生物炭在黄土高原典型土壤中的改良作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区是我国乃至世界水土流失最严重地区,当地的农业生产和生态环境建设面临着土壤肥力有限、水分短缺、侵蚀严重等诸多限制。适合当地气候、土壤特征的土壤改良技术的引入是解决这些问题的重要出路。生物炭施用对土壤性状和植物生长等的影响研究成为当前农业和生态环境领域研究热点问题,其对土壤肥力、水分状况以及植物生长的改良促进作用在许多研究中得到证实。
     本研究采用室内土柱培养试验和田间原位测定的研究方法,通过2010年到2012年内的4次取样测定,系统地研究了不同施用量(0、4、8、16g/kg)下生物炭(锯末炭)对黄土高原0-10cm和10-20cm层次土壤(塿土、黑垆土、黄绵土、沙黄土、风沙土)pH值、阳离子交换量(CEC)、土壤碳组分、土壤容重、团聚体、土壤水分等指标的影响效果。同时通过室内人工模拟降雨试验研究了经过18个月培养期后生物炭施用对土壤侵蚀效果。本论文取得的主要进展如下:
     1、研究了生物炭施用对黄土高原典型土壤pH和CEC的影响效果和过程。生物炭施用对土壤pH值影响效果受到自身pH值和目标土壤pH值差异影响。在黄土高原碱性土壤中施用pH值相近或略低的生物炭不会提高土壤pH值,还可起到降低土壤pH值效果。低pH值生物炭施用量的提高,有助于进一步降低黄土高原典型土壤pH值,为植物生长创造良好立地条件。生物炭施用可对质地较轻、肥力较低的风沙土产生显著且稳定的提高土壤CEC效果,对塿土、黑垆土、黄绵土、沙黄土的土壤CEC的影响效果则不稳定。高的生物炭施用量对土壤CEC的提高一般显示有更好的作用效果。两年的试验试验内,生物炭施用后土壤CEC未显示出逐渐升高的效果,生物炭自身氧化作用在短期内未能有效促进土壤肥力状况改善。
     2、研究了生物炭施用对黄土高原典型土壤微生物量碳含量以及有机碳、重液分组测定的影响。生物炭施用可以对黄土高原土壤的微生物状况起到一定的影响作用,培养试验和田间试验均表明生物炭对微生物碳量的影响主要表现为增加效果,尤其是较长培养时间后效果更加明显。在土壤类型上,生物炭施用对风沙土土壤微生物碳量的增加效果最明显,其次为沙黄土和黄绵土,影响较弱的为黑垆土和塿土。生物炭施用后会影响到土壤中有机碳以及重液分组后重组有机碳含量测定,使得常规的重铬酸钾外加热法测定土壤有机碳量在短期内显著提高,由于生物炭自身稳定性以及密度不均一性,生物炭施用土壤经重液分组法测定所得土壤有机无机复合体含量,不适合用作该类土壤的肥力和土壤改良效果评价指标。
     3、研究了生物炭施用对黄土高原典型土壤容重、团聚体结构的影响效果和过程。生物炭施用对黄土高原5种典型土壤容重表现了一定的降低的趋势:在土壤类型上,仅有风沙土在一定条件下表现了显著的降低效果;在生物炭施用量上,高的生物炭使用量是降低土壤容重的条件。生物炭施用对干筛土壤团聚体组分未产生明显作用,但在一定程度上可以影响土壤团聚体的稳定性,具体表现为:生物炭施用对土壤质地较粘土壤(塿土和黑垆土)团聚体稳定性的促进效果较好,且增加作用出现较早,而对质地较轻土壤(黄绵土和沙黄土)则仅在较长时期后(两年)体现一定的增加趋势。
     4、研究了生物炭施用对黄土高原典型土壤水分性质的影响效果和过程。在本研究生物炭施用梯度下,生物炭仅对风沙土的持水能力体现较好的提高效果,高的生物炭施用量下更加明显,对于塿土、黑垆土、黄绵土和沙黄土则作用效果不明显。生物炭施用对土壤饱和导水率未起到稳定增加效果,且对风沙土的饱和导水率有降低趋势,高生物炭施用量下降低趋势更明显,这有利于风沙土地区有限降水的表层截留,利于作物生长。
     5、采用人工模拟降雨试验,研究了生物炭施用对黄土高原典型土壤的抗蚀性的影响。生物炭施用可对土壤产流时间起到微弱的延迟作用。在容重相同的初次风干土直接降雨过程中,生物炭施用不会起到减少地表径流作用;而由于生物炭对土壤团聚体稳定性的提高作用,初次降雨径流量的增加并未引起泥沙产量相应增加。生物炭施用对土壤收缩的降低效果,使得二次降雨过程中土壤结构优于空白处理,土壤入渗能力提高。二次降雨中,生物炭施用对粉粒和砂粒含量较高的黑垆土、黄绵土和沙黄土3种土壤均体现了较好的减流减沙效果。生物炭施用可对黄土高原典型土壤的抗蚀性起到促进作用。
     通过黄土高原五种土壤多种指标分析发现,生物炭施用一般对质地较差、肥力水平较低土壤的改良效果较好;对塿土、黑垆土等粘性较强土壤则作用效果有限,且不稳定。同时在本研究所用的较低生物炭施用量下,生物炭的影响效果总体有限,多数指标表现为更高的施用量下效果更好,需要结合考虑增加生物炭施用量或辅以其他技术措施来促进生物炭的土壤改良效果。短期内,生物炭施用对土壤性状的影响效果不大,需要建立长期监测体系,来进一步评价生物炭施用对黄土高原典型土壤理化性质的影响过程和作用效果。
Loess Plateau is the most serious soil erosion region in the world. The localagricultural production and ecological restoration has been limited in some extent by poorsoil fertility, water shortages, and serious erosion. The improvement effects of biocharapplication on soil properties and plant growth has become a new research focus.
