 269-295.
    
    61. Cohn J, Day R B, Stacey G Legume nodule organogenesis. Trends Plant Sci, 1998, 3:105-110.
    
    62. Cooper J E. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol, 2007,103:1355-1365.
    63. Cooper J E. Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res, 2004,41:1-62.
    
    64. Corbin D, Barran L, Ditta G Organization and expression of Rhizobium meliloti nitrogen fixation genes. Proc Natl Acad Sci USA, 1983, 80:3005-3009.
    
    65. Cren M, Kondorosi A, Kondorosi E. NolR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol Microbiol, 1995, 15:733-747.
    
    66. Crespi M, Galvez S. Molecular Mechanisms in Root Nodule Development. J Plant Growth Regul, 2000, 19:155-166.
    
    67. Cunningham S, Kollmeyer W D, Stacey G Chemical control of interstrain competition for soybean nodulation by Bradyrhizobium japonicum. Appl Environ Microbiol, 1991, 57:1886-1892.
    
    68. Da Re S, Bertagnoli S, Fourment J, Reyrat J M, Kahn D. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res, 1994, 22:1555-1561.
    
    69. David M, Daveran M L, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell, 1988, 54:671-683.
    
    70. David M, Domergue O, Pognonec P, Kahn D. Transcription patterns of Rhizobium meliloti symbiotic plasmid pSym: identification of nifA-independent fix genes. J Bacteriol, 1987, 169:2239-2244.
    
    71. Dazzo F B, Hubbell H D. Cross-reactive antigens and lectins as determinants of symbiotic specificity in the Rhizobium-clover association. Appl Microbiol, 1975, 36:1017-1033.
    
    72. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Evol Microbiol, 1998, 48:1277-1290.
    
    73. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins M D, Lindstrom K, Dreyfus B, Gillis M. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov.. Int J Syst Bacteriol, 1998,48: 369-382
    
    74. de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins M D, Dreyfus B, Kersters K, Gillis M. Polyphasic taxonomy of Rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb, nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol, 1994, 44:715-733.
    75. de Maagd R A, de Rijk R, Mulders I H M, Lugtenberg B J J. Immunological characterization of Rhizobium leguminosarum outer membrane antigens by use of polyclonal and monoclonal antibodies. J Bacteriol, 1989,171:1136-1142.
    
    76. de Philip P, Boistard P, Schluter A, Patschkowski T, Priefer U B, O'Gara F, Boesten B, Noonan B, Puihler A. Developmental and metabolic regulation of nitrogen fixation gene expression in Rhizobium meliloti. Can J Microbiol, 1992, 38:467-474.
    
    77. de Philip P, Soupene E, Batut J, Boistard P. Modular structure of the FixL protein of Rhizobium meliloti. Mol Gen Genet, 1992, 235:49-54.
    
    78. Debelle F, Plazanet C, Roche P, Pujol C, Savagnac A, et al. The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids. Mol Microbiol, 1996, 22:303-314.
    
    79. Delgado M J, Bedmar E J, Downie J A. Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Adv Microb Physiol, 1998,40:191-231.
    
    80. Denarie J, Cullimore J. Lipo-oligosaccharide nodulation factors: a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell, 1993, 74:951-954.
    
    81. Denarie J, Debelle F, Prome J C. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem., 1996, 65:503-535.
    
    82. Denarie J, Debelle F, Rosenberg C. Signaling and host range variation in nodulation. Annu Rev Microbiol, 1992,46:497-531.
    
    83. Denarie J, Debelle F, Truchet G, Prome J C. Rhizobium and legume nodulation: a molecular dialogue. Curr plant sci biotechnol agric, 1993,17:19-30
    
    84. Denefle P, Kush A, Norel F, Paquelin A, Elmerich C. Biochemical and genetic analysis of the nifHDKE region of Rhizobium ORS571. Mol Gen Genet, 1987, 207:280-287.
    
    85. D'Haeze W, Holsters M. Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol, 2004, 12:555-561.
    
    86. Ditta G, Virts E, Palomares A, Kim C H. The nifA gene of Rhizobium meliloti is oxygen regulated. J Bacteriol, 1987,169:3217-3223.
    
    87. Dockendorff T C, Sanjuan J, Grob P, Stacey G NolA represses nod gene expression in Bradyrhizobium japonicum. Mol. Plant-Microbe Interact., 1994, 7:596-602.
    
    88. Domenech P, Kobayashi H, LeVier K, Walker G C, Barry C E 3rd. BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis. J Bacteriol, 2009,191:477-485
    89. Dreyfus B, Garcia J L, Gillis M. Characterization of Azorhizobium caulinodans General nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol, 1988, 38:89-98.
    
    90. Drummond M H, Contreras A, Mitchenall L A. The function of isolated domains and chimaeric proteins constructed from NifA and NtrC proteins of Kiebsiella pneumoniae. Mol Microbiol, 1990,4:29-37.
    
    91. Drummond M, Whitty P, Wootton J. Sequence and domain relationships of ntrC and nifA from Kiebsiella pneumoniae: homologies to other regulatory proteins. EMBO J, 1986, 5:441-447.
    
    92. Duelli D M, Noel K D. Compounds exuded by Phaseolus vulgaris that induce a modification of Rhizobium etli lipopolysaccharide. Mol Plant Microbe Interact, 1997, 10:903-910.
    
    93. Dunn M F, Pueppke S G, Krishnan H B. The nod gene inducer genistein alters the composition and molecular mass distribution of extracellular polysaccharides produced by Rhizobium fredii USDA193. FEMS Microbiol Lett, 1992, 97:107-112.
    
    94. Earl C D, Ronson C W, Ausubel F M. Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J Bacteriol, 1987, 169:1127-1136.
    
    95. Ebeling S, Noti J D, Hennecke H. Identification of a new Bradyrhizobium japonicum gene (frxA) encoding a ferredoxin-like protein. J Bacteriol, 1988, 170:1999-2001.
    
    96. Ehrhardt D W, Atkinson E M, Faull K F, Freedberg D I, Sutherlin D P, Armstrong R, Long S R. In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J Bacteriol, 1995, 177:6237-6245.
    
    97. Eiglmeier K, Honore N, Iuchi S, Lin E C, Cole S T. Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol, 1989, 3:869-878.
    
    98. Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton W J, Jabbouri S. nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Mol Microbiol, 1998,27:1039-1050.
    
    99. Ferguson G P, Datta A, Baumgartner J, Roop R M II, Carlson R W, Walker G C. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. ProcNatl Acad Sci USA, 2004, 101:5012-5017.
    
    100. Ferguson G P, Datta A, Carlson R W, Walker G C. Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol, 2005, 56:68-80.
    
    101. Ferguson G P, Jansen A, Marlow V L, Walker G C. BacA-mediated bleomycin sensitivity in Sinorhizobium meliloti is independent of the unusual lipid A modification. J Bacteriol, 2006, 188:3143-3148.
    102. Ferguson G P, Roop R M II, Walker G C. Deficiency of a Sinorhizobium meliloti BacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope. J Bacteriol, 2002, 184:5625-5632.
    