     In this study, five typical soil types (Lou soil, Dark Loessial soil, Loessal soil,Shahuang soil, Aeolian sandy soil) spread across the Loess Plateau and one type of biochar(made from sewdust) were chosen as the test materials for the incubation and fieldexperiments. Biochar was mixed with the soils at the rates of0、4、8、16g/kg.0-10cm and10-20cm layers were sampled separately four times in the experiment period fromNovember2010to November2012. Soil pH, CEC, organic carbon content, bulk density,soil aggregates, soil water properties were characterized. Simulation rainfall experimentwas done with the soil incubated with18months to indicate the effect of biocharapplication on soil erodibiltiy. The main research findings are shown as follows:
     (1) Effects of biochar application on soil pH and CEC were determinated. Impacts ofbiochar application on soil pH were influenced by the basic properties of biochar and theamended soil. The pH of the alkaline soils in the Loess Plateau would not be increased bythe application of biochar with lower pH value. The results of the incubation experimentshowed that biochar application has the potential abilitiy to restrict soil salinization processin some extent, the restrct effcet would be better in the Aeolian sandy soil with low ferlity.Biochar appliction didn’t increase soil CEC significantly in all the five soils in theexperiment. The steady increasing effcet on soil CEC was only shown in the Aeolian sandysoil with lower fertility. The higher biochar application rate would get higher soil CEC. Inthe two years experiment period, the oxidation of biochar didn’t effectively promote soilCEC increasing.
     (2) Effects of biochar application on soil microbial biomass canbon, soil organiccarbon and soil density fraction were determinated. Biochar application would increase soilmicrobial biomass carbon content. The results were shown in both the incuabtion and fieldexperiment and were more significant in the longer experiment period. The increasingeffect of soil microbial biomass by biochar application was much better in the Aeoliansandy soil, followed by the Shahuang soil, Loessal soil and Lou soil, Dark loessial soil.The determined soil orgnic carbon contents in the soil and the hervy fraction were bothincreased significantly by biochar application. Because that biochar contains some part ofheavy fraction, soil organo-mineral complex content, which was determined by heavydensity fraction and dichromate oxidation (external heat applied) method, couldn’t be usedas the indice to show the soil improvement effect of biochar application.
     (3) Effects of biochar application on soil bulk density and soil aggregates weredeterminated. Biochar application showed the trend to decrease the soil bulk density, whilethe significant decreasing effect only shown in Aeolian sandy soil. Biochar applicationdidn’t influece the soil aggreagate distribution in the air-drying sieving. However, biocharapplication showed the improvement effect on soil aggregates stability. The improvementeffects were shown more obviously and earlier in the Lou soil and Dark loessial soil, whilein the Shahuang soil and Loessal soil the increasing tendency was shown n the secondexperiment year.
     (4) Effects of biochar application on soil water properties were determinated. Biocharapplication didn’t significantly influence the soil water hold capacity and soil saturatedhydraulic conductivity in Lou soil, Dark loessial soil, Shahuang soil and Loessal soil. Butit can increase the soil water hold capacity and decrease saturated hydraulic conductivity ofAeolian sandy soil with coarse-texture and amounts of macropores. The influence effectwas better when higher biochar application rate was used. The decreased soil hydraulicconductivity by biochar application in the sandy soils was benefit to store the rainfall in thesurface layer and supply the plant growth.
     (5) Effects of biochar application on soil erosion in two kinds of rainfall event weredeterminated by simulation rainfall experiment. The results showed that biocharapplication can weakly delay the time to runoff. In the first rainfall event with air-dryingsoil, the runoff amount wasn’t decreased in the biochar amended soils. Becaused of the increased soil stability, the sediment amount were not incrased. The restrain effect ofbiochar applicaion on soil shrinkage lead to the better soil structure and was conducive tothe increase of soil infiltration. The second rainfall event showed that soil erosion chouldbe decreased by biochar application in Dark loessial soil, Shahuang soil and Loessal soil.Biochar application could increase soil stability and decrease soil erosion in the LoessPlateau.
     From the study, we found that biochar appliation has the better improvement effect onthe coarse-texture and unfertility soils. The improvement effect was limited with thebiochar application rate of the study, and higher biohcar application rate had the tendencyto get better improvement effect. Higher application rate of biochar or application withother materials would get better soil amendment effect in the Loess Plateau. In therelatively short experiment period, biochar application didn’t show the steadyimprovement effect. Long period montoring system should be set up to assess the influenceprocess and comprehensively assess biochar application effects on soil properties.
引文
[1] Lal, R. Soils and food sufficiency. A review [J]. Agronomy for Sustainable Development,2009,29:113-133.
    [2] Editorial. Soil and world food security [J]. Soil&Tillage Research,2009,102:1-4.
    [3] Glaser, B., Parr, M., Braun, C., et al. Biochar is carbon negative [J]. Nature Geoscience,2009,2(1):2-2.
    [4] Kammann, C. I., Linsel, S., Gossling, J. W., et al. Influence of biochar on drought tolerance ofChenopodium quinoa Willd and on soil-plant relations [J]. Plant and Soil,2011,345(1-2):195-210.
    [5] Glaser, B., Lehmann, J., Zech, W. Ameliorating physical and chemical properties of highlyweathered soils in the tropics with charcoal-a review [J]. Biology and Fertility of Soils,2002,35(4):219-230.
    [6] Lima, Hedinaldo N., Schaefer, Carlos E. R., Mello, Jaime W. V., et al. Pedogenesis andpre-Colombian land use of "Terra Preta Anthrosols"("Indian black earth") of WesternAmazonia [J]. Geoderma,2002,110(1-2):1-17.
    [7] Hossain, Mustafa K., Strezov, Vladimir, Yin Chan, K., et al. Agronomic properties ofwastewater sludge biochar and bioavailability of metals in production of cherry tomato(Lycopersicon esculentum)[J]. Chemosphere,2010,78(9):1167-1171.
    [8] Glaser, Bruno, Haumaier, Ludwig, Guggenberger, Georg, et al. The 'Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften,2001,88(1):37-41.