    103. Finan T M, Hirsch A M, Leigh J A, Johansen E, Kuldau G A, Deegan S, Walker G C, Signer E R. Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell, 1985,40:867-877.
    
    104. Firmin J L, Wilson K E, Carlson R W, Davies A E, Downie J A. Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol, 1993, 10:351-360.
    
    105. Firmin J L, Wilson K E, Rossen L, Johnston AW B. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature, 1986, 324:90-92.
    
    106. Fischer H M, Bruderer T, Hennecke H. Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res, 1988, 16:2207-2224.
    
    107. Fischer H M, Fritsche S, Herzog B, Hennecke H. Critical spacing between two essential cysteine residues in the interdomain linker of the Bradyrhizobium japonicum NifA protein. FEBS Lett, 1989, 255:167-171.
    
    108. Fischer H M, Hennecke H. Linkage map of the Rhizobium japonicum nifH and nifD, K operons encoding the polypeptide components of the nitrogenase complex. Mol Gen Genet, 1984, 196:537-540.
    
    109. Fischer H M. Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol, 1996,4:317-320.
    
    110. Fischer H M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev, 1994, 58:352-386.
    
    111. Fisher R F, Long S R. Interactions of NodD at the nod box. NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J Mol Biol, 1993, 233, 336-348.
    
    112. Fisher R F, Long S R. Rhizobium-plant signal exchange. Nature, 1992,357:655-660.
    
    113. Folch-Mallol J L, Marroqui S, Sousa C, Manyani H, Lopez-Lara I M, van der Drift K M, Haverkamp J, Quinto C, Gil-Serrano A, Thomas-Oates J, Spaink H P, Megias M. Characterization of Rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol Plant-Microbe Interact, 1996,9:151-163.
    114. Foussard M, Garnerone A M, Ni F, Soupene E, Boistard P, Batut J. Negative autoregulation of the Rhizobium meliloti fixK. gene is indirect and requires a newly identified regulator, FixT. Mol Microbiol, 1997,25:27-37.
    
    115. Frank B. Uber die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft, 1889,7:332-346.
    
    116. Freiberg C, Fellay R, Bairoch A, Broughton W J, Rosenthal A, Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature, 1997, 387:394-401.
    
    117. Fuhrmann M, Fischer H M, Hennecke H. Mapping of Rhizobium japonicum nifB-, fixBC-, and fixA-like genes and identification of the fixA promoter. Mol Gen Genet, 1985, 199:315-322.
    
    118. Fujishige N A, Kapadia N N, De Hoff P L, Hirsch A M. Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol, 2006, 56:195-206.
    
    119. Gagnon H, Ibrahim R K. Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini and Sinorhizobium meliloti. Mol Plant Microbe Interact, 1998, 11:988-998.
    
    120. Galinier A, Garnerone A M, Reyrat J M, Kahn D, Batut J, Boistard P. Phosphorylation of the Rhizobium meliloti FixJ protein induces its binding to a compound regulatory region at the fixK promoter. J Biol Chem, 1994, 269:23784-23789.
    
    121. Gao J L, Turner S L, Kan F L, Wang E T, Tan Z Y, Qiu Y H, Gu J, Terefework Z, Young J P, Lindstrom K, Chen W X. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol, 2004, 54:2003-2012
    
    122. Garcia M, Dunlap J, Loh J, Stacey G Phenotypic characterization and regulation of the nolA gene of Bradyrhizobium japonicum. Mol Plant-Microbe Interact, 1996, 9:625-636.
    
    123. Garcia-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martinez-Molina E, Mateos P F, Velazquez E. Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol, 2007, 57:844-848.
    
    124. Georgiadis M M, Komiya H, Chakrabarti P, Woo D, Kornuc J J, Rees D C.Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science, 1992, 257:1653-1659.
    
    125. Ghosh W, Roy P. Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol, 2006, 56 : 91-97
    
    126. Gilles-Gonzalez M A, Ditta G S, Helinski D R. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature, 1991, 350:170-172.
    127. Gilles-Gonzalez M A, Gonzalez G, Perutz M F, Kiger L, Marden M C, Poyart C. Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochemistry, 1994,33:8067-8073.
    
    128. Gilles-Gonzalez M A, Gonzalez G Regulation of the kinase activity of heme protein FixL from the two-component system FixL/FixJ of Rhizobium meliloti. J Biol Chem, 1993, 268:16293-16297.
    
    129. Gilles-Gonzalez M A, Gonzalez G Signal transduction by heme-containing PAS-domain proteins. J Appl Physiol, 2004, 96:774-783.
    
    130. Gillette W K, Elkan G H. Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene requiered for the efficient nodulation of host plants. J Bacteriol, 1996,178:2757-2766.
    
    131. Glazebrook J, Ichige A, Walker G C. A Rhizobium meliloti homolog of the Escherichia coli peptide antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev, 1993,7:1485-1497.
    
    132. Goldmann A, Boivin C, Fleury V, Message B, Lecoeur L, Maille M, Tepfer D. Symbiotic plasmid genes essential to the catabolism of proline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti. FEMS Microbiol Lett, 1994, 115:305:311.
    
    133. Goncalves M, Moreira F M S. Specificity of the legume Sesbania virgata (Caz.) pers. and its nodule isolates Azorhizobium johannae with other legume hosts and rhizobia. Symbiosis, 2004, 36:57-68.
    
    134. Goodman S I, Axtell K M, Bindoff L A, Beard S E, Gill R E, Frerman F E. Molecular cloning and expression of a cDNA encoding human electron transfer flavoprotein-ubiquinone oxidoreductase. Eur J Biochem, 1994, 219:277-286.
    
    135. Goosen-de Roo L, de Maagd R A, Lugtenberg B J J. Antigenic changes in lipopolysaccharide I of Rhizobium leguminosarum bv. viciae in root nodules of Vicia sativa subsp. nigra occur during release from infection threads. J Bacteriol, 1991,173:3177-3183.
    
    136. Goossens H, De Leeuw J W, Rijpstra W I C, Meyburg G J, Schenck P A. Lipids and their mode of occurrence in bacteria and sediments-I.A methodological study of the lipid composition of Acinetobacter calcoaceticus LMD 79-41. Org Geochem, 1989, 14:15-25.
    
    137. Gottfert M, Grob P, Hennecke H. Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA, 1990, 87:2680-2684.
    
    138. Gottfert M, Weber J, Hennecke H. Induction of a nodA-lacZ fusion in Bradyrhizobium japonicum by an isoflavone. J Plant Physiol, 1988, 132:394-397.
    139. Gray J X, Rolf B G. Exopolysaccharide production in Rhizobium and its role in invasion. Mol Microbiol, 1990,4:425
    
    140. Gray J X, Rolf B G. Exopolysaccharide production in Rhizobium and its role in invasion. Mol Microbiol, 1990,4:1425-1431.
    