    [9] Lehmann, Johannes Black is the new green [J]. Nature,2006,442:624-626.
    [10]常婕.人类寻找喂饱世界的8种办法[J].决策与信息,2009,10:73-75.
    [11] Baer, W. Ten Technologies To Save the Planet: Energy Options for a Low-Carbon Future [J].Library Journal,2010,135(8):88-88.
    [12] Ipcc. Climate Change2007:the Physical Science Basis.Contribution of working group I to thefourth assement report of the intergovernmental panel on climate change. CambridgeUniversity Press, Cambridge,996pp.[J].2007,
    [13]黄昌勇.土壤学[M].北京:中国农业出版社,2000,80-89.
    [14]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-356.
    [15] Nguyen, Binh, Lehmann, Johannes, Kinyangi, James, et al. Long-term black carbon dynamicsin cultivated soil [J]. Biogeochemistry,2009,92(1):163-176.
    [16] Rumpel, C., Ba, A., Darboux, F., et al. Erosion budget and process selectivity of black carbonat meter scale [J]. Geoderma,2009,154(1–2):131-137.
    [17] Rumpel, C., Chaplot, V., Chabbi, A., et al. Stabilisation of HF soluble and HCl resistantorganic matter in sloping tropical soils under slash and burn agriculture [J]. Geoderma,2008,145(3-4):347-354.
    [18] Karhu, Kristiina, Mattila, Tuomas, Bergstr m, Irina, et al. Biochar addition to agricultural soilincreased CH4uptake and water holding capacity–Results from a short-term pilot field study[J]. Agriculture, Ecosystems&Environment,2011,140(1–2):309-313.
    [19] Lehmann, Johannes, Gaunt, John,Rondon, Marco. Bio-char Sequestration in TerrestrialEcosystems–A Review [J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2):395-419.
    [20] Cheng, Chih-Hsin, Lehmann, Johannes, Thies, Janice E., et al. Oxidation of black carbon bybiotic and abiotic processes [J]. Organic Geochemistry,2006,37(11):1477-1488.
    [21] Bruun, Sander, Jensen, Erik S.,Jensen, Lars S. Microbial mineralization and assimilation ofblack carbon: Dependency on degree of thermal alteration [J]. Organic Geochemistry,2008,39(7):839-845.
    [22] Liang, Biqing, Lehmann, Johannes, Solomon, Dawit, et al. Stability of biomass-derived blackcarbon in soils [J]. Geochimica et Cosmochimica Acta,2008,72(24):6069-6078.
    [23] Hockaday, William C., Grannas, Amanda M., Kim, Sunghwan, et al. Direct molecular evidencefor the degradation and mobility of black carbon in soils from ultrahigh-resolution massspectral analysis of dissolved organic matter from a fire-impacted forest soil [J]. OrganicGeochemistry,2006,37(4):501-510.
    [24] Kaal, Joeri, Martínez-Cortizas, Antonio, Buurman, Peter, et al.8000yr of black carbonaccumulation in a colluvial soil from NW Spain [J]. Quaternary Research,2008,69(1):56-61.
    [25] Carcaillet, C.,Talon, B. Soil carbon sequestration by Holocene fires inferred from soil charcoalin the alps [J]. Artic, Antarctic and Alpine Research,2001,33):282-288.
    [26] Knoblauch, C., Maarifat, A. A., Pfeiffer, E. M., et al. Degradability of black carbon and itsimpact on trace gas fluxes and carbon turnover in paddy soils [J]. Soil Biology&Biochemistry,2011,43(9):1768-1778.
    [27] Kuzyakov, Yakov, Subbotina, Irina, Chen, Haiqing, et al. Black carbon decomposition andincorporation into soil microbial biomass estimated by14C labeling [J]. Soil Biology andBiochemistry,2009,41(2):210-219.
    [28] Yu, Xiang-Yang, Mu, Chang-Li, Gu, Cheng, et al. Impact of woodchip biochar amendment onthe sorption and dissipation of pesticide acetamiprid in agricultural soils [J]. Chemosphere,2011,85(8):1284-1289.
    [29] Zhang, Afeng, Cui, Liqiang, Pan, Gengxing, et al. Effect of biochar amendment on yield andmethane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J].Agriculture, Ecosystems&Environment,2010,139(4):469-475.
    [30]石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气,2005,23(2):11-14.
    [31]韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18(3):87-91.
    [32] Bridgwater, A. V., Meier, D.,Radlein, D. An overview of fast pyrolysis of biomass [J]. OrganicGeochemistry,1999,30(12):1479-1493.
    [33]汪海波,秦元萍,余康.我国农作物秸秆资源的分布、利用与开发策略[J].国土与自然资源研究,2008,2:92-93.
    [34]曹国良,张小曳,王亚强,等.中国区域农田秸秆露天焚烧排放量的估算[J].科学通报,2007,52(15):1826-1831.
    [35]许黎,王亚强,罗勇,等.黑碳气溶胶的气候效应和拓展的研究领域[J].气候变化研究进展,2007,3(6):328-333.
    [36]秦世广,汤洁,温玉璞.黑碳气溶胶及其在气候变化研究中的意义[J].气象,2001,27(11):3-7.
    [37]陈洪章.秸秆资源生态高值化理论与应用[M].北京:化学工业出版社,2006.
    [38] Sánchez, M. E., Lindao, E., Margaleff, D., et al. Pyrolysis of agricultural residues from rapeand sunflowers: Production and characterization of bio-fuels and biochar soil management [J].Journal of Analytical and Applied Pyrolysis,2009,85(1-2):142-144.
    [39] Yanik, Jale, Kornmayer, Christoph, Saglam, Mehmet, et al. Fast pyrolysis of agriculturalwastes: Characterization of pyrolysis products [J]. Fuel Processing Technology,2007,88(10):942-947.
    [40] zyurtkan, Mustafa Hakan, z imen, Didem,Meri boyu, Ay egül Ersoy. Investigation of thecarbonization behavior of hybrid poplar [J]. Fuel Processing Technology,2008,89(9):858-863.