    141. Granger P, Manian S S, Reilander H, O'Connell M, Priefer U B, Pühler A. Organisation and partial sequence of a DNA region of the Rhizobium leguminosarum symbiotic plasmid pRL6JI containing the genes fixABC, nifA, nifB and a novel open reading frame. Nucleic Acids Res, 1987, 15:31-49.
    
    142. Grosjean C, Huguet T. A persistent meristem is formed in nodular structures elicited by Nod factor or by a Rhizobium meliloti exopolysaccharide mutant in alfalfa plants which nodulate spontaneously. Plant Sci, 1997, 127:215-225.
    
    143. Gu C T, Wang E T, Tian C F, Han T X, Chen W F, Sui X H, Chen W X. Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol, 2008, 58:1364-1368.
    
    144. Gubler M, Hennecke H. FixA, B and C genes are essential for symbiotic and free-living, microaerobic nitrogen fixation. FEBS Lett, 1986, 200:186-192.
    
    145. Guerreiro N, Djordjevic M A, Rolfe B G Proteome analysis of the model microsymbiont Sinorhizobium meliloti: isolation and characterisation of novel proteins. Electrophoresis, 1999,20:818-825.
    
    146. Guerreiro N, Redmond J W, Rolfe B G, Djordjevic M A. New Rhizobium leguminosarum flavonoid-induced proteins revealed by proteome analysis of differentially displayed proteins. Mol Plant Microbe Interact, 1997, 10:506-516.
    
    147. Gustafsson P, Nordstrom K, Normark S. Outer penetration barrier of Escherichia coli K-12: kinetics of the uptake of gentian violet by wild type and envelope mutants. J Bacteriol, 1973,116:893-900.
    
    148. Hanahan D. Studies on the transformation of Escherichia coli with plasmids. J Mol Biol, 1983, 166:557-580.
    
    149. Hanin M, Jabbouri S, Quesada-Vincens D, Freiberg C, Perret X, Promé JC, Broughton WJ, Fellay R. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene. Mol Microbiol, 1997, 24:1119-1129.
    
    150. Harwood C S, Parales R E. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol, 1996, 50:553-590.
    
    151. Heidstra R, Bisseling T. Nod factor induced host responses and mechanisms of nod factor perception. New Phytol, 1996, 133:25-43
    152. Heinz E B, Phillips D A, Streit W R. BioS, a biotin-induced, stationary phase, and possible LysR-type regulator in Sinorhizobium meliloti. Mol Plant Microbe Interact, 1999, 12:803-812.
    
    153. Hennecke H. Nitrogen fixation genes involved in the Bradyrhizobium japonicum-soybean symbiosis. FEBS Lett, 1990, 268: 422-426.
    
    154. Hennecke H. Regulation of bacterial gene expression by metal-protein complexes. Mol Microbiol, 1990,4:1621-1628.
    
    155. Hertig C, Li R Y, Louarn A M, Garnerone A M, David M, Batut J, Kahn D, Boistard P. Rhizobium meliloti regulatory gene fixJ activates transcription of R. meliloti nifA and fixK. genes in Escherichia coli. J Bacteriol, 1989,171:1736-1738.
    
    156. Hettema E H, van Roermund C W, Distel B, van den Berg M, Vilela C, Rodrigues-Pousada C, Wanders R J, Tabak H F. The ABC transporter proteins Pat 1 and Pat 2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae. EMBO J, 1996, 15:3813-3822.
    
    157. Hirsch A M, LaRue T A. Is the legume nodule a modified root or stem or an organ sui generis? Crit Rev Plant Sci, 1997,16:361-392.
    
    158. Hirsch A M, Lum M R, Downie J A. What makes the rhizobia-legume symbiosis so special? Plant Physiol, 2001,127:1484-1492.
    
    159. Hirsch A M. Developmental biology of legume nodulation. New Phytol, 1992,122:211-237.
    
    160. Hirsch A M. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol, 1999, 2:320-326.
    
    161. Hohnjec N, Lenz F, Fehlberg V, Vieweg M F, Baier M C, Hause B, Küster H. The signal peptide of the Medicago truncatula modular nodulin MtNOD25 operates as an address label for the specific targeting of proteins to nitrogen-fixing symbiosomes. Mol Plant Microbe Interact, 2009, 22:63-72.
    
    162. Honma M A, Ausubel F M. Rhizobium meliloti has three functional copies of the nodD symbiotics regulatory gene. Proc Natl Acad Sci USA, 1987, 84:8558-8562
    
    163. Howard J B, Rees D C. Nitrogenase: a nucleotide-dependent molecular switch. Annu Rev Bichem, 1994,63:235-264.
    
    164. Huala E, Ausubel F M. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti nif- promoter. J Bacteriol, 1989, 171:3354-3365.
    
    165. Hubber A, Vergunst A C, Sullivan J T, Hooykaas P J J, Ronson C W. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB D4 type IV secretion system. Mol Microbiol, 2004,54:561-574.
    166. Hunter W J, Kuykendall L D, Manter D K. Rhizobium selenireducens sp. nov.: a selenite-reducing a-Proteobacteria isolated from a bioreactor. Curr Microbiol, 2007, 55:455-460
    
    167. Ichige A, Walker G C. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol, 1997, 179:209-216.
    
    168. Iismaa S E, Ealing P M, Scott K F, Watson J M. Molecular linkage of the nif/fix and nod gene regions in Rhizobium leguminosarum biovar trifolii. Mol Microbiol, 1989, 3:1753-1764.
    
    169. Iismaa S E, Watson J M. The nifA gene product from Rhizobium leguminosarum biovar trifolii lacks the N-terminal domain found in other NifA proteins. Mol Microbiol, 1989, 3:943-955.
    
    170. Innes R W, Kuempel P L, Plazinski J, Canter-Cremers H, Rolfe B G, Djordjevic M A. Plant factors induce expression of nodulation and host-range genes in Rhizobium trifolii. Mol Gen Genet, 1985,201:426432.
    
    171. Jarvis B D W, Van Berkum P, Chen W X, Nour S M, Fernandez M P, Cleyet-Marel J C, Gillis M. Transfer of Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol, 1997,47:895-898.
    
    172. Jarvis B D W, Van Berkum P, Chen W X, Nour S M,Fernandez M P, Cleyet-Marel J C, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov.. Int. J. Syst. Bacteriol, 1997,47:895-898.
    
    173. Jiang Z H, Budzynski W A, Skeels L N, Krantz M J, Koganty R R. Novel lipid A mimetics derived from pentaerythritol: synthesis and their potent agonistic activity. Tetrahedron, 2002, 58:8833-8842.
    
    174. Jin S G, Prusti R K, Roitsch T, Ankenbauer R G, Nester E W. Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG J Bacteriol, 1990, 172:4945-4950.
    
    175. Jordan D C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants, Int J Syst Bacteriol, 1982,32:136-139.
    
    176. Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P. Methylobacterium nodulans sp. nov., for a group of aerobic, factultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Bacteriol, 2004, 54:2269-2273.
    177. Kahn D, David M, Domergue O, Daveran M L, Ghai J, Hirsch P R, Batut J. Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol, 1989,171:929-939.
    