    [41]徐炳成,山仑,陈云明.黄土高原半干旱区植被建设的土壤水分效应及其影响因素[J].中国水土保持科学,2003,1(4):32-35.
    [42]谭勇,王长如,梁宗锁,等.黄土高原半干旱区林草植被建设措施[J].草业学报,2006,15(4):4-11.
    [43]张琼华,赵景波.黄土高原地区农业可持续发展的用水模式探讨[J].中国沙漠,2006,26(2):317-321.
    [44]刘晓清,赵景波,于学峰.黄土高原气候暖干化趋势及适应对策[J].干旱区研究,2006,23(4):627-631.
    [45]姚玉璧,王毅荣,李耀辉等.中国黄土高原气候暖干化及其对生态环境的影响[J].资源科学,2005,27(5):146-152.
    [46]杨文治,田均良.黄土高原土壤干燥化问题探源[J].土壤学报,2004,41(1):1-6.
    [47]李军,蒋斌,胡伟,等.黄土高原不同类型旱区旱作粮田深层土壤干燥化特征[J].自然资源学报,2009,24(12):2124-2134.
    [48]解文艳,樊贵盛.土壤结构对土壤入渗能力的影响[J].太原理工大学学报,2004,35(4):381-384.
    [49] Glaser, Bruno. Prehistorically modified soils of central Amazonia: a model for sustainableagriculture in the twenty-first century [J]. Philosophical Transactions of the Royal Society ofLondon Series B: Biological Sciences,2007,362:(187-196.
    [50] Woods, William I. Biochar trials aim to enrich soil for smallholders [J]. Nature,2006,443:(114.
    [51] Topoliantz, Stéphanie, Ponge, Jean-Fran ois,Ballof, Sylvain. Manioc peel and charcoal: apotential organic amendment for sustainable soil fertility in the tropics [J]. Biology and Fertilityof Soils,2005,41(1):15-21.
    [52] Atkinson, Christopher, Fitzgerald, Jean,Hipps, Neil. Potential mechanisms for achievingagricultural benefits from biochar application to temperate soils: a review [J]. Plant and Soil,2010,337:1-18.
    [53] Sarkhot, D. V., Berhe, A. A.,Ghezzehei, T. A. Impact of biochar enriched with dairy manureeffluent on carbon and nitrogen dynamics [J]. Journal of Environmental Quality,2012,41(4):1107-1114.
    [54] Liang, Biqing, Lehmann, Johannes, Sohi, Saran P., et al. Black carbon affects the cycling ofnon-black carbon in soil [J]. Organic Geochemistry,2010,41(2):206-213.
    [55] Keith, A., Singh, B.,Singh, B. P. Interactive priming of biochar and labile organic mattermineralization in a smectite-rich soil [J]. Environmental Science&Technology,2011,45(22):9611-9618.
    [56] Busscher, W. J., Novak, J. M., Evans, D. E., et al. Influence of pecan biochar on physicalproperties of a norfolk loamy sand [J]. Soil Science,2010,175(1):10-14.
    [57] Jindo, K., Sanchez-Monedero, M. A., Hernandez, T., et al. Biochar influences the microbialcommunity structure during manure composting with agricultural wastes [J]. Science of TheTotal Environment,2012,416:476-481.
    [58] Glaser, Bruno, Balashov, Eugene, Haumaier, Ludwig, et al. Black carbon in density fractions ofanthropogenic soils of the Brazilian Amazon region [J]. Organic Geochemistry,2000,31(7-8):669-678.
    [59] Garcia-Montiel, Diana C., Neill, Christopher, Melillo, Jerry, et al. Soil PhosphorusTransformations Following Forest Clearing for Pasture in the Brazilian Amazon [J]. Soil Sci.Soc. Am. J.,2000,64(5):1792-1804.
    [60] Kim, Jong-Shik, Sparovek, Gerd, Longo, Regina M., et al. Bacterial diversity of terra preta andpristine forest soil from the Western Amazon [J]. Soil Biology and Biochemistry,2007,39(2):684-690.
    [61] Glaser, Bruno, Lehmann, Johannes, Steiner, Christoph, et al. Potential of pyrolyzed organicmatter in soil amelioration [J].12th ISCO Conference,2002,
    [62] Liang, B., Lehmann, J., Solomon, D., et al. Black carbon increases cation exchange capacity insoils [J]. Soil science society of america journal,2006,70(5):1719-1730.
    [63] Rumpel, C., Alexis, M., Chabbi, A., et al. Black carbon contribution to soil organic mattercomposition in tropical sloping land under slash and burn agriculture [J]. Geoderma,2006,130(1–2):35-46.
    [64] Deluca, T. H., Mackenzie, M. D., Gundale, M. J., et al. Wildfire-produced charcoal directlyinfluences nitrogen cycling in ponderosa pine forests [J]. Soil Sci. Soc. Am. J.,2006,70(2):448-453.
    [65] Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E., et al. Effects of charcoal production on soilphysical properties in Ghana [J]. Journal of Plant Nutrition and Soil Science-Zeitschrift FurPflanzenernahrung Und Bodenkunde,2008,171(4):591-596.
    [66] Oguntunde, P. G., Fosu, M., Ajayi, A. E., et al. Effects of charcoal production on maize yield,chemical properties and texture of soil [J]. Biology and Fertility of Soils,2004,39(4):295-299.
    [67] Ayodele, Ajayi, Oguntundeii, Philip, Josephiii, Abiodun, et al. Numerical analysis of theimpact of charcoal production on soil hydrological behavior, runoff response and erosionsusceptibility [J]. Rev. Bras. Ciênc. Solo,2009,33(1):137-145.
    [68] Laird, David A., Fleming, Pierce, Davis, Dedrick D., et al. Impact of biochar amendments onthe quality of a typical Midwestern agricultural soil [J]. Geoderma,2010,158(3-4):443-449.
    [69] Hamer, Ute, Marschner, Bernd, Brodowski, Sonja, et al. Interactive priming of black carbonand glucose mineralisation [J]. Organic Geochemistry,2004,35(7):823-830.