    178. Kahn D, Ditta G Modular structure of FixJ: homology of the transcriptional activator domain with the -35 binding domain of sigma factors. Mol Microbiol, 1991, 5:987-997.
    
    179. Kaminski P A, Mandon K, Arigoni F, Desnoues N, Elmerich C. Regulation of nitrogen fixation in Azorhizobium caulinodans: identification of a fixK-like gene, a positive regulator of nifA. Mol Microbiol, 1991, 5:1983-1991.
    
    180. Kaminski P A, Norel F, Desnoues N, Kush A, Salzano G, Elmerich C. Characterization of the FixABC region of Azorhizobium caulinodans ORS571 and identification of a new nitrogen fixation gene. Mol Gen Genet, 1988, 214:496-502.
    
    181. Kamst E, Pilling J, Raamsdonk L M, Lugtenberg B J J, Spaink H P. Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol, 1997,179:2103-2108.
    
    182. Kane S A, Hecht S M. Polynucleotide recognition and degradation by bleomycin. Prog Nucleic Acid Res Mol Biol, 1994,49:313-352.
    
    183. Kannenberg E L, Perotto S, Bianciotto V, Rathbun E A, Brewin N J. Lipopolysaccharide epitope expression of Rhizobium bacteroids as revealed by in situ immunolabelling of pea root nodule sections. J Bacteriol, 1994,176:2021-2032.
    
    184. Kannenberg E, Carlson R W. An abundance of Nod factors. Chem Biol, 2005, 12:956-958.
    
    185. Kennedy C, Eady P R, Kondorosi E, et al. The molybdenum-iron protein of Klebsiella pneumoniae nitrogenase. Biochem J, 1976,155: 383-389
    
    186. Kim C H, Helinski D R, Ditta G Overlapping transcription of the nifA regulatory gene in Rhizobium meliloti. Gene, 1986, 50:141-148.
    
    187. Kim J, Rees D C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science, 1992,257:1677-1682.
    
    188. Kiss E, Mergaert P, Olah B, Kereszt A, Staehelin C, Davies A E, Downie J A, Kondorosi A, Kondorosi E. Conservation of nolR in the Sinorhizobium and Rhizobium genera of the Rhizobiaceae family. Mol Plant-Microbe Interact, 1998, 11:1186-1195.
    
    189. Klipp W, Reilander H, Schliiter A, Krey R, Pühler A. The Rhizobium meliloti fdxN gene encoding a ferredoxinlike protein is necessary for nitrogen fixation and is cotranscribed with nifA and nifB. Mol Gen Genet, 1989, 216:293-302.
    
    190. Kobayashi H, Naciri-Graven Y, Broughton W J and Perret X. Flavonoids induce temporal shifts in gene expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol, 2004, 51:335-347.
    191. Kondorosi E, Buire M, Cren M, Iyer N, Hoffmann B, Kondorosi A. Involvement of the syrM and nodD3 genes of Rhizobium meliloti in nod gene activation and in optimal nodulation of the plant host. Mol Microbiol, 1991, 5:3035-3048.
    
    192. Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffmann B, Schell J, Kondorosi A. Positive and negtive control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J, 1989, 8:1331-1340.
    
    193.Kosslak R M, Bookland R, Barbakei J, Paaren H E, Appelhaum E R. Induction of Bradyrhizobium japonicum common nodulation genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA, 1987, 82:7428-7432.
    
    194. Kovach M E, Elzer P H, Hill D S, Robertson G T, Farris M A, Roop R M II, Peterson K M. Four new derivatives of the broad-host-range cloning vector pBBRlMCS, carrying different antibiotic-resistance cassettes. Gene, 1995, 166:175-176.
    
    195. Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H, Fischer H M. Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). J Bacteriol, 1991, 173:1125-1138.
    
    196. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004, 5:150-163.
    
    197. Kussak A, Weintraub A. Quadrupole ion-trap mass specrometry to locate fatty acids on lipid A from gram-negative bacteria. Anal Biochem, 2002, 307:131-137.
    
    198. Kustu S, Santero E, Keener J, Popham D, Weiss D. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev, 1989, 53:367-376.
    
    199. Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157:105-132.
    
    200. Laeremans T, Caluwaerts I, Verreth C, Rogel M A, Vanderleyden J, Martinez-Romero E. Isolation and characterization of the Rhizobium tropici Nod factor sulfation genes. Mol Plant-Microbe Interact, 1996, 9:492-500.
    
    201. Lagares A, Caetano-Anolles G, Niehaus K, Lorenzen J, Ljunggren H D, Puhler A, Favelukes G A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. J Bacteriol, 1992, 174:5941-5952.
    
    202. Lapage S P, Sneath P H A, Lessel E F, Skerman V B D, Seeliger H P R, Clark W A (editors). International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code. Washington, D C (USA): American Society for Microbiology. 1992.
    
    203. Lavina M, Pugsley A P, Moreno F. Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J Gen Microbiol, 1986,132:1685-1693.
    204. Lazazzera B A, Bates D M, Kiley P J. The activity of the Escherichia coli transcription factor Fnr is regulated by a change in oligomeric state. Genes Dev, 1993, 7:1993-2005.
    
    205. Le Strange K K, Bender G L, Djordjevic M A, Rolfe B G, Redmond J W. The Rhizobium strain NGR234 nodD1 gene product responds to activation by the simple phenolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol Plant Microbe Interact, 1990,3:214-220.
    
    206. Lee H S, Berger D K, Kustu S. Activity of purified NIFA, a transcriptional activator of nitrogen fixation genes. Proc Natl Acad Sci USA, 1993, 90:2266-2270.
    
    207. Leigh J A, Reed J W, Hanks J F, Hirsch A M, Walker G C. Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell, 1987, 51:579-587.
    
    208. Leigh J A, Walker G C. Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet, 1994,10:63-67.
    
    209. Leong S A, Ditta G S, Helinski D R. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J Biol Chem, 1982,257:8724-8730.
    
    210. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome J C, Denarie J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, 1990, 344:781-784.
    
    211. LeVier K, Phillips R W, Grippe V K, Roop R M, Walker G C. Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science, 2000, 287:2492-2493.
    
    212. Levier K, Walker G C. Genetic Analysis of the Sinorhizobium meliloti BacA Protein: Differential Effects of Mutations on Phenotypes. J Bacteriol, 2001,183:6444-6453.
    
    213. Lillich T T, Elkan G H. Evidence countering the role of polygalacturonase in invasion of root hairs of leguminous plants by Rhizobium spp.. Can J Microbiol. 1968,14:617-625.
    
    214. Lloret L, Ormeno-Orrillo E, Rincon R, Martinez-Romero J, Rogel-Hernandez M A, Martinez-Romero E. Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol, 2007, 30: 280-290.
    
    215. Lois A F, Ditta G S, Helinski D R. The oxygen sensor FixL of Rhizobium meliloti is a membrane protein containing four possible transmembrane segments. J Bacteriol, 1993a, 175:1103-1109.
    
    216. Lois A F, Weinstein M, Ditta G S, Helinski D R. Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J Biol Chem, 1993b, 268:4370-4375.
    217. Long S R. Rhizobium symbiosis: Nod factors in perspective. Plant Cell, 1996, 8:1885-1898.
    
    218. Lopez-Lara I M, van den Berg J D, Thomas-Oates J E, Glushka J, Lugtenberg B J, Spaink H P. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol Microbiol, 1995, 15:627-638.
    
    219. Lopez-Lara IM, van der Drift KM, van Brussel AA, Haverkamp J, Lugtenberg BJ, Thomas-Oates JE, Spaink HP. Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2. Plant Mol Biol, 1995, 29:465-477.
    
    220. Lorquin J, Lortet G, Ferro M, Mear N, Dreyfus B et al. Nod factors from Sinorhizobium saheli and S. teranga bv. sesbaniae are both arabinosylated and fucosylated, a structural feature specific to Sesbania rostrata symbionts. Mol Plant-Microbe Interact, 1997, 10:879-890.
    
    221. Mabood F, Souleimanov A, Khan W, Smith D L. Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem, 2006, 44:759-765.
    
    222. Mandon K, Kaminski P A, Elmerich C. Functional analysis of the fixNOQP region of Azorhizobium caulinodans. J Bacteriol, 1994, 176:2560-2568.
    
    223. Marlow V L, Haag A F, Koboyashi H, Fletcher V, Scocchi M, Walker G C, Ferguson G P. Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti. J Bacteriol, 2009, 191:1519-1527
    
    224. Martens M, Delaere M, Coopman R, De Vos P, Gillis M, Willems A. Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol, 2007, 57:489-503.
    
    225. Martin G B, Chapman K A, Chelm B K. Role of the Bradyrhizobium japonicum ntrC gene product in differential regulation of the glutamine synthetase II gene (gln II). J Bacteriol, 1988, 170:5452-5459.
    
    226. Martin G B, Cheim B K. Bradyrhizobium japonicum ntrBCIglnA and nifAlginA mutants: further evidence that separate regulatory pathways govern glnII expression in free-living and symbiotic cells. Mol Plant-Microbe Interact, 1991,4:254-261.
    
    227. Masepohl B, Kutsche M, Riedel K U, Schmehl M, Klipp W, Pühler A. Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation. Mol Gen Genet, 1992, 233:33-41.
    
    228. Mathesius U, Schlaman H R M, Spaink H P, Sautter C, Rolfe B G, Djordjevic M A. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J, 1998, 14:23-34.
    229. Mathis R, Van Gijsegem F, De Rycke R, D'Haeze W, Van Maelsaeke E, Anthonio E, Van Montagu M, Holsters M, Vereecke D. Lipopolysaccharides as a communication signal for progression of legume endosymbiosis. Proc Natl Acad Sci USA, 2005, 102:2655-2660.
    
    230. Mellor R B. Bacteroids in the Rhizobium-legume symbiosis inhabit a plant internal lytic compartment: implications for other microbial endosymbioses. J Exper Bot, 1989, 40:831-839.
    
    231. Mesa S, Bedmar E J, Chanfon A, Hennecke H, Fischer H M. Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade. J Bacteriol, 2003,185:3978-3982.
    
    232. Michiels J, Vanderleyden J. Cloning and sequence of the Rhizobium leguminosarum biovar phaseofi fixA gene. Biochim Biophys Acta, 1993,1144:232-233.
    
    233. Miller S I, Ernst R K, Bader M W. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol, 2005,3:36-46
    
    234. Minchin S D, Austin S, Dixon R A. Transcriptional activation of the Klebsiella pneumoniae nifLA promoter by NTRC is face-of-the-helix dependent and the activator stabilizes the interaction of sigma 54-RNA polymerase with the promoter. EMBO J. 1989, 8:3491-3499.
    
    235. Mithofer A. Suppression of plant defence in rhizobia-legume symbiosis. Trends Plant Sci, 2002, 7:440-444.
    
    236. Monson E K, Weinstein M, Ditta G S, Helinski D R. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc Natl Acad Sci USA, 1992, 89:4280-4284.
    
    237. Moreira F M S, Cruz L, Faria S M, Marsh T, Martinez-Romero E, Pedrosa F O, Pitard R M, Young J P W. Azorhizobium doebereinerae sp. Nov. Microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol, 2006, 29:197-206.
    
    238. Morett E, Cannon W, Buck M. The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognises the upstream activator sequences of nif promoters and can be separated from the positive control function of NifA. Nucleic Acids Res, 1988, 16:11469-11488.
    
    239. Morett E, Fischer H M, Hennecke H. Influence of oxygen on DNA binding, positive control, and stability of the Bradyrhizobium japonicum NifA regulatory protein. J Bacteriol, 1991,173:3478-3487.
    
    240. Moron B, Soria-Diaz M E, Ault J, Verroios G, Noreen S, Rodriguez-Navarro D N, Gil-Serrano A, Thomas-Oates J, Megias M, Sousa C. Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol, 2005, 12:1029-1040.
    241. Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the p-subclass of Proteobacteria. Nature, 2001,411:948-950.
    
    242. Mulligan J T, Long S R. A family of activator genes regulates expression of Rhizobium meliloti nodulation genes, genetics, 1989, 122:7-18.
    
    243. Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S. ROCK-I and ROCK-II, two isoforms of rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett, 1996,392:189-193.
    
    244. Nellen A D, Rossi P, Preisig O, Kullik I, Babst M, Fischer H M, Hennecke H. Bradyrhizobium japonicum FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen levels. J Bacteriol, 1998, 180:5251-5255.
    
    245. Niehaus K, Becker A. The role of microbial surface polysaccharides in the Rhizobium-legume symbiosis. Subcell Biochem, 1998, 29:73-116.
    
    246. Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev, 1985,49:1-32.
    
    247. Niner B M, Hirsch A M. How many Rhizobium genes, in addition to nod, nif/fix, and exo, are needed for nodule development and function? Symbiosis, 1998, 24:51-102.
    
    248. Norel F, Elmerich C. Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571.J Gen Microbiol, 1987, 133:1563-1576.
    
    249. Ogasawara M, Suzuki T, Mutoh I, Annapurna K, Arora N K, Nishimura Y, Maheshwari D K. Sinorhizobium indiaense sp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis, 2003, 34:53-68.
    
    250. Oke V, Long S R. Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol Microbiol, 1999, 32:837-849.
    
    251. Oldroyd G E D. Nodules and hormones. Science, 2007, 315:52-53.
    
    252. Ovtsyna A, Staehelin C. Bacterial signals required for the Rhizobium-legume symbiosis. Recent Res Dev Microbiol, 2003, 7:631-648.
    