    [70] Rondon, M. A., Lehmann, J., Ramirez, J., et al. Biological nitrogen fixation by common beans(Phaseolus vulgaris L.) increases with bio-char additions [J]. Biology and Fertility of Soils,2007,43(6):699-708.
    [71] Lehmann, Johannes, Pereira Da Silva, Jose, Steiner, Christoph, et al. Nutrient availability andleaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer,manure and charcoal amendments [J]. Plant and Soil,2003,249(2):343-357.
    [72] Laird, David, Fleming, Pierce, Wang, Baiqun, et al. Biochar impact on nutrient leaching from aMidwestern agricultural soil [J]. Geoderma,2010,158(3-4):436-442.
    [73] Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., et al. A wood based low-temperaturebiochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability [J].Plant and Soil,2012,353(1-2):73-84.
    [74] Asai, Hidetoshi, Samson, Benjamin K., Stephan, Haefele M., et al. Biochar amendmenttechniques for upland rice production in Northern Laos:1. Soil physical properties, leaf SPADand grain yield [J]. Field Crops Research,2009,111(1-2):81-84.
    [75] Uzoma, K. C., Inoue, M., Andry, H., et al. Effect of cow manure biochar on maize productivityunder sandy soil condition [J]. Soil Use and Management,2011,27(2):205-212.
    [76] Ding, Ying, Liu, Yu-Xue, Wu, Wei-Xiang, et al. Evaluation of biochar effects on nitrogenretention and leaching in multi-layered soil columns [J]. Water, Air,& Soil Pollution,2010,1-9.
    [77] Parvage, M. M., Ulen, B., Eriksson, J., et al. Phosphorus availability in soils amended withwheat residue char [J]. Biology and Fertility of Soils,2013,49(2):245-250.
    [78] Jones, B. E. H., Haynes, R. J.,Phillips, I. R. Effect of amendment of bauxite processing san dwith organic materials on its chemical, physical and microbial properties [J]. Journal ofEnvironmental Management,2010,91(11):2281-2288.
    [79] Fellet, G., Marchiol, L., Delle Vedove, G., et al. Application of biochar on mine tailings:Effects and perspectives for land reclamation [J]. Chemosphere,2011,83(9):1262-1267.
    [80] Peng, X., Ye, L. L., Wang, C. H., et al. Temperature-and duration-dependent ricestraw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southernChina [J]. Soil and Tillage Research,2011,112(2):159-166.
    [81] Yuan, Jin-Hua, Xu, Ren-Kou, Wang, Ning, et al. Amendment of Acid Soils with Crop Residuesand Biochars [J]. Pedosphere,2011,21(3):302-308.
    [82] Van Zwieten, L., Kimber, S., Morris, S., et al. Effects of biochar from slow pyrolysis ofpapermill waste on agronomic performance and soil fertility [J]. Plant and Soil,2010,327(1):235-246.
    [83] Brodowski, Sonja, Amelung, Wulf, Haumaier, Ludwig, et al. Morphological and chemicalproperties of black carbon in physical soil fractions as revealed by scanning electronmicroscopy and energy-dispersive X-ray spectroscopy [J]. Geoderma,2005,128(1-2):116-129.
    [84] Cheng, Chih-Hsin, Lehmann, Johannes,Engelhard, Mark H. Natural oxidation of black carbonin soils: Changes in molecular form and surface charge along a climosequence [J]. Geochimicaet Cosmochimica Acta,2008,72(6):1598-1610.
    [85] Yuan, Jinhua, Xu, Renkou,Zhang, Hong. The forms of alkalis in the biochar produced fromcrop residues at different temperatures [J]. Bioresource Technology,2011,102(3):3488-3497.
    [86] Yuan, J. H.,Xu, R. K. The amelioration effects of low temperature biochar generated from ninecrop residues on an acidic Ultisol [J]. Soil Use and Management,2011,27(1):110-115.
    [87] Yuan, Jinhua, Xu, Renkou, Qian, Wei, et al. Comparison of the ameliorating effects on anacidic ultisol between four crop straws and their biochars [J]. Journal of Soils and Sediments,2011,11(5):741-750.
    [88] Lehmann, Johannes, Rillig, Matthias C., Thies, Janice, et al. Biochar effects on soil biota-Areview [J]. Soil Biology and Biochemistry,2011,43(9):1812-1836.
    [89] Steiner, Christoph, Das, Keshav C., Garcia, Marcos, et al. Charcoal and smoke extract stimulatethe soil microbial community in a highly weathered xanthic Ferralsol [J]. Pedobiologia,2008,51(5-6):359-366.
    [90] Kolb, Simone E., Fermanich, Kevin J.,Dornbush, Mathew E. Effect of Charcoal Quantity onMicrobial Biomass and Activity in Temperate Soils [J]. Soil science society of america journal,2009,73(1173-1181):
    [91] Castaldi, S., Riondino, M., Baronti, S., et al. Impact of biochar application to a Mediterraneanwheat crop on soil microbial activity and greenhouse gas fluxes [J]. Chemosphere,2011,85(9):1464-1471.
    [92] Quilliam, Richard S., Marsden, Karina A., Gertler, Christoph, et al. Nutrient dynamics,microbial growth and weed emergence in biochar amended soil are influenced by time sinceapplication and reapplication rate [J]. Agriculture, Ecosystems&Environment,2012,158(0):192-199.
    [93] Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., et al. Decreased soil microbial biomass andnitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil [J]. Plant andSoil,2012,354(1-2):311-324.
    [94] Spokas, Kurt A.,Reicosky, Donald C. Impacts of sixteen different biochars on siol greenhousegas production [J]. Annals of environmental science,2009,3(179-193.
    [95] Brodowski, Sonja, Amelung, Wulf, Haumaier, Ludwig, et al. Black carbon contribution tostable humus in German arable soils [J]. Geoderma,2007,139(1-2):220-228.