    253. Parke D, Ornston L N. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. J Bacteriol, 1986,165:288-292.
    
    254. Parke D, Rynne F, Glenn A. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. J Bacteriol, 1991, 173:5546-5550.
    
    255. Parke D. Acquisition, reorganization, and merger of genes: novel management of the beta-ketoadipate pathway in Agrobacterium tumefaciens. FEMS Microbiol Lett, 1997, 146:3-12.
    256. Parkinson J S, Kofoid E C. Communication modules in bacterial signaling proteins. Annu Rev Genet, 1992,26:71-112.
    
    257. Peck M C, Fisher R F, Long S R. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol, 2006,188:5417-5427.
    
    258. Pellock B J, Cheng H P, Walker G C. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol, 2000, 182: 4310-4318.
    
    259. Perez-Galdona R, Kahn M L. Effects of organic acids and low pH on Rhizobium meliloti 104A14. Microbiology, 1994,140:1231-1235.
    
    260. Perret X, Freiberg C, Rosenthal A, Broughton W J, Fellay R. High resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol, 1999, 32:415-425.
    
    261. Peters N K, Frost J W, Long S R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science, 1986, 233:977-980.
    
    262. Phillips D A, Joseph C M, Maxwell C A. Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol, 1992, 99:1526-1531.
    
    263. Poupot R, Martinez-Romero E, Prome J C. Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucosaminyl terminus. Biochemistry, 1993, 32:10430-10435.
    
    264. Preisig O, Anthamatten D, Hennecke H. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. ProcNatl Acad Sci USA, 1993, 90:3309-3313.
    
    265. Preisig O, Zufferey R, Thony-Meyer L, Appleby C A, Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol, 1996,178:1532-1538.
    
    266. Provorov N A, Borisov A Y, Tikhonovich I A. Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theor Biol, 2002,214:215-232.
    
    267. Quandt J, Hynes M F. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene, 1993,127:15-21.
    
    268. Quinto C, De La Vega H, Flores M, Leemans J, Cevallos M A, Pardo M A, Azpiroz R, De Lourdes Girard M, Calva E, Palacios R. Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci USA, 1985, 82:1170-1174.
    
    269. RajBhandary U L. More surprises in translation: initiation without the initiator tRNA. Proc Natl Acad Sci USA, 2000, 97:1325-1327.
    270. Rao J R, Cooper J E. Rhizobia catabolise nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol, 1994, 176:5409-5413.
    
    271. Rao J R, Sharma N D, Hamilton JTG, Boyd D R, Cooper J E. Biotransformation of the pentahydroxyflavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl Environ Microbiol, 1991, 57:1563-1565.
    
    272. Ratet P, Pawlowski K, Schell J, de Bruin F J. The Azorhizobium caulinodans nitrogen-fixation regulatory gene, nifA, is controlled by the cellular nitrogen and oxygen status. Mol Microbiol, 1989, 3:825-838.
    
    273. Redmond J W, Batley M, Djordjevic M A, Innes R W, Kuempel P L, Rolfe B G Flavones induce expression of nodulation genes in Rhizobium. Nature, 1986, 323:632-635.
    
    274. Relic B, Perret X, Estrada-Garcia M T, Kopcinska J, Golinowski W, Krishnan H B, Pueppke S G, Broughton W J. Nod factors of Rhizobium are a key to the legume door. Mol Microbiol, 1994,13:171-178.
    
    275. Renalier M H, Batut J, Ghai J, Terzaghi B, Gherardi M, David M, Garnerone A M, Vasse J, Truchet G, Huguet T, Boistard P. A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional fix gene repeat and a nod locus. J Bacteriol, 1987,169:2231-2238.
    
    276. Reuhs B L, Kim J S, Badgett A, Carlson R W. Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol Plant Microbe Interact, 1994, 7:240-247.
    
    277. Ritsema T, Wijfjes A H M, Lugtenberg B J J, Spaink H P. Rhizobium nodulation protein NodA is a host specific determinant of the transfer of fatty acids in Nod factor biosynthesis. Mol Gen Genet, 1996, 251:44-51.
    
    278. Rivas R, Velazquez E, Willems A, Vizcaino N, Subba-Rao N S, Mateos P F, Gillis M, Dazzo F B, Martinez-Molina E. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl. Environ. Microbiol, 2002, 68:5217-5222.
    
    279. Rivas R, Willems A, Palomo J L, Garcia-Benavides P, Mateos P F, Martinez-Molina E, Gillis M, Velazquez E. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol, 2004, 54:1271-1275.
    
    280. Rivas R, Willems A, Subba-Rao N S, Mateos P F, Dazzo F B, Kroppenstedt R M, Martinez-Molina E, Gillis M, Velazquez E. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst. Appl. Microbiol, 2003, 26:47-53.
    281. Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome J C. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipooligosaccharide signals. Cell, 1991, 67:1131-1143.
    
    282. Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Promé J C, Denarie J. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci USA, 1996, 93:15305-15310.
    
    283. Rolfe B G. Flavones and isoflavone as inducing substances of legume nodulation. Biofactors, 1988, 1:3-10.
    
    284. Ronson C W, Astwood P M, Nixon B T, Ausubel F M. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products. Nucleic Acids Res, 1987,15:7921-7934.
    
    285. Rosas S, Soria R, Correa N, Abdala G Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol, 1998, 38:1161-1168.
    
    286. Rossbach S, Hennecke H. Identification of glyA as a symbiotically essential gene in Bradyrhizobium japonicum. Mol Microbiol, 1991, 5:39-47.
    
    287. Saeki K, Kouchi H. The lotus symbiont, Mesorhizobium loti: molecular genetic techniques and application. J Plant Res, 2000,113:457-465.
    
    288. Saier M H Jr. Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology, 2000,146:1775-1795.
    
    289. Salomon R A, Farias R N. The peptide antibiotic Microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol, 1995,177:3323-3325.
    
    290. Sanders D A, Gillece-Castro B L, Burlingame A L, Koshland D E Jr. Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J Bacteriol, 1992, 174:5117-5122.
    
    291. Sanders D A, Gillece-Castro B L, Stock A M, Burlingame A L, Koshland D E Jr. Identification of the site of phosphorylation of the chemotaxis response regulator protein, Che Y. J Biol Chem, 1989,264:21770-21778.
    
    292. Savoure A, Sallaud C, El-Turk J, Zuanazzi J, Ratet P, Schultze M, Kondorosi A, Esnault R, Kondorosi E. Distinct response of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defense-related responses. Plant J, 1997,11:277-287.
    
    293. Schultze M, Staehelin C, Rohrig H, John M, Schmidt J, Kondorosi E, Schell J, Kondorosi A. In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure. Proc Natl Acad Sci USA, 1995,92:2706-2709.
    294. Scott D B, Young C A, Collins-Emerson J M, Terzaghi E A, Rochman ES, Lewis P E, Pankhurst C E. Novel and complex chromosomal arrangement of Rhizobium loti nodulation genes. Mol Plant-Microbe Interact, 1996, 9:187-197.
    
    295. Shah V K, Imperial J, Ugalde R A, Ludden P W, Brill W J. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA, 1986, 83: 1636-1640.
    