    [96] Bandyopadhyay, S., De, P. P., Tripathy, D. K., et al. Influence of surface oxidation of carbonblack on its interaction with nitrile rubbers [J]. Polymer,1996,37(2):353-357.
    [97]段喜明,吴普特,王春红,等.人工降雨条件下施加粉煤灰对耕作土壤结构和水土流失的影响研究[J].农业工程学报,2006,22(8):50-53.
    [98]韩凤朋,郑纪勇,李占斌,等. PAM对土壤物理性状以及水分分布的影响[J].农业工程学报,2010,26(4):70-74.
    [99]曹丽花,赵世伟,梁向锋,等. PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究[J].农业工程学报,2008,24(1):45-48.
    [100]劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究[J].农业工程学报,2002,18(2):49-52.
    [101]员学锋,汪有科,吴普特,等. PAM对土壤物理性状影响的试验研究及机理分析[J].水土保持学报,2005,19(2):37-40.
    [102] Zhang, Afeng, Liu, Yuming, Pan, Genxing, et al. Effect of biochar amendment on maize yieldand greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil fromCentral China Plain [J]. Plant and Soil,2012,351(1):263-275.
    [103] Brodowski, S., John, B., Flessa, H., et al. Aggregate-occluded black carbon in soil [J].European Journal of Soil Science,2006,57(4):539-546.
    [104] Saran, Sohi, Elisa, Lopez-Capel, Evelyn, Krull, et al., Biochar, climate change and soil: Areview to guide future research in CSIRO Land and Water Science Report05/09, Krull Evelyn,Editor.2009.
    [105] Piccolo, A., Pietramellara, G.,Mbagwu, J. S. C. Use of humic substances as soil conditioners toincrease aggregate stability [J]. Geoderma,1997,75(3-4):267-277.
    [106] Verheijen, F.G.A., Jeffery, S., Bastos, A.C., Van Der Velde, M., and Diafas, I, Biocharapplication to soils-A critical scientific review of effects on soil properties, processes andfunctions.2009, EUR24099EN, Office for the Official Publications of the EuropeanCommunities, Luxembourg.
    [107] Brockhoff, S. R., Christians, N. E., Killorn, R. J., et al. Physical and Mineral-NutritionProperties of Sand-Based Turfgrass Root Zones Amended with Biochar [J]. Agronomy Journal,2010,102(6):1627-1631.
    [108] Tryon, Eh. Effect of charcoal on certain physical,chemical,and biological properties of forestsoils [J]. Eeol Monogr,1948,18:81-115.
    [109]文曼.黄土高原地区生物炭的土壤水动力学效应[D].杨凌:西北农林科技大学,2012.
    [110] Solaiman, Zakaria, Murphy, Daniel,Abbott, Lynette. Biochars influence seed germination andearly growth of seedlings [J]. Plant and Soil,2012,353(1):273-287.
    [111] Bamberg, J. B., Hanneman, R. E.,Towill, L. E.. Use of activated charcoal to enhance thegermination of botanical seeds of potato [J]. American Journal of Potato Research,1986,63:181-189.
    [112] Baronti, Silvia, Alberti, Giorgio, Vedove, Gemini Delle, et al. The Biochar option to improveplant yields: First results from some field and pot experiments in Italy [J]. Italian Journal ofAgronomy,2010,5:3-11.
    [113] Free, Hf, Mcgill, Cr, Rowarth, Js, et al. The effect of biochars on maize (Zea mays)germination [J]. New Zealand Journal of Agricultural Research,2010,53:1-4.
    [114]崔立强.生物黑炭抑制稻麦对污染土壤中Cd/Pb吸收的试验研究[D].南京:南京农业大学,2010.
    [115]张文玲,李桂花,高卫东.生物质炭对土壤性状和作物产量的影响[J].中国农学通报,2009,25(17):
    [116] Rajkovich, S., Enders, A., Hanley, K., et al. Corn growth and nitrogen nutrition after additionsof biochars with varying properties to a temperate soil [J]. Biology and Fertility of Soils,2012,48(3):271-284.
    [117] Noguera, D., Rondon, M., Laossi, K. R., et al. Contrasted effect of biochar and earthworms onrice growth and resource allocation in different soils [J]. Soil Biology&Biochemistry,2010,42(7):1017-1027.
    [118] Six, J., Elliott, E. T.,Paustian, K. Soil structure and soil organic matter II. A normalizedstability index and the effect of mineralogy [J]. Soil science society of america journal,2000,64(3):1042-1049.
    [119] Masahide, Yamato, Yasuyuk, Okimori, Irhas Fredy, Wibowo, et al. Effects of the applicationof charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soilchemical properties in South Sumatra, Indonesia [J]. Soil Science and Plant Nutrition,2006,52(495):489-495.
    [120] Steiner, Christoph, Teixeira, Wenceslau G., Lehmann, Johannes, et al. Long term effects ofmanure, charcoal and mineral fertilization on crop production and fertility on a highlyweathered Central Amazonian upland soil [J]. Plant and Soil,2007,291(275-290.
    [121] Wang, Jinyang, Pan, Xiaojian, Liu, Yinglie, et al. Effects of biochar amendment in two soils ongreenhouse gas emissions and crop production [J]. Plant and Soil,1-12.
    [122] Steiner, Christoph, Teixeira, Wenceslau, Lehmann, Johannes, et al. Long term effects ofmanure, charcoal and mineral fertilization on crop production and fertility on a highlyweathered Central Amazonian upland soil [J]. Plant and Soil,2007,291(1):275-290.
    [123] Robertson, S. J., Rutherford, P. M., Lopez-Gutierrez, J. C., et al. Biochar enhances seedlinggrowth and alters root symbioses and properties of sub-boreal forest soils [J]. Canadian Journalof Soil Science,2012,92(2):329-340.
    [124] Vaccari, F. P., Baronti, S., Lugato, E., et al. Biochar as a strategy to sequester carbon andincrease yield in durum wheat [J]. European Journal of Agronomy,2011,34(4):231-238.