    296. Shaw D J, Rice D W, Guest J R. Homology between CAP and FNR, a regulator of anaerobic respiration in Escherichia coli. J Mol Biol, 1983, 166:241-247.
    
    297. Sindhu S S, Brewin N J, Kannenberg E L. Immunochemical analysis of lipopolysaccharides from free-living and endosymbiotic forms of Rhizobium leguminosarum. J Bacteriol, 1990, 172:1804-1813.
    
    298. Soupene E, Foussard M, Boistard P, Truchet G, Batut J. Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc Natl Acad Sci USA, 1995, 92:3759-3763.
    
    299. Spaink H P, Bloembery G V, Van Brussel A A. Host specificity of Rhizobium leguminosarum is determined by the hydrophobiciry of highly unsaturated fatty acyl moieties of the nodulation factor. Mol Plant-Microbe Interact, 1995, 8:155-164
    
    300. Spaink H P. Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit Rev Plant Sci, 1996, 15:559-582.
    
    301. Staehelin C, Forsberg L S, D'Haeze W, Gao M Y, Carlson R W, Xie Z P, Pellock B J, Jones K M, Walker G C, Streit W R, Broughton W J. Exo-oligosaccharides of Rhizobium sp. are required for symbiosis with various legumes. J Bacteriol, 2006, 188:6168-6178.
    
    302. Streit W R, Joseph C M, Phillips D A. Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact, 1996,9:330-338.
    
    303. Subramanian S, Stacey G, Yu O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J, 2006,48:261-273.
    
    304. Suss C, Hempel J, Zehner S, Krause A, Patschkowski T, Grottfert M. Identification of genistein-inducible and type Ill-secreted proteins of Bradyrhizobium japonicum. J Biotechnol, 2006,126,69-77.
    
    305. Susskind M, Lindner B, Weimar T, Brade H, Hoist O. Note: The structure of the lipopolysaccharide from Klebsiella oxytoca rough mutant R29 (O1-/K29-). Carbohyd Res, 1998,312:91-95.
    
    306. Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol, 2001, 183:214-220.
    307. Szeto W W, Nixon B T, Ronson C W, Ausubel F M. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activating nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol, 1987,169:1423-1432.
    
    308. Taylor L P, Grotewold E. Flavonoids as developmental regulators. Curr Opin Plant Biol, 2005, 8:317-323.
    
    309. Theunis M, Kobayashi H, Broughton W J, Prinsen E. Flavonoids, NodD1, NodD2, and nod box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact, 2004,17:1153-1161.
    
    310. Thony B, Anthamatten D, Hennecke H. Dual control of the Bradyrhizobium japonicum symbiotic nitrogen fixation regulatory operon fixRnifA: analysis of cis- and trans- acting elements. J Bacteriol, 1989,171:4162-4169.
    
    311. Thony B, Fischer H M, Anthamatten D, Bruderer T, Hennecke H. The symbiotic nitrogen fixation regulatory operon (fixRnifA) of Bradyrhizobium japonicum is expressed aerobically and is subject to a novel, nifA-independent type of activation. Nucleic Acids Res, 1987, 15:8479-8499.
    
    312. Timmers A C J, Auriac M C, Truchet G Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development, 1999,126:3617-3628.
    
    313. Toledo I, Lloret L, Martinez-Romero E. Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol, 2003,26:54-64.
    
    314. Ton-Hoang B, Salhi M, Schumacher J, Da Re S, Kahn D. Promoter-specific involvement of the FixJ receiver domain in transcriptional activation. J Mol Biol, 2001, 312:583-589.
    
    315. Truchet G, Barker D G, Camut S, de Billy F, Vasse J, Huguet T. Alfalfa nodulation in the absence of Rhizobium. Mol Gen Genet, 1989, 219:65-68.
    
    316. Trujillo M E, Willems A, Abril A, Planchuelo A M, Rivas R, Ludena D, Mateos P F, Martinez-Molina E, Velazquez E. Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov.. Appl Environ Microbiol, 2005, 71:1318-1327
    
    317. Tuckerman J R, Gonzalez G, Dioum E M, Gilles-Gonzalez M A. Ligand and oxidation-state specific regulation of the heme-based oxygen sensor FixL from Sinorhizobium meliloti. Biochemistry, 2002,41:6170-6177.
    
    318. Tuckerman J R, Gonzalez G, Gilles-Gonzalez M A. Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti. J Mol Biol, 2001, 308:449-455.
    319. Turner G L, Gibson A H. Measurement of nitrogen fixation by indirect means. In: Bergersen F J, eds., Methods for Evaluating Biological Nitrogen Fixation. Chichester, UK: John Wiley &Sons, 1980. 111-138.
    
    320. Turner S L, Zhang X, Li F, Young P W. What does a bacterial genome sequence represent? Misassignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiology, 2002, 148:3330-3331.
    
    321. Ugalde R A, Imperial J, Shah V K, Brill W J. Biosynthesis of ironmolybdenum cofactor in the absence of nitrogenase. J Bacteriol, 1984, 159:888-893.
    
    322. Valverde A, Igual J M, Peix A, Cervantes E, Velazquez E. Rhizobium lusitanum sp. nov., a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol, 2006, 56:2631-2637.
    
    323. Valverde A, Velazquez E, Fernandez-Santos F, Vizcaino N, Rivas R, Mateos P F, Martinez-Molina E, Igual J M, Willems A. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol, 2005, 55:1985-1989
    
    324. Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual J M. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol, 2003, 53:1979-1983.
    
    325. van Berkum P, Leibold J M, Eardly B D. Proposal for combining Bradyrhizobium spp. (Aeschynomene indica) with Blastobacter denitrificans and to transfer Blastobacter denitrificans (Hirsch and Muller, 1985) to the genus Bradyrhizobium as Bradyrhizobium denitrificans (comb. nov.). Syst Appl Microbiol, 2006, 29:207-215.
    
    326. van Brussel A A, Bakhuizen R, van Spronsen P C, Spaink H P, Tak T, Lugtenberg B J, Kijne J W. Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science, 1992,257:70-72.
    
    327. van Brussel A A, Recourt K, Pees E, Spaink H P, Tak T, Wijffelman C A, Kijne J W, Lugtenberg B J. A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra. J Bacteriol, 1990, 172:5394-5401.
    
    328. van Spronsen P C, Bakhuizen R, van Brussel A A, Kijne J W. Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur J Cell Biol, 1994, 64:88-94.
    
    329. Vance C P, Gantt J S. Control of nitrogen and carbon metabolism in root nodules. Physiol Plant, 1992,85:266-274.
    
    330. Vandamme P, Coenye T. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol. 2004, 54:2285-2289.
    331. Vandamme P, Goris J, Chen W M, de Vos P, Willems A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol, 2002,25:507-512.
    
    332. Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraegen G Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia (Pseudomonas) syzygii (Roberts et al. 1990) comb.nov.. Int J Syst Evol Microbiol, 2004, 54:317-327.
    
    333. Vasse J, de Billy F, Camut S, Truchet G Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol, 1990, 172:4295-4306.
    
    334. Vedam V, Haynes J G, Kannenberg E L, Carlson R W, Sherrier D J. A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation. Mol Plant Microbe Interact, 2004,17:283-291.
    
    335. Velazquez E, Igual J M, Willems A, Fernandez M P, Munoz E, Mateos P F, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martinez-Molina E. Mesorhizobium chacoense sp. nov, a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol, 2001,51:1011 -1021
    
    336. Vermis K, Coenye T, LiPuma J J, Mahenthiralingam E, Nelis H J, Vandamme P. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov.. Int J Syst Evol Microbiol, 2004, 54:689-691.
    
    337. Vijne I, das Neves L, van Kammen A, Franssen H, Bisseling T. Nod factors and nodulation in plants. Science, 1993, 260:1764-1765
    
    338. Viprey V, Del Greco A, Golinowski W, Perret X, Broughton W J. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol, 1998, 28:1381-1389.
    
    339. Virts E L, Stanfield S W, Helinski D R. Common regulatory elements control symbiotic and microaerobic induction of nifA in Rhizobium meliloti. Proc Natl Acad Sci USA, 1988, 85: 3062-3065.
    
    340. Waelkens F, Foglia A, Morel J B, Fourment J, Batut J, Boistard P. Molecular genetic analysis of the Rhizobium meliloti fixK promoter: identification of sequences involved in positive and negative regulation. Mol Microbiol, 1992,6:1447-1456.
    
    341. Wang E T, Tan Z Y, Willems A Y, Fernandez-Lopez M, Reinhold-Hurek B, Martinez-Romero E. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol, 2002, 52:1687-1693.
    
    342. Wang E T, Van Berkum P, Sui X H, Beyene D, Chen W X, Martinez-Romero E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov., Int J Syst Bacteriol, 1999,49:51-65.
    343. Wang F Q, Wang E T, Liu J, Chen Q, Sui X H, Chen W F, Chen W X. Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol, 2007, 57:1192-1199
    
    344. Webster R E. The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol, 1990, 5:1005-1011.
    
    345. Willems A, Fernandez-Lopez M, Munoz-Adelantado E, Goris J, De Vos P, Martinez-Romero E, Toro N, Gillis M. Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion. Int J Syst Evol Microbiol, 2003, 53:1207-1217
    
    346. Williams K A, Deber C M. Proline residues in trans-membrane helices: Structural or dynamic role? Biochemistry, 1991, 30:8919-8923.
    
    347. Wood E A, Butcher G W, Brewin N J, Kannenburg E L. Genetic derepression of a developmentally regulated lipopolysaccharide antigen from Rhizobium leguminosarum 3841.JBacteriol, 1989, 171:4549-4555.
    
    348. Wootton J C, Drummond M. The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng, 1989, 2:535-543.
    
    349. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol, 1992, 36:1251-1275.
    
    350. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol, 1995, 39:897-904.
    
    351. Yao Z Y, Kan F L, Wang E T, Wei G H, Chen W X. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov.. Int J Syst Evol Microbiol, 2002, 52:2219-2230.
    
    352. Yorgey P, Lee J, Kordel J, Vivas E, Warner P, Jebaratnam D, Kolter R. Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci USA, 1994, 91:4519-4523.
    
    353. Young J M, Kuykendall L D, Martinez-Romero E, Kerr A, Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol, 2001, 51:89-103.
    354.Young J M,Pennycook S R,Watson D R.Proposal that Agrobacterium radiobacter has priority over Agrobacterium tumefaciens.Request for an Opinion.Int J Syst Evol Microbiol,2006,56:491-493
    355.Young J M.Renaming of Agrobacterium larrymoorei Bouzar and Jones 2001 as Rhizobium larrymoorei(Bouzar and Jones 2001) comb.nov.Int J Syst Evol Microbiol,2004,54:149.
    356.Young J M.The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al.1988,and Sinorhizobium morelense Wang et al.2002 is a later synonym of Ensifer adhaerens Casida 1982.Is the combination 'Sinorhizobium adhaerens'(Casida 1982)Willems et al.2003 legitimate? Request for an Opinion.Int J Syst Evol Microbiol,2003,53:2107-2110
    357.Yuen J P Y,Cassini S T,De Oliveira T T,Nagem T J,Stacey G.Xanthone induction of nod gene expression in Bradyrhizobium japonicum.Symbiosis,1995,19:131:140.
    358.Yuen J P Y,Stacey G.Inhibition of nod gene expression in Bradyrhizobium japonicum by organic acids.Mol Plant-Microbe Interact,1996,9:424-428.
    359.Yura T,Mori H,Nagai H,Nagata T,Ishihama A,Fujita N,Isono K,Mizobuchi K,Nakata A.Systematic sequencing of the Escherichia coli genome:analysis of the 0-2.4 min region.Nucleic Acids Res,1992,13:3305-3308.
    360.Zabran H H.Rhizobium-legume symbiosis and nitrogen fixation under severe condition and in add climate.Microbiol Mol Biol Rev,1999,63:968-989.
    361.Zhang X S,Cheng H P.Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen.Appl Environ Microbiol,2006,72:2738-2748.
    362.Zurdo-Pineiro J L,Rivas R,Trujillo M E,Vizcaino N,Carrasco J A,Chamber M,Palomares A,Mateos P F,Martinez-Molina E,Velazquez E.Ochrobactrum cytisi sp.nov.,isolated from nodules of Cytisus scoparius in Spain.Int J Syst Evol Microbiol,2007,57:784-788
    363.陈丹明,曾昭海,隋新华.紫花苜蓿高效共生根瘤菌的筛选.草业科学,2002,19:27-31.
    364.陈汉才,郁宝麟,郭一松,宋鸿遇.豆根瘤菌NGR234和紫云英根瘤菌109感染紫云英的比较研究.实验生物学报,1990,23:381-389.
    365.陈华癸.草籽绿肥根瘤细菌和人工接种.新科学,1952,3:33-38.
    366.陈华癸.微生物学.北京:中国农业出版社,1999,145-146.
    367.陈华癸.微生物学.北京:高等教育出版社,1959.
    368.陈今朝,向邓云.生物固氮的研究应用.涪陵师专学报,2000,16:96.
    369.林稚兰,黄秀梨.现代微生物学与实验技术.北京:科学出版社,2000,9-13.
    370.卢嘉锡,蔡启瑞,万惠霖.生物固氮全球的挑战和未来的需要.辽宁科技参考,2001,4:26.
    371.沈世华,荆玉祥.中国生物固氮研究现状和展望.科学通报,2003,48:532-540.
    372.唐莲,白丹.农业活动非点源污染与水环境恶化.环境保护,2003,3:18-20.
    373.杨荣泉,朱鲁生,李敬存.农业面源污染的控制方案与对策.农业环境与发展,2004,4:38-39.
    374.张从.中国农村面源污染的环境影响及其控制对策.环境科学动态.2001,4:10-13.
    375.中国草原学会.中国草地科学进展(第四届第二次年会暨学术讨论会文集).北京:中国农业大学出版社,1998,132-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700