    [125] Jones, D.L., Rousk, J., Edwards-Jones, G., et al. Biochar-mediated changes in soil quality andplant growth in a three year field trial [J]. Soil Biology&Biochemistry,2012,45(113-124.
    [126] Major, Julie, Rondon, Marco, Molina, Diego, et al. Maize yield and nutrition during4yearsafter biochar application to a Colombian savanna oxisol [J]. Plant and Soil,2010,333(1):117-128.
    [127] Major, Julie, Steiner, Christoph, Ditommaso, Antonio, et al. Weed Composition and CoverAfter Three Years of Soil Fertility Management in the Central Brazilian Amazon: Compost,Fertilizer, Manure and Charcoal Applications [J]. Weed Biology and Management,2005,5:69-76.
    [128] Yanai, Yosuke, Toyota, Koki,Okazaki, Masanori. Effects of charcoal addition on N2Oemissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J]. Soil Science and Plant Nutrition,2007,53:181-188.
    [129] Smith, Jeffrey L., Collins, Harold P.,Bailey, Vanessa L. The effect of young biochar on soilrespiration [J]. Soil Biology and Biochemistry,2010,42(12):2345-2347.
    [130] Jones, D. L., Murphy, D. V., Khalid, M., et al. Short-term biochar-induced increase in soil CO2release is both biotically and abiotically mediated [J]. Soil Biology and Biochemistry,2011,43(8):1723-1731.
    [131] Liu, X. Y., Qu, J. J., Li, L. Q., et al. Can biochar amendment be an ecological engineeringtechnology to depress N2O emission in rice paddies?-A cross site field experiment from SouthChina [J]. Ecological Engineering,2012,42:168-173.
    [132] Case, S. D. C., Mcnamara, N. P., Reay, D. S., et al. The effect of biochar addition on N2O andCO2emissions from a sandy loam soil-The role of soil aeration [J]. Soil Biology&Biochemistry,2012,51:125-134.
    [133] Spokas, K. A., Koskinen, W. C., Baker, J. M., et al. Impacts of woodchip biochar additions ongreenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil [J].Chemosphere,2009,77(4):574-581.
    [134]张华,王志立.黑碳气溶胶气候效应的研究进展[J].气候变化研究进展,2009,5(6):311-317.
    [135]张伟明,张庆忠,陈温福.镉污染土壤中施用秸秆炭对水稻生长发育的影响[J].北方水稻,2009,39(2):4-7.
    [136]周建斌,邓丛静,陈金林,等.棉秆炭对镉污染土壤的修复效果[J].生态环境,2008,17(5):1857-1860.
    [137] Qiu, Yuping, Zheng, Zhenzhi, Zhou, Zunlong, et al. Effectiveness and mechanisms of dyeadsorption on a straw-based biochar [J]. Bioresource Technology,2009,100(21):5348-5351.
    [138] Zheng, Wei, Guo, Mingxin, Chow, Teresa, et al. Sorption properties of greenwaste biochar fortwo triazine pesticides [J]. Journal of Hazardous Materials,2010,181(1-3):121-126.
    [139] Chen, Baoliang,Chen, Zaiming. Sorption of naphthalene and1-naphthol by biochars of orangepeels with different pyrolytic temperatures [J]. Chemosphere,2009,76(1):127-133.
    [140] Chen, B. L.,Yuan, M. X. Enhanced sorption of polycyclic aromatic hydrocarbons by soilamended with biochar [J]. Journal of Soils and Sediments,2011,11(1):62-71.
    [141] Yu, X. Y., Ying, G. G.,Kookana, R. S. Reduced plant uptake of pesticides with biocharadditions to soil [J]. Chemosphere,2009,76(5):665-671.
    [142] Yu, Xiangyang, Pan, Ligang, Ying, Guangguo, et al. Enhanced and irreversible sorption ofpesticide pyrimethanil by soil amended with biochars [J]. Journal of Environmental Sciences,2010,22(4):615-620.
    [143] Zhang, Honghua, Lin, Kunde, Wang, Hailong, et al. Effect of pinus radiata derived biochars onsoil sorption and desorption of phenanthrene [J]. Environmental Pollution,2010,158(9):2821-2825.
    [144]黄少鹏.启动生物炭碳汇工程开辟节能减排新途径[J].科技导报,2009,27(15):18.
    [145] Karaosmanoglu, F., Isigigur-Ergundenler, A.,Sever, A. Biochar from the straw-stalk ofrapeseed plant [J]. Energy&Fuels,2000,14(2):336-339.
    [146] Grierson, Scott, Strezov, Vladimir, Ellem, Gary, et al. Thermal characterisation of microalgaeunder slow pyrolysis conditions [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):118-123.
    [147] z imen, Didem,Karaosmano lu, Filiz. Production and characterization of bio-oil and biocharfrom rapeseed cake [J]. Renewable Energy,2004,29(5):779-787.
    [148] Ozcimen, D.,Ersoy-Mericboyu, A. A study on the carbonization of grapeseed and chestnut shell[J]. Fuel Processing Technology,2008,89(11):1041-1046.
    [149] z imen, Didem,Ersoy-Meri boyu, Aysegül. Characterization of biochar and bio-oil samplesobtained from carbonization of various biomass materials [J]. Renewable Energy,2010,35(6):1319-1324.
    [150] Sánchez, M. E., Martínez, O., Gómez, X., et al. Pyrolysis of mixtures of sewage sludge andmanure: A comparison of the results obtained in the laboratory (semi-pilot) and in a pilot plant[J]. Waste Management,2007,27(10):1328-1334.
    [151] Inyang, Mandu, Gao, Bin, Pullammanappallil, Pratap, et al. Biochar from anaerobicallydigested sugarcane bagasse [J]. Bioresource Technology,2010,101(22):8868-8872.
    [152]谭洪,张磊,韩玉阁.不同种类生物质热解炭的特性实验研究[J].生物质化学工程,2009,43(5):31-34.
    [153] Xiao, Ruirui,Yang, Wei. Influence of temperature on organic structure of biomass pyrolysisproducts [J]. Renewable Energy,2013,50(0):136-141.
    [154] Bird, Michael I., Ascough, Philippa L., Young, Iain M., et al. X-ray microtomographic imagingof charcoal [J]. Journal of Archaeological Science,2008,35(10):2698-2706.
    [155] Bergeron, Sylvain Pelletier, Bradley, Robert L., Munson, Alison, et al. Physico-chemical andfunctional characteristics of soil charcoal produced at five different temperatures [J]. SoilBiology and Biochemistry,2013,58(0):140-146.
    [156] Mukherjee, A., Zimmerman, A. R.,Harris, W. Surface chemistry variations among a series oflaboratory-produced biochars [J]. Geoderma,2011,163(3-4):247-255.
    [157] Pratt, Kimberley,Moran, Dominic. Evaluating the cost-effectiveness of global biocharmitigation potential [J]. Biomass and Bioenergy,2010,34(8):1149-1158.
    [158] Galinato, Suzette P., Yoder, Jonathan K.,Granatstein, David. The economic value of biochar incrop production and carbon sequestration [J]. Energy Policy,2011,39(10):6344-6350.
    [159]鲍士旦.土壤农化分析[M].2000,中国农业出版社.
    [160]熊毅.土壤胶体(第二册):土壤胶体研究法[M].科学出版社,1985,55-61.
    [161]黄超,刘丽君,章明奎.生物质炭对红壤性质及黑麦草生长的影响[J].浙江大学学报(农业与生命科学版),2011,37(4):439-445.
    [162] Sohi, Saran P., Mahieu, Nathalie, Arah, Jonathan R. M., et al. A procedure for isolating soilorganic matter fractions suitable for modelling [J]. Soil science society of america journal,2001,65(1121-1128.
    [163] Ma, Yj, Li, Sg,Wang, Zq. Effect of weathered coal on the colloidal property of soil (in Japanese)[J]. TU Jang Hsueh Pao,1979,16(22-28.
    [164] Llorente, Mireia, Glaser, Bruno,Turrión, M. Belén. Storage of organic carbon and Black carbonin density fractions of calcareous soils under different land uses [J]. Geoderma,2010,159(1-2):31-38.
    [165] Purevsuren, B., Avid, B., Tesche, B., et al. A biochar from casein and its properties [J]. Journalof Materials Science,2003,38(11):2347-2351.
    [166] Pirmoradian, N., Sepaskhah, A.R.,Hajabbasi, M.A. Application of fractal theory to quantify soilaggregate stability as influenced by tillage treatments [J]. Biosystems Engineering,2005,90(2):227-234.
    [167] Wei, Chaofu, Gao, Ming, Shao, Jingan, et al. Soil aggregate and its response to landmanagement practices [J]. China Particuology,2006,4(5):211-219.
    [168] An, Shao-Shan, Huang, Yi-Mei, Zheng, Fen-Li, et al. Aggregate characteristics during naturalrevegetation on the Loess Plateau [J]. Pedosphere,2008,18(6):809-816.
    [169] Barthès, Bernard,Roose, Eric. Aggregate stability as an indicator of soil susceptibility to runoffand erosion; validation at several levels [J]. CATENA,2002,47(2):133-149.
    [170] Cantón, Y., Solé-Benet, A., Asensio, C., et al. Aggregate stability in range sandy loam soilsRelationships with runoff and erosion [J]. CATENA,2009,77(3):192-199.
    [171] Bronick, C. J.,Lal, R. Soil structure and management: a review [J]. Geoderma,2005,124(1-2):3-22.
    [172] Tisdall, J. M.,Oades, J. M. Organic matter and water-stable aggregates in soils [J]. Journal ofSoil Science,1982,33(2):141-163.
    [173] Jastrow, J.D. Soil aggregate formation and the accrual of particulate and mineral-associatedorganic matter [J]. Soil Biology and Biochemistry,1996,28(4–5):665-676.
    [174] Alag z, Zeki,Yilmaz, Erdem. Effects of different sources of organic matter on soil aggregateformation and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey [J]. Soil andTillage Research,2009,103(2):419-424.
    [175] Wortmann, C. S.,Shapiro, C. A. The effects of manure application on soil aggregation [J].Nutrient Cycling in Agroecosystems,2008,80:173-180.
    [176] Piccolo, A.,Mbagwu, J.S.C. Effects of different organic waste amendments on soilmicroaggregates stability and molecular sizes of humic substances [J]. Plant and Soil,1990,123:27-37.
    [177] Abiven, Samuel, Menasseri, Safya,Chenu, Claire. The effects of organic inputs over time onsoil aggregate stability-A literature analysis [J]. Soil Biology and Biochemistry,2009,41(1):1-12.
    [178] Zhang, G.S., Chan, K.Y., Oates, A., et al. Relationship between soil structure and runoff/soilloss after24years of conservation tillage [J]. Soil&Tillage Research,2007,92(122-128.
    [179]吴鹏豹.生物炭对土壤质量及王草产量、品质的影响[D].海口:海南大学,2012.
    [180]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006,23-36.
    [181]赵勇钢,赵世伟,曹丽花,等.典型草原区退耕及封育草地土壤水分物理性质研究[J].水土保持通报,2007,27(6):41-44.
    [182]刘纪根,夏卫生,潘英华,等.土壤结构改良剂对土壤水动力学参数的影响[J].农业工程学报,2003,19(4):37-39.
    [183]刘振波,史学正,于东升,等.模拟降雨下土壤前期含水量对土壤可蚀性的影响[J].生态环境,2008,17(1):397-402.
    [184]文曼,郑纪勇.生物炭不同粒径及不同添加量对土壤收缩特征的影响[J].水土保持研究,2012,19(1):46-50.
    [185] Beck, Deborah A., Johnson, Gwynn R.,Spolek, Graig A. Amending greenroof soil with biocharto affect runoff water quantity and quality [J]. Environmental Pollution,2011,159(8–9):2111-2118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700